Computer-Aided Diagnosis System for Blood Diseases Using EfficientNet-B3 Based on a Dynamic Learning Algorithm
Abstract
:1. Introduction
- For ALL disease prediction, a robust model using the EfficientNet-B3 CNN model and dynamic LR was proposed to distinguish between benign and malignant cells accurately and reliably.
- We compared the proposed model with five other techniques: EfficientNet-B0, EfficientNet-B1, EfficientNet-B2, InceptionResNetV2, and DenseNet121.
- With an average accuracy of 97.68%, the proposed model differentiated between parasitized and uninfected microscopic images.
2. Literature Review
3. Materials and Methods
3.1. Datasets Description
3.2. Model Architecture and Training
3.2.1. Data Pre-Processing
3.2.2. EfficientNet-B3
3.2.3. Dwell
4. Model Implementation and Evaluation
4.1. Model Evaluation Metrics
4.2. Model Implementation
4.3. Model Result Comparison with the Literature
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abir, W.H.; Uddin, F.; Khanam, F.R.; Tazin, T.; Khan, M.M.; Masud, M.; Aljahdali, S. Explainable AI in Diagnosing and Anticipating Leukemia Using Transfer Learning Method. Comput. Intell. Neurosci. 2022, 2022, 5140148. [Google Scholar] [CrossRef] [PubMed]
- Gehlot, S.; Gupta, A.; Gupta, R. SDCT-auxNetθ: DCT Augmented Stain Deconvolutional CNN with Auxiliary Classifier For Cancer Diagnosis. Med. Image Anal. 2020, 61, 101661. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Breast Cancer Now Most Common Form of Cancer: WHO Taking Action. Available online: https://tinyurl.com/93eccmnv (accessed on 3 February 2021).
- Mondal, C.; Hasan, K.; Ahmad, M.; Awal, A.; Jawad, T.; Dutta, A.; Islam, R.; Moni, M.A. Ensemble of Convolutional Neural Networks to Diagnose Acute Lymphoblastic Leukemia from Microscopic Images. Inform. Med. Unlocked 2021, 27, 100794. [Google Scholar] [CrossRef]
- Laosai, J.; Chamnongthai, K. Classification of Acute Leukemia Using Medical-Knowledge-Based Morphology and CD Marker. Biomed. Signal Process. Control. 2018, 44, 127–137. [Google Scholar] [CrossRef]
- Vogado, L.H.; Veras, R.M.; Araujo, F.H.; Silva, R.R.; Aires, K.R. Leukemia Diagnosis in Blood Slides using Transfer Learning in Cnns and Svm for Classification. Eng. Appl. Artif. Intell. 2018, 72, 415–422. [Google Scholar] [CrossRef]
- American Society of Hematology. Hematology. Available online: https://www.hematology.org (accessed on 24 April 2021).
- American Cancer Society. Key Statistics for Acute Lymphocytic Leukemia. Available online: https://www.cancer.org/cancer/acute-lymphocytic-leukemia/about/key-statistics.html (accessed on 24 April 2021).
- Curesearch for Children’s Cancer Research. Curesearch. Available online: https://curesearch.org/Acute-Lymphoblastic-Leukemia-in-Children (accessed on 20 April 2021).
- Mohamed, M.; Far, B.; Guaily, A. An Efficient Technique for White Blood Cells Nuclei Automatic Segmentation. In Proceedings of the 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Seoul, Republic of Korea, 14 October 2012. [Google Scholar]
- Zakir Ullah, M.; Zheng, Y.; Song, J.; Aslam, S.; Xu, C.; Kiazolu, G.D.; Wang, L. An Attention-Based Convolutional Neural Network for Acute Lymphoblastic Leukemia Classification. Appl. Sci. 2021, 11, 10662. [Google Scholar] [CrossRef]
- Amin, M.M.; Kermani, S.; Talebi, A.; Oghli, M.G. Recognition of Acute Lymphoblastic Leukemia Cells in Microscopic Images using K-Means Clustering and Support Vector Machine Classifier. J. Med. Signals Sens. 2015, 5, 49–58. [Google Scholar] [PubMed]
- Shrestha, Y.R.; Krishna, V.; von Krogh, G. Augmenting Organizational Decision-Making with Deep Learning Algorithms: Principles, Promises, and Challenges. J. Bus. Res. 2021, 123, 588–603. [Google Scholar] [CrossRef]
- Xin, Y.; Kong, L.; Liu, Z.; Chen, Y.; Li, Y.; Zhu, H.; Gao, M.; Hou, H.; Wang, C. Machine Learning and Deep Learning Methods for Cybersecurity. IEEE Access 2018, 6, 35365–35381. [Google Scholar] [CrossRef]
- Suzuki, K. Overview of Deep Learning in Medical Imaging. Radiol. Phys. Technol. 2017, 10, 257–273. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.; Wu, G.; Suk, H.I. Deep Learning in Medical Image Analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.N. Cyclical Learning Rates for Training Neural Networks. In Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24 March 2017. [Google Scholar]
- Loshchilov, I.; Hutter, F. SGDR: Stochastic Gradient Descent with Warm Restarts. arXiv 2017, arXiv:1608.03983. [Google Scholar]
- Izmailov, P.; Podoprikhin, D.; Garipov, T.; Vetrov, D.; Wilson, A.G. Averaging Weights Leads to Wider Optima and Better Generalization. arXiv 2018, arXiv:1803.05407. [Google Scholar]
- Johny, A.; Madhusoodanan, K.N. Dynamic Learning Rate in Deep CNN Model for Metastasis Detection and Classification of Histopathology Images. Comput. Math. Methods Med. 2021, 2021, 5557168. [Google Scholar] [CrossRef] [PubMed]
- Khandekar, R.; Shastry, P.; Jaishankar, S.; Faust, O.; Sampathila, N. Automated Blast Cell Detection for Acute Lymphoblastic Leukemia Diagnosis. Biomed. Signal Process. Control. 2021, 68, 102690. [Google Scholar] [CrossRef]
- Almadhor, A.; Sattar, U.; Al Hejaili, A.; Mohammad, U.G.; Tariq, U.; Ben Chikha, H. An Efficient Computer Vision-Based Approach for Acute Lymphoblastic Leukemia Prediction. Front. Comput. Neurosci. 2022, 16, 1083649. [Google Scholar] [CrossRef] [PubMed]
- Kasani, P.H.; Won Park, S.; Won Jang, J. An Aggregated-Based Deep Learning Method for Leukemic B-Lymphoblast Classification. Diagnostics 2020, 10, 1064. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, P.; Zhang, J.; Liu, N.; Liu, Y. Weakly Supervised Ternary Stream Data Augmentation Fine-Grained Classification Network for Identifying Acute Lymphoblastic Leukemia. Diagnostics 2022, 12, 16. [Google Scholar] [CrossRef] [PubMed]
- Malaria Cell Images Dataset; National Institute of Health (NIH). Available online: https://ceb.nlm.nih.gov/repositories/malaria-datasets (accessed on 21 December 2020).
- Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2020. [Google Scholar]
- Alhichri, H.; Alswayed, A.S.; Bazi, Y.; Ammour, N.; Alajlan, N.A. Classification of Remote Sensing Images Using Efficientnet-B3 CNN Model with Attention. IEEE Access 2021, 9, 14078–14094. [Google Scholar] [CrossRef]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18 June 2018. [Google Scholar]
- Torkamana, A.; Charkarib, N.M.; Aghaeipourc, M. An Approach for Leukemia Classification Based on Cooperative Game Theory. Anal. Cell. Pathol. 2011, 34, 235–246. [Google Scholar] [CrossRef]
- Alam, E.U.; Banik, S.; Chowdhury, L. A Statistical Approach to Classify the Leukemia Patients from Generic Gene Features. In Proceedings of the 2020 International Conference on Computer Communication and Informatics (ICCCI-2020), Coimbatore, India, 22–24 January 2020. [Google Scholar]
The Dynamic Learning Rate Algorithm |
---|
Input: no_epoch, factor (factor between 0.0 and 1.0.) Output: Dynamically Learning Rate. Begin: 1-while (no_epoch > 0) 1.1-while (no_epoch == 1) 1.1.1- Input: I (H to halt training or N to continue training). 1.1.2 - If (I == N) 1.1.2.1-no _epoch = N. 1.1.3- else 1.1.3.1- Exit End if End while 2- Input: dwell 3- if dwell == True 3.1 calculate curr_valid_loss 3.2 calculate curr_train_accu 3.3- if (curr_valid_loss > prev_valid_loss) 3.3.1- curr_W = prev_W 3.3.2- curr_B = prev_B 3.3.3- next_lr = current_lr * factor End if 3.4- if (curr_train_accu < prev_train_accu) 3.4.1-curr_W = prev_W 3.4.2-curr_B = prev_B 3.4.3- next_lr = current_lr * factor End if End if 4- no_epoch- = 1 End while End. |
Model | Class | Precision (%) | Recall (%) | Specificity (%) | Accuracy (%) | DSC (%) |
---|---|---|---|---|---|---|
EfficientNet-B3 | all | 97.82 | 98.63 | 95.29 | 97.57 | 98.22 |
hem | 97.01 | 95.29 | 98.63 | 97.57 | 96.14 | |
Average | 97.42 | 96.96 | 96.96 | 97.57 | 97.18 | |
EfficientNet-B0 | all | 91.90 | 99.73 | 81.18 | 93.82 | 95.65 |
hem | 99.28 | 81.18 | 99.73 | 93.82 | 89.32 | |
Average | 95.59 | 90.46 | 90.45 | 93.82 | 89.32 | |
EfficientNet-B1 | all | 97.99 | 93.68 | 95.88 | 9438 | 95.78 |
hem | 87.63 | 95.88 | 93.68 | 94.38 | 91.57 | |
Average | 87.63 | 95.88 | 93.68 | 94.38 | 91.57 | |
EfficientNet-B2 | all | 94.74 | 98.90 | 88.24 | 95.51 | 96.77 |
hem | 95.59 | 95.51 | 98.90 | 95.51 | 92.59 | |
Average | 95.59 | 95.51 | 98.90 | 95.51 | 92.59 | |
InceptionResNetV2 | all | 93.69 | 97.53 | 83.53 | 93.07 | 95.05 |
hem | 94.04 | 83.53 | 97.53 | 93.07 | 88.47 | |
Average | 93.87 | 90.53 | 90.53 | 93.07 | 91.76 | |
DenseNet121 | all | 91.38 | 81.59 | 83.53 | 82.21 | 86.21 |
hem | 67.94 | 83.53 | 81.59 | 82.21 | 74.93 | |
Average | 79.66 | 82.56 | 82.56 | 82.21 | 80.57 |
Model | Class | Precision (%) | Recall (%) | Specificity (%) | Accuracy (%) | DSC (%) |
---|---|---|---|---|---|---|
EfficientNet-B3 | all | 98.37 | 99.18 | 96.47 | 98.31 | 98.77 |
hem | 98.20 | 96.47 | 99.18 | 98.31 | 97.33 | |
Average | 98.29 | 97.83 | 97.82 | 98.31 | 98.05 | |
EfficientNet-B0 | all | 98.37 | 99.18 | 96.47 | 98.31 | 98.77 |
hem | 98.20 | 96.47 | 99.18 | 98.31 | 97.33 | |
Average | 95.38 | 97.06 | 97.80 | 97.57 | 96.21 | |
EfficientNet-B1 | all | 97.81 | 98.08 | 95.29 | 97.19 | 97.94 |
hem | 95.86 | 95.29 | 98.08 | 97.19 | 95.58 | |
Average | 95.86 | 95.29 | 98.08 | 97.19 | 95.58 | |
EfficientNet-B2 | all | 97.54 | 98.08 | 94.70 | 97.00 | 97.80 |
hem | 95.83 | 94.71 | 98.08 | 97.00 | 95.27 | |
Average | 95.83 | 94.71 | 98.08 | 97.00 | 95.27 | |
InceptionResNetV2 | all | 94.96 | 98.35 | 88.82 | 95.32 | 96.63 |
hem | 96.18 | 88.82 | 98.35 | 95.32 | 92.35 | |
Average | 95.57 | 93.59 | 93.59 | 95.32 | 94.49 | |
DenseNet121 | all | 97.44 | 94.23 | 94.71 | 94.38 | 95.81 |
hem | 88.46 | 94.71 | 94.23 | 94.38 | 91.48 | |
Average | 92.95 | 94.47 | 94.47 | 94.38 | 93.64 |
Model | Class | Accuracy (%) of Fixed LR | Accuracy (%) of Dynamic LR |
---|---|---|---|
EfficientNet-B3 | all | 97.57 | 98.31 |
hem | 97.57 | 98.31 | |
Average | 97.57 | 98.31 | |
EfficientNet-B0 | all | 93.82 | 98.31 |
hem | 93.82 | 98.31 | |
Average | 93.82 | 97.57 | |
EfficientNet-B1 | all | 9438 | 97.19 |
hem | 94.38 | 97.19 | |
Average | 94.38 | 97.19 | |
EfficientNet-B2 | all | 95.51 | 97.00 |
hem | 95.51 | 97.00 | |
Average | 95.51 | 97.00 | |
InceptionResNetV2 | all | 93.07 | 95.32 |
hem | 93.07 | 95.32 | |
Average | 93.07 | 95.32 | |
DenseNet121 | all | 82.21 | 94.38 |
hem | 82.21 | 94.38 | |
Average | 82.21 | 94.38 |
Model | Class | Precision (%) | Recall (%) | Specificity (%) | Accuracy (%) | DSC (%) |
---|---|---|---|---|---|---|
EfficientNet-B3 | Parasitized | 99.39 | 70.86 | 82.73 | 99.57 | 85.49 |
Uninfected | 78.01 | 99.57 | 87.48 | 70.86 | 85.49 | |
Average | 88.70 | 85.22 | 85.11 | 85.22 | 85.49 | |
EfficientNet-B0 | Parasitized | 99.15 | 86.54 | 92.42 | 99.29 | 93.03 |
Uninfected | 88.45 | 99.29 | 93.56 | 86.54 | 93.03 | |
Average | 93.80 | 92.92 | 92.99 | 92.91 | 93.03 | |
EfficientNet-B1 | Parasitized | 97.61 | 96.6 | 97.1 | 97.72 | 97.16 |
Uninfected | 96.76 | 97.72 | 97.24 | 96.60 | 97.17 | |
Average | 97.18 | 97.16 | 97.17 | 97.16 | 97.16 | |
EfficientNet-B2 | Parasitized | 99.42 | 75.89 | 86.07 | 99.57 | 87.95 |
Uninfected | 81.09 | 99.57 | 89.39 | 75.89 | 87.95 | |
Average | 81.09 | 99.57 | 89.39 | 75.89 | 87.95 | |
InceptionResNetV2 | Parasitized | 98.03 | 95.86 | 96.93 | 98.14 | 97.02 |
Uninfected | 96.09 | 98.15 | 97.11 | 95.86 | 97.02 | |
Average | 97.06 | 97.01 | 97.02 | 97.00 | 97.02 | |
DenseNet121 | Parasitized | 95.96 | 98.37 | 97.15 | 96.01 | 97.17 |
Uninfected | 98.39 | 96.01 | 97.19 | 98.37 | 97.17 | |
Average | 97.18 | 97.19 | 97.17 | 97.19 | 97.17 |
Model | Class | Precision (%) | Recall (%) | Specificity (%) | Accuracy (%) | DSC (%) |
---|---|---|---|---|---|---|
EfficientNet-B3 | Parasitized | 97.92 | 97.34 | 98.01 | 97.67 | 97.63 |
Uninfected | 97.45 | 98.01 | 97.34 | 97.68 | 97.73 | |
Average | 97.69 | 97.68 | 97.67 | 97.68 | 97.68 | |
EfficientNet-B0 | Parasitized | 98.35 | 96.75 | 98.43 | 97.61 | 97.54 |
Uninfected | 96.91 | 98.43 | 96.74 | 97.61 | 97.67 | |
Average | 97.63 | 97.59 | 97.59 | 97.61 | 97.67 | |
EfficientNet-B1 | Parasitized | 97.33 | 97.19 | 97.43 | 97.31 | 97.26 |
Uninfected | 97.30 | 9744 | 97.19 | 97.31 | 97.37 | |
Average | 97.30 | 97.44 | 97.19 | 97.31 | 97.37 | |
EfficientNet-B2 | Parasitized | 97.06 | 97.63 | 97.15 | 97.38 | 97.34 |
Uninfected | 97.71 | 97.15 | 97.63 | 97.39 | 97.43 | |
Average | 97.71 | 97.15 | 97.63 | 97.39 | 97.43 | |
InceptionResNetV2 | Parasitized | 97.89 | 96.15 | 98.01 | 97.09 | 97.01 |
Uninfected | 96.36 | 98.01 | 96.15 | 97.10 | 97.18 | |
Average | 97.13 | 97.08 | 97.08 | 97.10 | 97.10 | |
DenseNet121 | Parasitized | 98.20 | 96.89 | 98.29 | 97.61 | 97.54 |
Uninfected | 97.05 | 98.29 | 96.89 | 97.61 | 97.66 | |
Average | 97.63 | 97.59 | 97.59 | 97.61 | 97.60 |
Model | Class | Accuracy (%) of the Dynamic LR | Accuracy (%) of the Fixed LR |
---|---|---|---|
EfficientNet-B3 | Parasitized | 97.67 | 99.57 |
Uninfected | 97.68 | 70.86 | |
Average | 97.68 | 85.22 | |
EfficientNet-B0 | Parasitized | 97.61 | 99.29 |
Uninfected | 97.61 | 86.54 | |
Average | 97.61 | 92.91 | |
EfficientNet-B1 | Parasitized | 97.31 | 97.72 |
Uninfected | 97.31 | 96.60 | |
Average | 97.31 | 97.16 | |
EfficientNet-B2 | Parasitized | 97.38 | 99.57 |
Uninfected | 97.39 | 75.89 | |
Average | 97.39 | 75.89 | |
InceptionResNetV2 | Parasitized | 97.09 | 98.14 |
Uninfected | 97.10 | 95.86 | |
Average | 97.10 | 97.00 | |
DenseNet121 | Parasitized | 97.61 | 96.01 |
Uninfected | 97.61 | 98.37 | |
Average | 97.61 | 97.19 |
Study | Methodology | Tested Metrics | Datasets |
---|---|---|---|
Abir et al. [1] | InceptionV3 | Accuracy 80%, F-Score 79.8 | C-NMC _Leukemia |
Mondal et al. [4] | Ensemble of Xception, VGG-16, DenseNet-121, MobileNet, and InceptionResNet-V2 | 88.3% | C-NMC _Leukemia |
Amin et al. [12] | ECA-Net Based on VGG16 | 91.1% | C-NMC _Leukemia |
Khandekar et al. [21] | YOLOv4, VGG16, ResNet-50, Darknet52, CSPDarknet53 or ResNext50. | For C-NMC_Leukemia dataset: Weighted F1-score on the test set of 92% with Mean Average Precision of 98.57% and recall of 96%. For ALL-IDB1 dataset: Mean Average Precision of 95.57%, Recall of 92% and F1 score of 0.92 | C-NMC _Leukemia and ALL-IDB1 |
Almadhor et al. [22] | NB, KNN, RF, and SVM in proposing an ensemble automated prediction strategy | SVM outperforms other algorithms with an accuracy of 90%. | C-NMC _Leukemia |
Liu et al. [24] | AlexNet, VGGNet, NASNet, Xception, DenseNet, InceptionV3, MobileNet, and ShuffleNet | 96.58% | C-NMC _Leukemia |
Tan and Le [26] | ternary stream fine-grained model | 91.9% | C-NMC _Leukemia |
Atefeh et al. [29] | A recommender system (MDSS) | 93.12% | Data collected from Iran Blood Transfusion Organization (IBTO) |
Efthakhar et al. [30] | Naive Bayes | 95% | NCBI GEO dataset |
proposed model | EfficientNet-B3 model | 98.31% | C-NMC _Leukemia |
proposed model for malaria detection | EfficientNet-B3 model | 97.68% | NIH |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd El-Ghany, S.; Elmogy, M.; El-Aziz, A.A.A. Computer-Aided Diagnosis System for Blood Diseases Using EfficientNet-B3 Based on a Dynamic Learning Algorithm. Diagnostics 2023, 13, 404. https://doi.org/10.3390/diagnostics13030404
Abd El-Ghany S, Elmogy M, El-Aziz AAA. Computer-Aided Diagnosis System for Blood Diseases Using EfficientNet-B3 Based on a Dynamic Learning Algorithm. Diagnostics. 2023; 13(3):404. https://doi.org/10.3390/diagnostics13030404
Chicago/Turabian StyleAbd El-Ghany, Sameh, Mohammed Elmogy, and A. A. Abd El-Aziz. 2023. "Computer-Aided Diagnosis System for Blood Diseases Using EfficientNet-B3 Based on a Dynamic Learning Algorithm" Diagnostics 13, no. 3: 404. https://doi.org/10.3390/diagnostics13030404
APA StyleAbd El-Ghany, S., Elmogy, M., & El-Aziz, A. A. A. (2023). Computer-Aided Diagnosis System for Blood Diseases Using EfficientNet-B3 Based on a Dynamic Learning Algorithm. Diagnostics, 13(3), 404. https://doi.org/10.3390/diagnostics13030404