Metabolomics in Psychiatric Disorders: What We Learn from Animal Models
Abstract
:1. Introduction
2. Examples of Using Metabolomics in Animal Models for the Study of the Pathogenesis of Psychiatric Diseases
2.1. Metabolomics in Depression Models
2.2. Metabolomics in Anxiety Models
2.3. Metabolomics in Models of Schizophrenia
2.4. Metabolomics in Addictive Disorders
3. Examples of Using Metabolomics to Test Treatment Strategies
3.1. Antidepressants
3.2. Mood Stabilizers
3.3. Anxiolytics
3.4. Antipsychotics
4. Strengths and Limitations of Animal Models
Author Contributions
Funding
Conflicts of Interest
References
- Wang, W.; Guo, H.; Zhang, S.-X.; Li, J.; Cheng, K.; Bai, S.-J.; Yang, D.-Y.; Wang, H.-Y.; Liang, Z.-H.; Liao, L.; et al. Targeted Metabolomic Pathway Analysis and Validation Revealed Glutamatergic Disorder in the Prefrontal Cortex among the Chronic Social Defeat Stress Mice Model of Depression. J. Proteome Res. 2016, 15, 3784–3792. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Brietzke, E. Omics-Based Biomarkers: Application of Metabolomics in Neuropsychiatric Disorders. Int. J. Neruopsychopharmacol. 2016, 19. [Google Scholar] [CrossRef] [PubMed]
- Guest, P.C.; Guest, F.L.; Martins-de Souza, D. Making Sense of Blood-Based Proteomics and Metabolomics in Psychiatric Research. Int. J. Neruopsychopharmacol. 2016, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuthbert, B.N.; Insel, T.R. Toward the future of psychiatric diagnosis: The seven pillars of RDoC. BMC Med. 2013, 11, 126. [Google Scholar] [CrossRef] [Green Version]
- Biomarkers Definitions Working Group; Atkinson, A.J., Jr.; Colburn, W.A.; DeGruttola, V.G.; DeMets, D.L.; Downing, G.J.; Spilker, B.A. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar] [CrossRef]
- Dettmer, K.; Aronov, P.A.; Hammock, B.D. Mass spectrometry-based metabolomics. Mass Spectrom. Rev. 2007, 26, 51–78. [Google Scholar] [CrossRef]
- Kaddurah-Daouk, R.; Krishnan, K.R.R. Metabolomics: A Global Biochemical Approach to the Study of Central Nervous System Diseases. Neuropsychopharmacology 2009, 34, 173–186. [Google Scholar] [CrossRef]
- Pasikanti, K.K.; Ho, P.C.; Chan, E.C.Y. Gas chromatography/mass spectrometry in metabolic profiling of biological fluids. J. Chromatogr. B 2008, 871, 202–211. [Google Scholar] [CrossRef]
- Kaddurah-Daouk, R.; Kristal, B.S.; Weinshilboum, R.M. Metabolomics: A Global Biochemical Approach to Drug Response and Disease. Annu. Rev. Pharmacol. Toxicol. 2008, 48, 653–683. [Google Scholar] [CrossRef] [Green Version]
- Wood, P.L. Mass Spectrometry Strategies for Clinical Metabolomics and Lipidomics in Psychiatry, Neurology, and Neuro-Oncology. Neuropsychopharmacology 2014, 39, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Lozupone, M.; Seripa, D.; Stella, E.; La Montagna, M.; Solfrizzi, V.; Quaranta, N.; Veneziani, F.; Cester, A.; Sardone, R.; Bonfiglio, C.; et al. Innovative biomarkers in psychiatric disorders: A major clinical challenge in psychiatry. Expert Rev. Proteom 2017, 14, 809–824. [Google Scholar] [CrossRef] [PubMed]
- Renoir, T.; Hasebe, K.; Gray, L. Mind and body: How the health of the body impacts on neuropsychiatry. Front. Pharmacol. 2013, 4, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nedic Erjavec, G.; Konjevod, M.; Nikolac Perkovic, M.; Svob Strac, D.; Tudor, L.; Barbas, C.; Grune, T.; Zarkovic, N.; Pivac, N. Short overview on metabolomic approach and redox changes in psychiatric disorders. Redox Biol. 2018, 14, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Depression. Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 2 January 2020).
- Deng, F.-L.; Pan, J.-X.; Zheng, P.; Xia, J.-J.; Yin, B.-M.; Liang, W.-W.; Li, Y.-F.; Wu, J.; Xu, F.; Wu, Q.-Y.; et al. Metabonomics reveals peripheral and central short-chain fatty acid and amino acid dysfunction in a naturally occurring depressive model of macaques. Neuropsychiatr. Dis. Treat. 2019, 15, 1077–1088. [Google Scholar] [CrossRef] [Green Version]
- Daly, E.J.; Trivedi, M.H.; Wisniewski, S.R.; Nierenberg, A.A.; Gaynes, B.N.; Warden, D.; Morris, D.W.; Luther, J.F.; Farabaugh, A.; Cook, I.; et al. Health-related quality of life in depression: A STAR*D report. Ann. Clin. Psychiatry 2010, 22, 43–55. [Google Scholar]
- Insel, T.; Cuthbert, B.; Garvey, M.; Heinssen, R.; Pine, D.S.; Quinn, K.; Sanislow, C.; Wang, P. Research Domain Criteria (RDoC): Toward a New Classification Framework for Research on Mental Disorders. Am. J. Psychiatry 2010, 167, 748–751. [Google Scholar] [CrossRef] [Green Version]
- Gadad, B.S.; Jha, M.K.; Czysz, A.; Furman, J.L.; Mayes, T.L.; Emslie, M.P.; Trivedi, M.H. Peripheral biomarkers of major depression and antidepressant treatment response: Current knowledge and future outlooks. J. Affect. Dis. 2018, 233, 3–14. [Google Scholar] [CrossRef]
- Strimbu, K.; Tavel, J.A. What are biomarkers? Curr. Opin. HIV AIDS 2010, 5, 463–466. [Google Scholar] [CrossRef]
- Nestler, E.J.; Hyman, S.E. Animal models of neuropsychiatric disorders. Nat. Neurosci. 2010, 13, 1161–1169. [Google Scholar] [CrossRef] [Green Version]
- Willner, P. Chronic Mild Stress (CMS) Revisited: Consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology. 2005, 52, 90–110. [Google Scholar] [CrossRef]
- Liu, L.-Y.; Zhang, H.-J.; Luo, L.-Y.; Pu, J.-B.; Liang, W.-Q.; Zhu, C.-Q.; Li, Y.-P.; Wang, P.-R.; Zhang, Y.-Y.; Yang, C.-Y.; et al. Blood and urinary metabolomic evidence validating traditional Chinese medicine diagnostic classification of major depressive disorder. Chin. Med. 2018, 13, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Liu, L.; Zhang, Y.; Pu, J.; Yang, L.; Zhou, C.; Yuan, S.; Zhang, H.; Xie, P. Metabolomics identifies perturbations in amino acid metabolism in the prefrontal cortex of the learned helplessness rat model of depression. Neuroscience 2017, 343, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhou, X.; Zhang, Y.; Liu, Y.; Yang, L.; Pu, J.; Zhu, D.; Zhou, C.; Xie, P. The identification of metabolic disturbances in the prefrontal cortex of the chronic restraint stress rat model of depression. Behav. Brain Res. 2016, 305, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yuan, S.; Pu, J.; Yang, L.; Zhou, X.; Liu, L.; Jiang, X.; Zhang, H.; Teng, T.; Tian, L.; et al. Integrated Metabolomics and Proteomics Analysis of Hippocampus in a Rat Model of Depression. Neuroscience 2018, 371, 207–220. [Google Scholar] [CrossRef] [PubMed]
- Shao, W.; Chen, J.; Fan, S.; Lei, Y.; Xu, H.; Zhou, J.; Cheng, P.; Yang, Y.; Rao, C.; Wu, B.; et al. Combined Metabolomics and Proteomics Analysis of Major Depression in an Animal Model: Perturbed Energy Metabolism in the Chronic Mild Stressed Rat Cerebellum. Omics J. Integr. Biol. 2015, 19, 383–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Yieh, L.; Yang, T.; Drinkenburg, W.; Peeters, P.; Steckler, T.; Narayan, V.A.; Wittenberg, G.; Ye, J. Metabolomic biosignature differentiates melancholic depressive patients from healthy controls. BMC Genom. 2016, 17, 669. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; Zeng, X.; Hong, J.; Yuan, C.; Cui, L.; Ma, J.; Chang, Y.; Hua, X. Effects of Ketamine on Metabolomics of Serum and Urine in Cynomolgus Macaques (Macaca fascicularis). J. Am. Assoc. Lab. Anim. Sci. 2016, 55, 558. [Google Scholar]
- Kaddurah-Daouk, R.; Yuan, P.; Boyle, S.H.; Matson, W.; Wang, Z.; Zeng, Z.B.; Zhu, H.; Dougherty, G.G.; Yao, J.K.; Chen, G.; et al. Cerebrospinal Fluid Metabolome in Mood Disorders-Remission State has a Unique Metabolic Profile. Sci. Rep. 2012, 2, 667. [Google Scholar] [CrossRef]
- Lochhead, J.J.; Ronaldson, P.T.; Davis, T.P. Hypoxic Stress and Inflammatory Pain Disrupt Blood-Brain Barrier Tight Junctions: Implications for Drug Delivery to the Central Nervous System. AAPS J. 2017, 19, 910–920. [Google Scholar] [CrossRef]
- Powell, T.R.; Tansey, K.E.; Breen, G.; Farmer, A.E.; Craig, I.W.; Uher, R.; McGuffin, P.; D’Souza, U.M.; Schalkwyk, L.C. ATP-binding cassette sub-family F member 1 (ABCF1) is identified as a putative therapeutic target of escitalopram in the inflammatory cytokine pathway. J. Psychopharmacol. 2013, 27, 609–615. [Google Scholar] [CrossRef]
- Huang, X.; Yu, T.; Li, X.; Cao, Y.; Li, X.; Liu, B.; Yang, F.; Li, W.; Zhao, X.; Feng, G.; et al. ABCB6, ABCB1 and ABCG1 genetic polymorphisms and antidepressant response of SSRIs in Chinese depressive patients. Pharmacogenomics 2013, 14, 1723–1730. [Google Scholar] [CrossRef]
- Yu, M.; Jia, H.; Zhou, C.; Yang, Y.; Zhao, Y.; Yang, M.; Zou, Z. Variations in gut microbiota and fecal metabolic phenotype associated with depression by 16S rRNA gene sequencing and LC/MS-based metabolomics. J. Pharma. Biomed. Anal. 2017, 138, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Roca, M.; Gili, M.; Garcia-Garcia, M.; Salva, J.; Vives, M.; Garcia Campayo, J.; Comas, A. Prevalence and comorbidity of common mental disorders in primary care. J. Affect. Dis. 2009, 119, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Filiou, M.D.; Asara, J.M.; Nussbaumer, M.; Teplytska, L.; Landgraf, R.; Turck, C.W. Behavioral extremes of trait anxiety in mice are characterized by distinct metabolic profiles. J. Psychiatr. Res. 2014, 58, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Filiou, M.D.; Zhang, Y.; Teplytska, L.; Reckow, S.; Gormanns, P.; Maccarrone, G.; Frank, E.; Kessler, M.S.; Hambsch, B.; Nussbaumer, M.; et al. Proteomics and Metabolomics Analysis of a Trait Anxiety Mouse Model Reveals Divergent Mitochondrial Pathways. Biol. Psychiatry 2011, 70, 1074–1082. [Google Scholar] [CrossRef] [PubMed]
- Landgraf, R.; Kessler, M.S.; Bunck, M.; Spengler, D.; Zimbelmann, M.; Nussbaumer, M.; Czibere, L.; Turck, C.W.; Singewald, N.; Rujescu, D.; et al. Candidate genes of anxiety-related behavior in HAB/LAB rats and mice: Focus on vasopressin and glyoxalase-I. Neurosci. Biobehav. Res. 2007, 31, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Puurunen, J.; Tiira, K.; Vapalahti, K.; Lehtonen, M.; Hanhineva, K.; Lohi, H. Fearful dogs have increased plasma glutamine and γ-glutamyl glutamine. Sci. Rep. 2018, 8, 15976. [Google Scholar] [CrossRef] [Green Version]
- Schousboe, A. Metabolic signaling in the brain and the role of astrocytes in control of glutamate and GABA neurotransmission. Neurosci. Lett. 2019, 689, 11–13. [Google Scholar] [CrossRef]
- Matés, J. Glutamine and its relationship with intracellular redox status, oxidative stress and cell proliferation/death. Int. J. Biochem. Cell Biol. 2002, 34, 439–458. [Google Scholar] [CrossRef]
- Curi, R.; Lagranha, C.J.; Doi, S.Q.; Sellitti, D.F.; Procopio, J.; Pithon-Curi, T.C.; Corless, M.; Newsholme, P. Molecular mechanisms of glutamine action. J. Cell. Physiol. 2005, 204, 392–401. [Google Scholar] [CrossRef]
- Weiner, I.D.; Verlander, J.W. Emerging Features of Ammonia Metabolism and Transport in Acid-Base Balance. Semin. Nephrol. 2019, 39, 394–405. [Google Scholar] [CrossRef] [PubMed]
- Bergink, V. Glutamate and anxiety. Eur. Neuropsychopharmacol. 2004, 14, 175–183. [Google Scholar] [CrossRef]
- Cortese, B.M.; Phan, K.L. The Role of Glutamate in Anxiety and Related Disorders. CNS Spectr. 2005, 10, 820–830. [Google Scholar] [CrossRef] [PubMed]
- Riaza Bermudo-Soriano, C.; Perez-Rodriguez, M.M.; Vaquero-Lorenzo, C.; Baca-Garcia, E. New perspectives in glutamate and anxiety. Pharmacol. Biochem. Behav. 2012, 100, 752–774. [Google Scholar] [CrossRef] [PubMed]
- Bray, N.J.; Leweke, F.M.; Kapur, S.; Meyer-Lindenberg, A. The neurobiology of schizophrenia: New leads and avenues for treatment. Curr. Opin. Neurobiol. 2010, 20, 810–815. [Google Scholar] [CrossRef] [PubMed]
- van Os, J.; Kapur, S. Schizophrenia. Lancet 2009, 374, 635–645. [Google Scholar] [CrossRef]
- Chan, M.K.; Tsang, T.M.; Harris, L.W.; Guest, P.C.; Holmes, E.; Bahn, S. Evidence for disease and antipsychotic medication effects in post-mortem brain from schizophrenia patients. Mol. Psychiatry 2011, 16, 1189–1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halim, N.D.; Lipska, B.K.; Hyde, T.M.; Deep-Soboslay, A.; Saylor, E.M.; Herman, M.M.; Thakar, J.; Verma, A.; Kleinman, J.E. Increased lactate levels and reduced pH in postmortem brains of schizophrenics: Medication confounds. J. Neurosci. Method 2008, 169, 208–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bubeníková-Valešová, V.; Horáček, J.; Vrajová, M.; Höschl, C. Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. Neurosci. Biobehav. Rev. 2008, 32, 1014–1023. [Google Scholar] [CrossRef] [PubMed]
- Rung, J.P.; Carlsson, A.; Rydén Markinhuhta, K.; Carlsson, M.L. (+)-MK-801 induced social withdrawal in rats; a model for negative symptoms of schizophrenia. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2005, 29, 827–832. [Google Scholar] [CrossRef]
- Sun, L.; Li, J.; Zhou, K.; Zhang, M.; Yang, J.; Li, Y.; Ji, B.; Zhang, Z.; Zhu, H.; Yang, L.; et al. Metabolomic Analysis Reveals Metabolic Disturbance in the Cortex and Hippocampus of Subchronic MK-801 Treated Rats. PLoS ONE 2013, 8, e60598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins-de-Souza, D.; Harris, L.W.; Guest, P.C.; Bahn, S. The Role of Energy Metabolism Dysfunction and Oxidative Stress in Schizophrenia Revealed by Proteomics. Antioxid. Redox Signal. 2011, 15, 2067–2079. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, B.; Javitt, D. From Revolution to Evolution: The Glutamate Hypothesis of Schizophrenia and its Implication for Treatment. Neuropsychopharmacology 2012, 37, 4–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parsons, C.G.; Danysz, W.; Quack, G. Glutamate in CNS disorders as a target for drug development: An update. Drug News Perspect. 1998, 11, 523. [Google Scholar] [CrossRef]
- Xiao, X.; Dawson, N.; MacIntyre, L.; Morris, B.J.; Pratt, J.A.; Watson, D.G.; Higham, D.J. Exploring metabolic pathway disruption in the subchronic phencyclidine model of schizophrenia with the Generalized Singular Value Decomposition. BMC Syst. Biol. 2011, 5, 72. [Google Scholar] [CrossRef] [Green Version]
- Grant, B.F.; Goldstein, R.B.; Saha, T.D.; Chou, S.P.; Jung, J.; Zhang, H.; Pickering, R.P.; Ruan, W.J.; Smith, S.M.; Huang, B.; et al. Epidemiology of DSM.-5 Alcohol Use Disorder: Results From the National Epidemiologic Survey on Alcohol and Related Conditions III. JAMA Psychiatry 2015, 72, 757. [Google Scholar] [CrossRef] [Green Version]
- Grant, B.F.; Saha, T.D.; Ruan, W.J.; Goldstein, R.B.; Chou, S.P.; Jung, J.; Zhang, H.; Smith, S.M.; Pickering, R.P.; Huang, B.; et al. Epidemiology of DSM.-5 Drug Use Disorder: Results From the National Epidemiologic Survey on Alcohol and Related Conditions–III. JAMA Psychiatry 2016, 73, 39. [Google Scholar] [CrossRef] [Green Version]
- Spanagel, R. Animal models of addiction. Dialog. Clin. Neurosci. 2017, 19, 13. [Google Scholar]
- Dalley, J.W.; Fryer, T.D.; Brichard, L.; Robinson, E.S.J.; Theobald, D.E.H.; Laane, K.; Pena, Y.; Murphy, E.R.; Shah, Y.; Probst, K.; et al. Nucleus Accumbens D2/3 Receptors Predict Trait Impulsivity and Cocaine Reinforcement. Science 2007, 315, 1267–1270. [Google Scholar] [CrossRef] [Green Version]
- Maze, I.; Covington, H.E.; Dietz, D.M.; LaPlant, Q.; Renthal, W.; Russo, S.J.; Mechanic, M.; Mouzon, E.; Neve, R.L.; Haggarty, S.J.; et al. Essential Role of the Histone Methyltransferase G9a in Cocaine-Induced Plasticity. Science 2010, 327, 213–216. [Google Scholar] [CrossRef] [Green Version]
- Zaitsu, K.; Miyawaki, I.; Bando, K.; Horie, H.; Shima, N.; Katagi, M.; Tatsuno, M.; Bamba, T.; Sato, T.; Ishii, A.; et al. Metabolic profiling of urine and blood plasma in rat models of drug addiction on the basis of morphine, methamphetamine, and cocaine-induced conditioned place preference. Anal. Bioanal. Chem. 2014, 406, 1339–1354. [Google Scholar] [CrossRef] [PubMed]
- Meinhardt, M.W.; Sévin, D.C.; Klee, M.L.; Dieter, S.; Sauer, U.; Sommer, W.H. The Neurometabolic Fingerprint of Excessive Alcohol Drinking. Neuropsychopharmacology 2015, 40, 1259–1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deda, O.; Virgiliou, C.; Orfanidis, A.; Gika, H.G. Study of Fecal and Urinary Metabolite Perturbations Induced by Chronic Ethanol Treatment in Mice by UHPLC-MS/MS Targeted Profiling. Metabolites 2019, 9, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Chen, B.; Shao, X.; Hu, Z.; Deng, Y.; Zhu, R.; Li, Y.; Zhang, B.; Hou, J.; Du, C.; et al. 1H-Nuclear magnetic resonance-based metabolomic analysis of brain in mice with nicotine treatment. BMC Neurosci. 2014, 15, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaplan, K.A.; Chiu, V.M.; Lukus, P.A.; Zhang, X.; Siems, W.F.; Schenk, J.O.; Hill, H.H. Neuronal metabolomics by ion mobility mass spectrometry: Cocaine effects on glucose and selected biogenic amine metabolites in the frontal cortex, striatum, and thalamus of the rat. Anal. Bioanal. Chem. 2013, 405, 1959–1968. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Yao, D.; Gosnell, B.A.; Chen, C. Lipidomic profiling reveals protective function of fatty acid oxidation in cocaine-induced hepatotoxicity. J. Lipid Res. 2012, 53, 2318–2330. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Yan, G.-Y.; Zhou, J.-Q.; Bu, Q.; Deng, P.-C.; Yang, Y.-Z.; Lv, L.; Deng, Y.; Zhao, J.-X.; Shao, X.; et al. 1H NMR-based metabonomics in brain nucleus accumbens and striatum following repeated cocaine treatment in rats. Neuroscience 2012, 218, 196–205. [Google Scholar] [CrossRef]
- Zheng, T.; Liu, L.; Aa, J.; Wang, G.; Cao, B.; Li, M.; Shi, J.; Wang, X.; Zhao, C.; Gu, R.; et al. Metabolic phenotype of rats exposed to heroin and potential markers of heroin abuse. Drug Alcohol Depend. 2013, 127, 177–186. [Google Scholar] [CrossRef]
- Adkins, D.E.; McClay, J.L.; Vunck, S.A.; Batman, A.M.; Vann, R.E.; Clark, S.L.; Souza, R.P.; Crowley, J.J.; Sullivan, P.F.; van den Oord, E.J.C.G.; et al. Behavioral metabolomics analysis identifies novel neurochemical signatures in methamphetamine sensitization: Methamphetamine sensitization metabolomics. Genes Brain Behav. 2013, 12, 780–791. [Google Scholar] [CrossRef]
- Shima, N.; Miyawaki, I.; Bando, K.; Horie, H.; Zaitsu, K.; Katagi, M.; Bamba, T.; Tsuchihashi, H.; Fukusaki, E. Influences of methamphetamine-induced acute intoxication on urinary and plasma metabolic profiles in the rat. Toxicology 2011, 287, 29–37. [Google Scholar] [CrossRef]
- Shmulewitz, D.; Greene, E.R.; Hasin, D. Commonalities and Differences across Substance Use Disorders: Phenomenological and Epidemiological Aspects. Alcohol Clin. Exp. Res. 2015, 39, 1878–1900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meinhardt, M.W.; Hansson, A.C.; Perreau-Lenz, S.; Bauder-Wenz, C.; Stahlin, O.; Heilig, M.; Harper, C.; Drescher, K.U.; Spanagel, R.; Sommer, W.H. Rescue of Infralimbic mGluR2 Deficit Restores Control Over Drug-Seeking Behavior in Alcohol Dependence. J. Neurosci. 2013, 33, 2794–2806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiFranza, J.R. Hooked from the First Cigarette. Sci. Am. 2008, 298, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Wanless, I.R.; Dore, S.; Gopinath, N.; Tan, J.; Cameron, R.; Heathcote, E.J.; Blendis, L.M.; Levy, G. Histopathology of cocaine hepatotoxicity. Gastroenterology 1990, 98, 497–501. [Google Scholar] [CrossRef]
- Yao, D.; Shi, X.; Wang, L.; Gosnell, B.A.; Chen, C. Characterization of Differential Cocaine Metabolism in Mouse and Rat through Metabolomics-Guided Metabolite Profiling. Drug Metab. Dispos. 2013, 41, 79–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinis-Oliveira, R.J. Metabolomics of drugs of abuse: A more realistic view of the toxicological complexity. Bioanalysis 2014, 6, 3155–3159. [Google Scholar] [CrossRef]
- Wang, F.; Meng, J.; Zhang, L.; Johnson, T.; Chen, C.; Roy, S. Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model. Sci. Rep. 2018, 8, 3596. [Google Scholar] [CrossRef] [Green Version]
- Meckel, K.R.; Kiraly, D.D. A potential role for the gut microbiome in substance use disorders. Psychopharmacology 2019, 236, 1513–1530. [Google Scholar] [CrossRef]
- Fiore, E.; Van Tyne, D.; Gilmore, M.S. Pathogenicity of Enterococci. In Gram-Positive Pathogens, 3rd ed.; Fischetti, N., Ferretti, P., Braunstein, R., Eds.; American Society of Microbiology: Washington, DC, USA, 2019; pp. 378–397. ISBN 978-1-68367-012-4. [Google Scholar]
- Kessler, R.C.; Berglund, P.; Demler, O.; Jin, R.; Koretz, D.; Merikangas, K.R.; Rush, A.J.; Walters, E.E.; Wang, P.S. The Epidemiology of Major Depressive Disorder: Results from the National Comorbidity Survey Replication (NCS-R). JAMA 2003, 289, 3095. [Google Scholar] [CrossRef]
- Murray, C.J.L. The State of US Health, 1990–2010: Burden of Diseases, Injuries, and Risk Factors. JAMA 2013, 310, 591. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.; Neavin, D.; Liu, D.; Biernacka, J.; Hall-Flavin, D.; Bobo, W.V.; Frye, M.A.; Skime, M.; Jenkins, G.D.; Batzler, A.; et al. TSPAN5, ERICH3 and selective serotonin reuptake inhibitors in major depressive disorder: Pharmacometabolomics-informed pharmacogenomics. Mol. Psychiatry 2016, 21, 1717–1725. [Google Scholar] [CrossRef] [PubMed]
- Villaseñor, A.; Ramamoorthy, A.; Silva dos Santos, M.; Lorenzo, M.P.; Laje, G.; Zarate, C.; Barbas, C.; Wainer, I.W. A pilot study of plasma metabolomic patterns from patients treated with ketamine for bipolar depression: Evidence for a response-related difference in mitochondrial networks: Metabolomics of ketamine response in depression. Br. J. Pharmacol. 2014, 171, 2230–2242. [Google Scholar] [CrossRef] [PubMed]
- Czysz, A.H.; South, C.; Gadad, B.S.; Arning, E.; Soyombo, A.; Bottiglieri, T.; Trivedi, M.H. Can targeted metabolomics predict depression recovery? Results from the CO-MED trial. Transl. Psychiatry 2019, 9, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, S.; Hu, Q.; Chen, Z.; Liang, Z.; Wang, W.; Shen, P.; Wang, T.; Wang, H.; Xie, P. Brain region-specific metabolite networks regulate antidepressant effects of venlafaxine. RSC Adv. 2017, 7, 46358–46369. [Google Scholar] [CrossRef] [Green Version]
- Demyttenaere, K.; Haddad, P. Compliance with antidepressant therapy and antidepressant discontinuation symptoms. Acta Psychiatr. Scand. 2000, 101, 50–56. [Google Scholar] [CrossRef]
- Lee, K.-U.; Lee, Y.M.; Nam, J.-M.; Lee, H.-K.; Kweon, Y.-S.; Lee, C.T.; Jun, T.-Y. Antidepressant-Induced Sexual Dysfunction among Newer Antidepressants in a Naturalistic Setting. Psychiatry Investig. 2010, 7, 55. [Google Scholar] [CrossRef]
- Lian, B.; Xia, J.; Yang, X.; Zhou, C.; Gong, X.; Gui, S.; Mao, Q.; Wang, L.; Li, P.; Huang, C.; et al. Mechanisms of ketamine on mice hippocampi shown by gas chromatography–mass spectrometry-based metabolomic analysis. Neuroreport 2018, 29, 704–711. [Google Scholar] [CrossRef]
- McGowan, J.C.; Hill, C.; Mastrodonato, A.; LaGamma, C.T.; Kitayev, A.; Brachman, R.A.; Narain, N.R.; Kiebish, M.A.; Denny, C.A. Prophylactic ketamine alters nucleotide and neurotransmitter metabolism in brain and plasma following stress. Neuropsychopharmacology 2018, 43, 1813–1821. [Google Scholar] [CrossRef] [Green Version]
- Rotroff, D.M.; Corum, D.G.; Motsinger-Reif, A.; Fiehn, O.; Bottrel, N.; Drevets, W.C.; Singh, J.; Salvadore, G.; Kaddurah-Daouk, R. Metabolomic signatures of drug response phenotypes for ketamine and esketamine in subjects with refractory major depressive disorder: New mechanistic insights for rapid acting antidepressants. Transl. Psychiatry 2016, 6, e894. [Google Scholar] [CrossRef]
- Liu, X.; Liu, C.; Tian, J.; Gao, X.; Li, K.; Du, G.; Qin, X. Plasma metabolomics of depressed patients and treatment with Xiaoyaosan based on mass spectrometry technique. J. Ethnopharmacol. 2020, 246, 112219. [Google Scholar] [CrossRef]
- Wu, J.; Chen, H.; Li, H.; Tang, Y.; Yang, L.; Cao, S.; Qin, D. Antidepressant Potential of Chlorogenic Acid-Enriched Extract from Eucommia ulmoides Oliver Bark with Neuron Protection and Promotion of Serotonin Release through Enhancing Synapsin I Expression. Molecules 2016, 21, 260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Zhang, Z.; Zhou, M.; Gou, X.; Zeng, Y.; Song, J.; Ma, W.; Xu, Y. A urinary metabolomics (GC-MS) strategy to evaluate the antidepressant-like effect of chlorogenic acid in adrenocorticotropic hormone-treated rats. RSC Adv. 2018, 8, 9141–9151. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.E.; Schober, D.A.; Nikolayev, A.; Tolstikov, V.V.; Anderson, W.H.; Higgs, R.E.; Kuo, M.-S.; Laksmanan, A.; Catlow, J.T.; Li, X.; et al. Further Evaluation of Mechanisms Associated with the Antidepressantlike Signature of Scopolamine in Mice. CNS Neurol. Disord. Drug Targets 2017, 16, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Lan, M.J.; McLoughlin, G.A.; Griffin, J.L.; Tsang, T.M.; Huang, J.T.J.; Yuan, P.; Manji, H.; Holmes, E.; Bahn, S. Metabonomic analysis identifies molecular changes associated with the pathophysiology and drug treatment of bipolar disorder. Mol. Psychiatry 2009, 14, 269–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beyer, K.E.; Freund, N. Animal models for bipolar disorder: From bedside to the cage. Int. J. Bipol. Dis. 2017, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belmaker, R.H. Bipolar Disorder. N. Engl. J. Med. 2004, 351, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Jiang, Y.; Yu, Z.; Zhang, Z.; Hu, L.; Cao, G. Urine Metabolomics in Rats Treated by Alprazolam. Lat. Am. J. Pharm. 2018, 37, 1115–1119. [Google Scholar]
- Leucht, S.; Cipriani, A.; Spineli, L.; Mavridis, D.; Örey, D.; Richter, F.; Samara, M.; Barbui, C.; Engel, R.R.; Geddes, J.R.; et al. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: A multiple-treatments meta-analysis. Lancet 2013, 382, 951–962. [Google Scholar] [CrossRef]
- McClay, J.L.; Vunck, S.A.; Batman, A.M.; Crowley, J.J.; Vann, R.E.; Beardsley, P.M.; van den Oord, E.J. Neurochemical Metabolomics Reveals Disruption to Sphingolipid Metabolism Following Chronic Haloperidol Administration. J. Neuroimmune Pharmacol. 2015, 10, 425–434. [Google Scholar] [CrossRef] [Green Version]
- McLoughlin, G.A.; Ma, D.; Tsang, T.M.; Jones, D.N.C.; Cilia, J.; Hill, M.D.; Robbins, M.J.; Benzel, I.M.; Maycox, P.R.; Holmes, E.; et al. Analyzing the Effects of Psychotropic Drugs on Metabolite Profiles in Rat Brain Using 1 H NMR Spectroscopy. J. Proteome Res. 2009, 8, 1943–1952. [Google Scholar] [CrossRef]
- Tkachev, D.; Mimmack, M.L.; Huffaker, S.J.; Ryan, M.; Bahn, S. Further evidence for altered myelin biosynthesis and glutamatergic dysfunction in schizophrenia. Int. J. Neuropsychopharmacol. 2007, 10, 557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodson, M.P.; Dear, G.J.; Roberts, A.D.; Haylock, C.L.; Ball, R.J.; Plumb, R.S.; Stumpf, C.L.; Griffin, J.L.; Haselden, J.N. A gender-specific discriminator in Sprague–Dawley rat urine: The deployment of a metabolic profiling strategy for biomarker discovery and identification. Anal. Biochem. 2007, 362, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Slupsky, C.M.; Rankin, K.N.; Wagner, J.; Fu, H.; Chang, D.; Weljie, A.M.; Saude, E.J.; Lix, B.; Adamko, D.J.; Shah, S.; et al. Investigations of the Effects of Gender, Diurnal Variation, and Age in Human Urinary Metabolomic Profiles. Anal. Chem. 2007, 79, 6995–7004. [Google Scholar] [CrossRef] [PubMed]
- Cynober, L.A. Plasma amino acid levels with a note on membrane transport: Characteristics, regulation, and metabolic significance. Nutrition 2002, 18, 761–766. [Google Scholar] [CrossRef]
- Cho, I.; Blaser, M.J. The human microbiome: At the interface of health and disease. Nat. Rev. Genet. 2012, 13, 260–270. [Google Scholar] [CrossRef] [Green Version]
- Faith, J.J.; Rey, F.E.; O’Donnell, D.; Karlsson, M.; McNulty, N.P.; Kallstrom, G.; Goodman, A.L.; Gordon, J.I. Creating and characterizing communities of human gut microbes in gnotobiotic mice. ISME J. 2010, 4, 1094–1098. [Google Scholar] [CrossRef]
- Mortha, A.; Chudnovskiy, A.; Hashimoto, D.; Bogunovic, M.; Spencer, S.P.; Belkaid, Y.; Merad, M. Microbiota-Dependent Crosstalk Between Macrophages and ILC3 Promotes Intestinal Homeostasis. Science 2014, 343, 1249288. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Chen, G.; Manwani, D.; Mortha, A.; Xu, C.; Faith, J.J.; Burk, R.D.; Kunisaki, Y.; Jang, J.-E.; Scheiermann, C.; et al. Neutrophil ageing is regulated by the microbiome. Nature 2015, 525, 528–532. [Google Scholar] [CrossRef]
- Salgado, J.V.; Sandner, G. A critical overview of animal models of psychiatric disorders: Challenges and perspectives. Rev. Bras. Psiquiatr. 2013, 35, S77–S81. [Google Scholar] [CrossRef] [Green Version]
- Donaldson, Z.R.; Hen, R. From Psychiatric Disorders to Animal Models: A Bidirectional and Dimensional Approach. Biol. Psychiatry 2015, 77, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Zaragoza, C.; Gomez-Guerrero, C.; Martin-Ventura, J.L.; Blanco-Colio, L.; Lavin, B.; Mallavia, B.; Tarin, C.; Mas, S.; Ortiz, A.; Egido, J. Animal Models of Cardiovascular Diseases. J. Biomed. Biotechnol. 2011, 2011, 497841. [Google Scholar] [CrossRef] [PubMed]
Subject | Sampling Material | Analytical Technique | Metabolites Identified | Pathways Involved/Functions | Reference |
---|---|---|---|---|---|
Rats | Brain (prefrontal cortex) | non-targeted GC-MS 1 | GABA 2 glutamine, methionine, adenosine, proline, alanine, cysteamine, 1-methylhydantoin, creatine, myo-inositol, N-oleoyldopamine, trehalose-6-phosphate, phosphate, N-acetyl-L-leucine, acetylsalicyclic acid, N-acetyltryptophan, phosphomycin, glycylproline | AA 3 metabolism, lipid metabolism, glucose metabolism | [23] |
Mice | Brain (prefrontal cortex) | targeted LC-MS/MS 4 | Glutamate, L-DOPA, vanillylmandelic acid | GABAergic and catecholaminergic pathways | [1] |
Rats | Brain (prefrontal cortex) | non-targeted GC-MS | Proline, creatine, taurine, glycerol, isoleucine, GABA, glutamate, glutamine, asparagine, N-acetyl aspartate, stearic acid, palmitic acid, uracil, β-alanine | AA metabolism, energy metabolism, lipid metabolism, disturbances in neurotransmitters | [24] |
Rats | Brain (hippo-campus) | non-targeted GC-MS | Glutamate, glutamine, glycine, arachidonic acid, hexadecane, 2-monopalmitin, methyl palmitoleate, ethanolamine, o-phosphorylethanolamine | AA metabolism, lipid metabolism | [25] |
Rats | Brain (cere-bellum) | non-targeted GC-MS | Glycine, adenosine, 3-hydroxybutyric acid, creatinine, 2,5-dihydroxypyrazine, pantothenic acid, dihydroxyacetone phosphate, proline, phenylalanine, tyrosine, lysine, glutamine | AA metabolism, energy metabolism | [26] |
Macaques | (1) Cerebro-spinal fluid | non-targeted GC-MS | Glycine, threonine, acetic acid, propanoic acid, butanoic acid, oleic acid, octadecanoic acid, hexadecenoic acid, myo-inositol | AA metabolism, fatty acid biosynthesis, ABC transport system | [15] |
(2) Serum | Threonine, butanoic acid, serine, leucine, methionine, citric acid, leucine, myo-inositol | AA metabolism, fatty acid biosynthesis, ABC transport system |
Subject | Sampling Material | Analytical Technique | Metabolites Identified | Pathways Involved/Functions | Reference |
---|---|---|---|---|---|
Mice | (1) Brain (cingulate cortex) | targeted LC-MS/MS 1 | 1-methyl histidine, deoxyuridine, kynurenic acid, carnitine, acetylcarnitine | AA 2 metabolism, neurotransmitter metabolism, pyruvate metabolism, oxidative stress, apoptosis | [35] |
(2) Plasma | 1-methyl histidine, deoxyuridine, kynurenic acid, 2-hydroxygluterate, cytosine | AA metabolism, neurotransmitter metabolism, pyruvate metabolism, oxidative stress, apoptosis | |||
Mice | Brain (cingulate cortex) | non-targeted GC-MS 3 | Dehydroascorbate, xylose, succinic acid | Energy metabolism, mitochondrial import and transport, oxidative stress, neurotransmission | [36] |
Dogs | Plasma | non-targeted LC-MS 4 | Glutamine, γ-glutamyl-glutamine | Glutamine metabolism | [38] |
Subject | Sampling Material | Analytical Technique | Metabolites Identified | Pathways Involved/Functions | Reference |
---|---|---|---|---|---|
Rats | Brain (cortex, hippo-campus) | 1 H-MAS-NMR 1 | Glutamate, glutamine, citrate, succinate, aspartate, alanine, acetate, L-serine | Glutamate synthesis, Krebs cycle, energy metabolism | [52] |
Rats | Brain (prefrontal cortex) | LC-MS 2 | L-tyrosine, γ-glutamylglutamine, L-citrulline, L-cysteine, 2-phenylacetamide, phenylpyruvate, 2,3-butanedione, cytosine, GABA 3, O-acetylcarnitine, adenylosuccinate, guanine, carnitine | Glutamate metabolism, glutamatergic neurotransmission, arginine and proline metabolism, purine reactions | [56] |
Substance | Subject | Analytical Technique | Sampling Material | Metabolites Identified | Pathways Involved/Functions | Reference |
---|---|---|---|---|---|---|
Alcohol | Rats | non-targeted LC-MS 1 | Brain (cortical: prelimbic and infralimbic; striatal: accumbens core and shell) | Dopamine, Met-enkephalin | Energy metabolism in the accumbens shell | [63] |
Rats | targeted LC-MS/MS 2 | (1) Urine | cytosine, hypoxanthine, thiamine, uracil, uridine, acetylcarnitine, glutamine, alanine, aspartate, glycine, serine, threonine, valine, leucine, isoleucine, phenylalanine, tyrosine | Energy metabolism, Nitrogen metabolism, AA 3 metabolism | [64] | |
(2) Feces | uracil, glutamine, glycine, leucine, putrescine, acetylcarnitine | Energy metabolism, Nitrogen metabolism, AA metabolism | ||||
Nicotine | Mice | 1 H-NMR 4 | Brain (nucleus accumbens, striatum) | glutamate, tryptamine, acetylcholine, glucose, lactate, creatine, 3-hydroxybutyrate, nicotinamide-adenine dinucleotide (NAD), glutathione, taurine, phosphocholine, glycerol | Neurotransmitter disturbance, Energy metabolism, AA metabolism, membrane metabolism, dysregulation of anti-oxidative stress response | [65] |
Cocaine | Rats | non-targeted GC-MS 5 | (1) Plasma | Threonine, cystine, n-propylamine, spermidine | Stress response, immune response | [62] |
(2) Urine | No changes | |||||
Rat | IMMS 6 | Brain (frontal cortex, striatum, thalamus) | Serotonin, norepinephrine, glucose, dopamine, DOPAC, 5-HIAA | Glucose metabolism, biogenic amine metabolism (esp. glycolysis metabolome in the thalamus) | [66] | |
Mice | non-targeted LC-MS | Liver, serum | Long-chain acetylcarnitines (i.e., palmitoyl-carnitine), phospholipids | Lipid metabolism (inhibition of mitochondrial β-oxidation) | [67] | |
Rat | 1 H-NMR | Brain (hippo-campus, nucleus accumbens, prefrontal cortex, striatum) | Neurotransmitter (glutamate, GABA 7), creatine, taurine, n-acetylaspartate, lactate; choline, phosphocholine, glycerol, leucine, lycine, cysteine | Energy metabolism (mitochondrial dysregulation), membrane disruption, neurotransmitter disturbance, oxidative stress, AA metabolism | [68] | |
Heroin | Rats | non-targeted GC-MS | (1) Serum | Tryptophan, 5-hydroxytryptamine, leucin, aspartate, phenylalanine, hydroxyproline citrate, 9-hexadecenoic acid, palmitic acid | Energy metabolism (TCA-cycle 8, free fatty acid metabolism), lipid metabolism, AA turnover | [69] |
(2) Urine | Tryptophan, hepatanedioic acid, azelate, 5-hydroxyindoleacetat | |||||
Morphine | Rats | non-targeted GC-MS | (1) Plasma | 3-hydroxybutyric acid, tryptophan, cystine, n-propylamine | AA metabolism (tryptophan uptake from blood by brain), energy metabolism (reduced β-oxidation from fatty acids and/or ketone production form acetyl Co A) | [62] |
(2) Urine | 2-ketoglutaric acid, fumaric acid, malic acid, threonine, glutamic acid, isoleucine, valine, aspartic acid, oxamic acid, 2-aminoethanol, indoxyl sulfate, creatinine, | Energy metabolism (via TCA-cycle disruption), neurotransmitter metabolism (disruption of biotransformation of glutamic acid to 2-ketoglutaric acid) | ||||
Meth-amphet-amine | Mice | non-targeted GC-MS and non-targeted LC-MS | Brain (whole brain) | Homocarnisine, 4-guanidinobutanoate, pantothenate, myo-inositol | GABAergic metabolism | [70] |
Rat | targeted GC-MS and CE-MS/MS 9 | (1) Plasma | Glucose, 3-hydroxybutyrate | Energy metabolism (oxidative phosphorylation via TCA-cycle, glycolysis), fatty acid metabolism | [71] | |
(2) Urine | 5-oxoproline, saccharic acid, uracil, 3-hydroxybutyrate, adipic acid, fumarate, α-ketoglutarate | TCA-cycle, fatty acid metabolism | ||||
Rats | non-targeted GC-MS | (1) Plasma | n-propylamine, lauric acid | [62] | ||
(2) Urine | lactose, spermidine, stearic acid |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Humer, E.; Probst, T.; Pieh, C. Metabolomics in Psychiatric Disorders: What We Learn from Animal Models. Metabolites 2020, 10, 72. https://doi.org/10.3390/metabo10020072
Humer E, Probst T, Pieh C. Metabolomics in Psychiatric Disorders: What We Learn from Animal Models. Metabolites. 2020; 10(2):72. https://doi.org/10.3390/metabo10020072
Chicago/Turabian StyleHumer, Elke, Thomas Probst, and Christoph Pieh. 2020. "Metabolomics in Psychiatric Disorders: What We Learn from Animal Models" Metabolites 10, no. 2: 72. https://doi.org/10.3390/metabo10020072
APA StyleHumer, E., Probst, T., & Pieh, C. (2020). Metabolomics in Psychiatric Disorders: What We Learn from Animal Models. Metabolites, 10(2), 72. https://doi.org/10.3390/metabo10020072