Processing math: 100%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (119)

Search Parameters:
Keywords = sub-mm wave

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 9562 KiB  
Article
Design of a Polarization-Insensitive and Wide-Angle Triple-Band Metamaterial Absorber
by Shaoxin Zheng, Manna Gu, Guilan Feng, Mingfeng Zheng, Tianqi Zhao and Xufeng Jing
Photonics 2025, 12(4), 386; https://doi.org/10.3390/photonics12040386 - 16 Apr 2025
Viewed by 299
Abstract
This paper proposes a tri-band wide-angle polarization-insensitive absorber operating in the C-band and Ku-band, based on the design concept of metal–dielectric–metal. The absorber achieves absorption efficiencies of 99.05%, 99.3%, and 97.9% at 4.23 GHz, 7.403 GHz, and 14.813 GHz, respectively. The first two [...] Read more.
This paper proposes a tri-band wide-angle polarization-insensitive absorber operating in the C-band and Ku-band, based on the design concept of metal–dielectric–metal. The absorber achieves absorption efficiencies of 99.05%, 99.3%, and 97.9% at 4.23 GHz, 7.403 GHz, and 14.813 GHz, respectively. The first two absorption frequencies are in the C-band, while the third absorption frequency is in the Ku-band, both of which are commonly used in satellite communication. The designed absorber consists of three differently sized regular hexagonal rings. To analyze the interaction mechanism between the electromagnetic wave and the absorber, we applied the theory of impedance matching and equivalent media to analyze the metamaterial properties of the absorber. In addition, the equivalent circuit model of the absorber has been analyzed. We then determined the existence of coupled electromagnetic resonances between the top and bottom surfaces by analyzing the distribution of the electric field, magnetic field, and surface currents on the absorber. By varying the polarization angle and incident angle of the incoming wave, we found that the absorber exhibits polarization insensitivity and wide-angle absorption characteristics. The TE and TM waves maintain more than 90% absorption efficiency up to incident angles of 50° and 60°, respectively. The absorber’s thickness is 1.07 mm, which is 0.0154 times the wavelength corresponding to the lowest resonant frequency (λ0), and the edge length of the subunit’s regular hexagon is 7.5 mm (0.108λ0), making the absorber sub-wavelength in scale while maintaining its compactness. The proposed absorber operates in the C-band and Ku-band, and can be applied in the field of satellite communications, achieving functions such as electromagnetic shielding and stealth. Full article
(This article belongs to the Special Issue Novel Developments in Optoelectronic Materials and Devices)
Show Figures

Figure 1

15 pages, 13643 KiB  
Article
Calibration of High-Frequency Reflectivity of Sediments with Different Grain Sizes Using HF-SSBP
by Shuai Xiong, Xinghui Cao, Zhiguo Qu, Dapeng Zou, Huancheng Zhen and Tong Zeng
J. Mar. Sci. Eng. 2025, 13(4), 741; https://doi.org/10.3390/jmse13040741 - 8 Apr 2025
Viewed by 233
Abstract
Accurate and efficient acquisition of the acoustic reflection properties of sediments with different grain sizes is key for sediment substrate classification and the construction of seafloor acoustic scattering models. To accurately measure surface sediments on the seafloor, an in-depth investigation of the acoustic [...] Read more.
Accurate and efficient acquisition of the acoustic reflection properties of sediments with different grain sizes is key for sediment substrate classification and the construction of seafloor acoustic scattering models. To accurately measure surface sediments on the seafloor, an in-depth investigation of the acoustic properties of sediments with different grain sizes at different measurement distances is an indispensable prerequisite. While previous studies have extensively explored the acoustic reflection properties of sediments in mid- and low-frequency bands (e.g., 6–85 kHz), research on high-frequency reflectivity (95–125 kHz) remains limited. Existing equipment often suffers from large beam angles (e.g., >10°), leading to challenges in standardising laboratory measurements. To this end, we developed a technique using a high-frequency submersible sub-bottom profiler (HF-SSBP) to measure the high-frequency reflection intensity of homogeneous sediments screened by grain size. To ensure stable measurements of the high-frequency reflection intensity, we conducted experiments using standard acrylic plates. This demonstrates the dependability of the HF-SSBP and determines the absolute measurement error of the HF-SSBP. Variations in radiofrequency reflection intensity across different sediment types with different grain sizes in a frequency range of 95–125 kHz were investigated. The reflectance amplitude was measured and the reflectance coefficients were calculated for six uniform sediments with different grain sizes ranging from 0.1–0.3 to 2.0–2.5 mm. The scattering intensity of the six sediments with a uniform grain size distribution at the same measurement distance varies to some extent. There is variation in the intensity of acoustic wave reflections for different grain sizes, but some of the differences are not statistically significant. The dispersion coefficients of the acoustic reflection intensities for all sediments, except for those with a grain size of 1.0–1.5 mm, are less than 5% at different measurement distances. These coefficients are almost independent of the detection distance. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

27 pages, 3010 KiB  
Article
Energy and Spectral Efficiency Analysis for UAV-to-UAV Communication in Dynamic Networks for Smart Cities
by Mfonobong Uko, Sunday Ekpo, Ubong Ukommi, Unwana Iwok and Stephen Alabi
Smart Cities 2025, 8(2), 54; https://doi.org/10.3390/smartcities8020054 - 22 Mar 2025
Viewed by 618
Abstract
Unmanned Aerial Vehicles (UAVs) are integral to the development of smart city infrastructures, enabling essential services such as real-time surveillance, urban traffic regulation, and cooperative environmental monitoring. UAV-to-UAV communication networks, despite their adaptability, have significant limits stemming from onboard battery constraints, inclement weather, [...] Read more.
Unmanned Aerial Vehicles (UAVs) are integral to the development of smart city infrastructures, enabling essential services such as real-time surveillance, urban traffic regulation, and cooperative environmental monitoring. UAV-to-UAV communication networks, despite their adaptability, have significant limits stemming from onboard battery constraints, inclement weather, and variable flight trajectories. This work presents a thorough examination of energy and spectral efficiency in UAV-to-UAV communication over four frequency bands: 2.4 GHz, 5.8 GHz, 28 GHz, and 60 GHz. Our MATLAB R2023a simulations include classical free-space path loss, Rayleigh/Rician fading, and real-time mobility profiles, accommodating varied heights (up to 500 m), flight velocities (reaching 15 m/s), and fluctuations in the path loss exponent. Low-frequency bands (e.g., 2.4 GHz) exhibit up to 50% reduced path loss compared to higher mmWave bands for distances exceeding several hundred meters. Energy efficiency (ηe) is evaluated by contrasting throughput with total power consumption, indicating that 2.4 GHz initiates at around 0.15 bits/Joule (decreasing to 0.02 bits/Joule after 10 s), whereas 28 GHz and 60 GHz demonstrate markedly worse ηe (as low as 103104bits/Joule), resulting from increased path loss and oxygen absorption. Similarly, sub-6 GHz spectral efficiency can attain 4×1012bps/Hz in near-line-of-sight scenarios, whereas 60 GHz lines encounter significant attenuation at distances above 200–300 m without sophisticated beamforming techniques. Polynomial-fitting methods indicate that the projected ηe diverges from actual performance by less than 5% after 10 s of flight, highlighting the feasibility of machine-learning-based techniques for real-time power regulation, beam steering, or multi-band switching. While mmWave UAV communication can provide significant capacity enhancements (100–500 MHz bandwidth), energy efficiency deteriorates markedly without meticulous flight planning or adaptive protocols. We thus advocate using multi-band radios, adaptive modulation, and trajectory optimisation to equilibrate power consumption, ensure connection stability, and meet high data-rate requirements in densely populated, dynamic urban settings. Full article
Show Figures

Figure 1

15 pages, 7016 KiB  
Article
Finite Element Analysis of the Effects of Different Shapes of Adult Cranial Sutures on Their Mechanical Behavior
by Han Yang, Shiguo Yuan, Yuan Yan, Li Zhou, Chao Zheng, Yikai Li and Junhua Li
Bioengineering 2025, 12(3), 318; https://doi.org/10.3390/bioengineering12030318 - 19 Mar 2025
Viewed by 725
Abstract
Cranial sutures play critical roles in load distribution and neuroprotection, with their biomechanical performance intimately linked to morphological complexity. The purpose of this study was to investigate the effect of different morphologies of cranial sutures on their biomechanical behavior. Based on the different [...] Read more.
Cranial sutures play critical roles in load distribution and neuroprotection, with their biomechanical performance intimately linked to morphological complexity. The purpose of this study was to investigate the effect of different morphologies of cranial sutures on their biomechanical behavior. Based on the different morphologies of the cranial sutures, six groups of finite element models (closed, straight, sine wave, tight sinusoidal wave, layered sinusoidal wave, and layered sinusoidal wave + sutural bone) of the bone–suture–bone composite structures that ranged from simple to complex were constructed. Each model was subjected to 50 kPa impact and 98 N bilateral tensile loads to evaluate von Mises stress and total deformation variations across all groups under combined loading conditions. Key findings reveal that morphological complexity directly governs stress dynamics and mechanical adaptation; layered sinusoidal configurations delayed peak stress by 19–36% and generated elevated von Mises stresses compared to closed sutures, with stress concentrations correlating with interfacial roughness. Under impact, sutures exhibited localized energy dissipation (<0.2 μm deformation), while tensile loading induced uniform displacements (≤11 μm) across all morphologies (p > 0.05), underscoring their dual roles in localized energy absorption and global strain redistribution. Craniosacral therapy relevant forces produced sub-micron deformations far below pathological thresholds (≥1 mm), which implies the biomechanical safety of recommended therapeutic force. Staggered suture–bone in open sutures (31.93% closure rate) enhances shear resistance, whereas closed sutures prioritize rigidity. The findings provide mechanistic explanations for suture pathological vulnerability and clinical intervention limitations, offering a quantitative foundation for future research on cranial biomechanics and therapeutic innovation. Full article
Show Figures

Figure 1

22 pages, 626 KiB  
Article
Channel Characterization and Comparison in Industrial Scenario from Sub-6 GHz to Visible Light Bands for 6G
by Yue Yin, Pan Tang, Jianhua Zhang, Zheng Hu, Tao Jiang, Liang Xia and Guangyi Liu
Photonics 2025, 12(3), 257; https://doi.org/10.3390/photonics12030257 - 13 Mar 2025
Viewed by 499
Abstract
The industrial scenario is indispensable for ubiquitous 6G coverage, which demands hyper-reliable and low-latency communication for full automation, control, and operation. To meet these demands, it is widely believed that it is necessary to introduce not only the conventional sub-6 GHz bands but [...] Read more.
The industrial scenario is indispensable for ubiquitous 6G coverage, which demands hyper-reliable and low-latency communication for full automation, control, and operation. To meet these demands, it is widely believed that it is necessary to introduce not only the conventional sub-6 GHz bands but also high-frequency technologies, such as millimeter wave (mmWave), terahertz (THz), and visible light bands. In this paper, we conduct a channel characterization and comparison in the industrial scenario from the sub-6 GHz to visible light bands. The channel characteristics, including the path loss (PL), root mean square (RMS) delay spread (DS), and angle spread (AS), were analyzed with respect to the frequency dependence and the distance dependence. On the one hand, the visible light band exhibited significant differences in channel characteristics compared to the electronic wave band. Due to the line-of-sight transmission of VLC, the visible light band had a higher path loss, and the path loss exponent reached 3.84. Due to the Lambertian radiation pattern, which has a wide range of reflection angles, the AS of the visible light band was much larger than that of the electronic wave band, which were 1.73 and 0.80 for the visible light and THz bands, respectively. On the other hand, the blockage effect of the metal instruments in the industrial scenario will greatly affect the channel characteristics. As the transceiver distance grows large, signals from both sides of the receiver will be blocked by metal instruments, resulting in a decreasing trend in the RMS DS for the electronic wave band. Moreover, the statistical characteristics of the channel properties were modeled and compared with the 3GPP TR 38.901 standard. It was found that the height of the receiver caused the difference between the proposed model and the 3GPP model and needs to be taken into account when modeling. Furthermore, we extended the 3GPP model to the THz and VLC bands and provided the statistical parameters of the channel characteristics for all frequency bands. This study can provide insights for the evaluation and standardization of multi-frequency communication technology in the industrial scenario. Full article
(This article belongs to the Special Issue Advanced Technologies in Optical Wireless Communications)
Show Figures

Figure 1

18 pages, 7170 KiB  
Article
Coordinated Multi-Input and Single-Output Photonic Millimeter-Wave Communication in W-Band Using Neural Network-Based Waveform-To-Symbol Converter
by Kexin Liu, Boyu Dong, Zhongya Li, Yinjun Liu, Yaxuan Li, Fangbing Wu, Yongzhu Hu and Junwen Zhang
Photonics 2025, 12(3), 248; https://doi.org/10.3390/photonics12030248 - 10 Mar 2025
Viewed by 465
Abstract
Photonic millimeter-wave communication systems are promising for high-capacity, high-speed wireless networks, and their production is driven by the growing demand from data-intensive applications. However, challenges such as inter-symbol interferences (ISIs), inter-band interferences (IBIs), symbol timing offsets (STOs), and nonlinearity impairments exist, especially in [...] Read more.
Photonic millimeter-wave communication systems are promising for high-capacity, high-speed wireless networks, and their production is driven by the growing demand from data-intensive applications. However, challenges such as inter-symbol interferences (ISIs), inter-band interferences (IBIs), symbol timing offsets (STOs), and nonlinearity impairments exist, especially in non-orthogonal multiband configurations. This paper proposes and demonstrates the neural network-based waveform-to-symbol converter (NNWSC) for a coordinated multi-input and single-output (MISO) photonic millimeter-wave system with multiband multiplexing. The NNWSC replaces conventional matched filtering, down-sampling, and equalization, simplifying the receiver and enhancing interference resilience. Additionally, it reduces computational complexity, improving operational feasibility. As a proof of concept, experiments are conducted in a 16QAM non-orthogonal multiband carrierless amplitude and phase (NM-CAP) modulation system with coordinated MISO configurations in a scenario where two base stations have 5 km and 10 km fiber links, respectively. Data were collected across various roll-off factors, sub-band spacings, and received optical power (ROP) levels. Based on the proposed method, a coordinated MISO photonic millimeter-wave (mmWave) communication system at 91.9 GHz is demonstrated at a transmission speed of 30 Gbps. The results show that the NNWSC-based receiver achieves significant bit error rate (BER) reductions compared to conventional receivers across all configurations. The tolerances to the STO of NNWSC are also studied. These findings highlight NNWSC integration as a promising solution for high-frequency, interference-prone environments, with potential improvements for low-SNR and dynamic STO scenarios. Full article
Show Figures

Figure 1

16 pages, 7741 KiB  
Article
Millimeter-Wave SAR Imaging for Sub-Millimeter Defect Detection with Non-Destructive Testing
by Bengisu Yalcinkaya, Elif Aydin and Ali Kara
Electronics 2025, 14(4), 689; https://doi.org/10.3390/electronics14040689 - 10 Feb 2025
Viewed by 801
Abstract
This paper introduces a high-resolution 77–81 GHz mmWave Synthetic Aperture Radar (SAR) imaging methodology integrating low-cost hardware with modified radar signal characteristics specifically for NDT applications. The system is optimized to detect minimal defects in materials, including low-reflectivity ones. In contrast to the [...] Read more.
This paper introduces a high-resolution 77–81 GHz mmWave Synthetic Aperture Radar (SAR) imaging methodology integrating low-cost hardware with modified radar signal characteristics specifically for NDT applications. The system is optimized to detect minimal defects in materials, including low-reflectivity ones. In contrast to the existing studies, by optimizing key system parameters, including frequency slope, sampling interval, and scanning aperture, high-resolution SAR images are achieved with reduced computational complexity and storage requirements. The experiments demonstrate the effectiveness of the system in detecting optically undetectable minimal surface defects down to 0.4 mm, such as bonded adhesive lines on low-reflectivity materials with 2500 measurement points and sub-millimeter features on metallic targets at a distance of 30 cm. The results show that the proposed system achieves comparable or superior image quality to existing high-cost setups while requiring fewer data points and simpler signal processing. Low-cost, low-complexity, and easy-to-build mmWave SAR imaging is constructed for high-resolution SAR imagery of targets with a focus on detecting defects in low-reflectivity materials. This approach has significant potential for practical NDT applications with a unique emphasis on scalability, cost-effectiveness, and enhanced performance on low-reflectivity materials for industries such as manufacturing, civil engineering, and 3D printing. Full article
Show Figures

Figure 1

22 pages, 8673 KiB  
Article
A Dual-Polarized and Broadband Multiple-Antenna System for 5G Cellular Communications
by Haleh Jahanbakhsh Basherlou, Naser Ojaroudi Parchin and Chan Hwang See
Sensors 2025, 25(4), 1032; https://doi.org/10.3390/s25041032 - 9 Feb 2025
Viewed by 1063
Abstract
This study presents a new multiple-input multiple-output (MIMO) antenna array system designed for sub-6 GHz fifth generation (5G) cellular applications. The design features eight compact trapezoid slot elements with L-shaped CPW (Coplanar Waveguide) feedlines, providing broad bandwidth and radiation/polarization diversity. The antenna elements [...] Read more.
This study presents a new multiple-input multiple-output (MIMO) antenna array system designed for sub-6 GHz fifth generation (5G) cellular applications. The design features eight compact trapezoid slot elements with L-shaped CPW (Coplanar Waveguide) feedlines, providing broad bandwidth and radiation/polarization diversity. The antenna elements are compact in size and function within the frequency spectrum spanning from 3.2 to 6 GHz. They have been strategically positioned at the peripheral corners of the smartphone mainboard, resulting in a compact overall footprint of 75 mm × 150 mm FR4. Within this design framework, there are four pairs of antennas, each aligned to offer both horizontal and vertical polarization options. In addition, despite the absence of decoupling structures, the adjacent elements in the array exhibit high isolation. The array demonstrates a good bandwidth of 2800 MHz, essential for 5G applications requiring high data rates and reliable connectivity, high radiation efficiency, and dual-polarized/full-coverage radiation. Furthermore, it achieves low ECC (Envelope Correlation Coefficient) and TARC (Total Active Reflection Coefficient) values, measuring better than 0.005 and −20 dB, respectively. With its compact and planar configuration, quite broad bandwidth, acceptable SAR (Specific Absorption Rate) and excellent radiation characteristics, this suggested MIMO antenna array design shows good promise for integration into 5G hand-portable devices. Furthermore, a compact phased-array millimeter-wave (mmWave) antenna with broad bandwidth is introduced as a proof of concept for higher frequency antenna integration. This design underscores the potential to support future 5G and 6G applications, enabling advanced connectivity in smartphones. Full article
(This article belongs to the Special Issue Antenna Design and Optimization for 5G, 6G, and IoT)
Show Figures

Figure 1

13 pages, 6138 KiB  
Technical Note
Detection of Atmospheric NO2 Using Scheimpflug DIAL with a Blue External Cavity Diode Laser Source
by Cheng Yao, Weixuan Luo, Anping Xiao, Xiqing Peng, Bin Zhang, Longlong Wang, Qiang Ling, Yan Zhou, Zuguang Guan and Daru Chen
Atmosphere 2025, 16(2), 138; https://doi.org/10.3390/atmos16020138 - 27 Jan 2025
Cited by 1 | Viewed by 560
Abstract
Nitrogen dioxide (NO2) is broadly acknowledged as one of the six key air pollutants, posing a significant threat to environmental stability and human health. The profile of atmospheric nitrogen dioxide is required for quantifying NO2 emissions from fossil fuel combustion [...] Read more.
Nitrogen dioxide (NO2) is broadly acknowledged as one of the six key air pollutants, posing a significant threat to environmental stability and human health. The profile of atmospheric nitrogen dioxide is required for quantifying NO2 emissions from fossil fuel combustion and industry. In continuous-wave differential absorption lidar (CW-DIAL) systems, the laser sources employed are subject to the issues of varying output characteristics and poor instability. This study presents a CW-DIAL system for remote sensing of atmospheric NO2 that employs a compact grating-based external cavity diode laser (ECDL) and Scheimpflug imaging. The laser in this system utilizes a piezoelectric transducer (PZT) for precise wavelength tuning, emitting at 448.1 nm and 449.7 nm with an output power of 2.97 W and a narrow linewidth of 0.16 nm. Signal capturing was achieved through a Newtonian telescope with a diameter of 200 mm and a 45° inclined CCD image sensor, satisfying the Scheimpflug principle. A case study near road traffic was used to verify the feasibility of ECDL-DIAL, which took place from 1 October to 2 October 2023 over an industrial park. The system generates precise NO2 distribution maps with sub-50 m resolution over 3 km, updating every 10 min. Full article
Show Figures

Figure 1

20 pages, 18423 KiB  
Article
Advancing Microscale Electromagnetic Simulations for Liquid Crystal Terahertz Phase Shifters: A Diagnostic Framework for Higher-Order Mode Analysis in Closed-Source Simulators
by Haorong Li and Jinfeng Li
Micro 2025, 5(1), 3; https://doi.org/10.3390/micro5010003 - 25 Jan 2025
Viewed by 864
Abstract
This work addresses a critical challenge in microscale computational electromagnetics for liquid crystal-based reconfigurable components: the inadequate capability of current software to accurately identify and simulate higher-order modes (HoMs) in complex electromagnetic structures. Specifically, commercial simulators often fail to capture modes such as [...] Read more.
This work addresses a critical challenge in microscale computational electromagnetics for liquid crystal-based reconfigurable components: the inadequate capability of current software to accurately identify and simulate higher-order modes (HoMs) in complex electromagnetic structures. Specifically, commercial simulators often fail to capture modes such as Transverse Electric (TE11) beyond the fundamental transverse electromagnetic (TEM) mode in coaxial liquid crystal phase shifters operating in the terahertz (THz) regime, leading to inaccurate performance predictions and suboptimal designs for telecommunication engineering applications. To address this limitation, we propose a novel diagnostic methodology incorporating three lossless assumptions to enhance the identification and analysis of pseudo-HoMs in full-wave simulators. Our approach theoretically eliminates losses associated with metallic conductivity, dielectric dissipation, and reflection effects, enabling precise assessment of frequency-dependent HoM power propagation alongside the primary TEM mode. We validate the methodology by applying it to a coaxially filled liquid crystal variable phase shifter device structure, underscoring its effectiveness in advancing the design and characterization of THz devices. This work provides valuable insights for researchers and engineers utilizing closed-source commercial simulators in micro- and nano-electromagnetic device development. The findings are particularly relevant for microscale engineering applications, including millimeter-wave (mmW), sub-mmW, and THz systems, with potential impacts on next-generation communication technologies. Full article
(This article belongs to the Section Microscale Engineering)
Show Figures

Figure 1

31 pages, 4126 KiB  
Article
Optimizing Controlled-Resonance Acoustic Metamaterials with Perforated Plexiglass Disks, Honeycomb Structures, and Embedded Metallic Masses
by Giuseppe Ciaburro, Gino Iannace and Virginia Puyana Romero
Fibers 2025, 13(2), 11; https://doi.org/10.3390/fib13020011 - 22 Jan 2025
Cited by 1 | Viewed by 1058
Abstract
Acoustic metamaterials offer new opportunities for controlling sound waves through engineered material configurations at the sub-wavelength scale. In this research, we present the optimization of a resonance-controlled acoustic metamaterial based on a sandwich structure composed of perforated plexiglass disks, honeycomb structures, and added [...] Read more.
Acoustic metamaterials offer new opportunities for controlling sound waves through engineered material configurations at the sub-wavelength scale. In this research, we present the optimization of a resonance-controlled acoustic metamaterial based on a sandwich structure composed of perforated plexiglass disks, honeycomb structures, and added metal masses. The innovative approach consists of integrating perforated plexiglass disks interspersed with honeycomb structures, which act as multiple and complex Helmholtz resonators, and adding metal masses to introduce resonances at specific frequencies. The metamaterial’s acoustic properties were experimentally characterized using an impedance tube (Kundt tube), allowing the measurement of the Sound Absorption Coefficient (SAC) over an expansive frequency selection. The results demonstrate a substantial enhancement in sound absorption at the target frequencies, demonstrating the effectiveness of the introduced resonances. Numerical simulations using an Artificial Neural Network (ANN) model in MATLAB environment were used to analyze the distribution of resonances and optimize the structural configuration. To effectively evaluate the acoustic properties of the metamaterial, various configurations were analyzed using perforated plexiglass disks combined with different layers of honeycombs arranged in a sandwich structure with a thickness ranging from 41 to 45 mm. A comparison of these configurations revealed a notable increase in the Sound Absorption Coefficient (SAC) when employing three layers of perforated plexiglass disks and adding masses to the first disk (about 14%). This study highlights the potential of resonance-controlled metamaterials for advanced applications in noise control and acoustic engineering. Full article
Show Figures

Figure 1

14 pages, 12507 KiB  
Article
Broadband Millimeter-Wave Front-End Module Design Considerations in FD-SOI CMOS vs. GaN HEMTs
by Clint Sweeney, Donald Y. C. Lie, Jill C. Mayeda and Jerry Lopez
Appl. Sci. 2024, 14(23), 11429; https://doi.org/10.3390/app142311429 - 9 Dec 2024
Viewed by 1094
Abstract
Millimeter-wave (mm-Wave) phased array systems need to meet the transmitter (Tx) equivalent isotropic radiated power (EIRP) requirement, and that depends mainly on the design of two key sub-components: (1) the antenna array and (2) the Tx power amplifier (PA) in the front-end-modules (FEMs). [...] Read more.
Millimeter-wave (mm-Wave) phased array systems need to meet the transmitter (Tx) equivalent isotropic radiated power (EIRP) requirement, and that depends mainly on the design of two key sub-components: (1) the antenna array and (2) the Tx power amplifier (PA) in the front-end-modules (FEMs). Simulations using an electromagnetic (EM) solver carried out in Cadence AWR with AXIEM suggest that for two uniform square patch antenna arrays at 24 GHz, the 4 element array has ~6 dB lower antenna gain and twice the half power beam width (HPBW) compared to the 16 element array. We also present measurements and post-layout parasitic-extracted (PEX) EM simulation data taken on two broadband mm-Wave PAs designed in our lab that cover the key portions of the fifth-generation (5G) FR2-band (i.e., 24.25–52.6 GHz) that lies between the super-high-frequency (SHF, i.e., 3–30 GHz) band and the extremely-high-frequency (EHF, i.e., 30–300 GHz) band: one designed in a 22 nm fully depleted silicon on insulator (FD-SOI) CMOS process, and the other in an advanced 40 nm Gallium Nitride (GaN) high-electron-mobility transistor (HEMT) process. The FD-SOI PA achieves saturated output power (POUT,SAT) of ~14 dBm and peak power-added efficiency (PAE) of ~20% with ~14 dB of gain and 3 dB bandwidth (BW) from ~19.1 to 46.5 GHz in measurement, while the GaN PA achieves measured POUT,SAT of ~24 dBm and peak PAE of ~20% with ~20 dB gain and 3 dB BW from ~19.9 to 35.2 GHz. The PAs’ measured data are in good agreement with the PEX EM simulated data, and 3rd Watt-level GaN PA design data are also presented, but with simulated PEX EM data only. Assuming each antenna element will be driven by one FEM and each phased array targets the same 65 dBm EIRP, millimeter wave (mm-Wave) antenna arrays using the Watt-level GaN PAs and FEMs are expected to achieve roughly 2× wider HPBW with 4× reduction in the array size compared with the arrays using Si FEMs, which shall alleviate the thorny mm-Wave line-of-sight (LOS)-blocking problems significantly. Full article
Show Figures

Figure 1

15 pages, 18055 KiB  
Article
Precise Mechanical Oscillator Design and Calibration for Characterising Sub-Millimetre Movements in mmWave Radar Systems
by Felipe Parralejo, Fernando J. Álvarez, José A. Paredes, Fernando J. Aranda and Teodoro Aguilera
Sensors 2024, 24(23), 7469; https://doi.org/10.3390/s24237469 - 22 Nov 2024
Viewed by 890
Abstract
For many industrial and medical applications, measuring sub-millimetre movements has become crucial, for instance, for the precise guidance of surgical robots. The literature shows the feasibility of millimetre-wave (mmWave) radars to deal with such micro-vibrations. However, the availability of reference devices to configure [...] Read more.
For many industrial and medical applications, measuring sub-millimetre movements has become crucial, for instance, for the precise guidance of surgical robots. The literature shows the feasibility of millimetre-wave (mmWave) radars to deal with such micro-vibrations. However, the availability of reference devices to configure and test these systems is very limited. This work proposes the design of a mechanical oscillator to characterise sub-millimetre vibration detection and measurement using a mmWave radar. The final implementation is fully controllable in both amplitude and frequency. Additionally, it can be wirelessly controlled and synchronised with other systems. Its functioning was experimentally calibrated and tested using the sub-millimetre motion capture system OptiTrack. It was tested to generate low-frequency oscillations from 0.80 Hz to 3.50 Hz with reliable peak amplitudes of 0.05 mm and above, with less than 6% peak amplitude relative error. Finally, the device was used to characterise a 60 GHz mmWave radar with those values. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2024)
Show Figures

Figure 1

11 pages, 50395 KiB  
Article
Detection of Low-Density Foreign Objects in Infant Snacks Using a Continuous-Wave Sub-Terahertz Imaging System for Industrial Applications
by Byeong-Hyeon Na, Dae-Ho Lee, Jaein Choe, Young-Duk Kim and Mi-Kyung Park
Sensors 2024, 24(22), 7374; https://doi.org/10.3390/s24227374 - 19 Nov 2024
Viewed by 1109
Abstract
Low-density foreign objects (LDFOs) in foods pose significant safety risks to consumers. Existing detection methods, such as metal and X-ray detectors, have limitations in identifying low-density and nonmetallic contaminants. To address these challenges, our research group constructed and optimized a continuous-wave sub-terahertz (THz) [...] Read more.
Low-density foreign objects (LDFOs) in foods pose significant safety risks to consumers. Existing detection methods, such as metal and X-ray detectors, have limitations in identifying low-density and nonmetallic contaminants. To address these challenges, our research group constructed and optimized a continuous-wave sub-terahertz (THz) imaging system for the real-time, on-site detection of LDFOs in infant snacks. The system was optimized by adjusting the attenuation value from 0 to 9 dB and image processing parameters [White (W), Black (B), and Gamma (G)] from 0 to 100. Its detectability was evaluated across eight LDFOs underneath snacks with scanning at 30 cm/s. The optimal settings for puffed snacks and freeze-dried chips were found to be 3 dB attenuation with W, B, and G values of 100, 50, and 80, respectively, while others required 0 dB attenuation with W, B, and G set to 100, 0, and 100, respectively. Additionally, the moisture content of infant snacks was measured using a modified AOAC-based drying method at 105 °C, ensuring the removal of all free moisture. Using these optimized settings, the system successfully detected a housefly and a cockroach underneath puffed snacks and freeze-dried chips. It also detected LDFOs as small as 3 mm in size in a single layer of snacks, including polyurethane, polyvinyl chloride, ethylene–propylene–diene–monomer, and silicone, while in two layers of infant snacks, they were detected up to 7.5 mm. The constructed system can rapidly and effectively detect LDFOs in foods, offering a promising approach to enhance safety in the food industry. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

13 pages, 635 KiB  
Article
A Study of Transmission Point Selection for Multi-Connectivity in Multi-Band Wireless Networks
by Eunkyung Kim, Dongwan Kim and Changbeom Choi
Appl. Sci. 2024, 14(22), 10256; https://doi.org/10.3390/app142210256 - 7 Nov 2024
Cited by 1 | Viewed by 1039
Abstract
In 5th generation mobile communication networks, the frequency band of the millimeter band of 30–100 GHz is supported to provide a transmission speed of 20 Gbps or higher. Furthermore, a huge transmission capacity, i.e., up to 1 Tbps, is one of the main [...] Read more.
In 5th generation mobile communication networks, the frequency band of the millimeter band of 30–100 GHz is supported to provide a transmission speed of 20 Gbps or higher. Furthermore, a huge transmission capacity, i.e., up to 1 Tbps, is one of the main requirements for the 6th generation mobile communication networks. In order to meet this requirement, the terahertz band is considered a new service band. Hence, we consider multi-band network environments, serving the sub-6Hz band, mmWave band, and additionally sub-terahertz band. Furthermore, we introduce the transmission point selection criteria with multiple connections for efficient multi-connectivity operation in a multi-band network environment, serving and receiving multiple connections from those bands at the same time. We also propose a point selection algorithm based on the selection criteria, e.g., achievable data rate. The proposed point selection algorithm attains lower computational complexity with a 2-approximation of the optimal solution. Our simulation results, applying the channel environment and beamforming in practical environments defined by 3GPP, show that selecting and serving multiple transmission points regardless of frequency band performs better than services through single-connectivity operation. Full article
(This article belongs to the Special Issue Communication Networks: From Technology, Methods to Applications)
Show Figures

Figure 1

Back to TopTop