Overview of Metabolomic Analysis and the Integration with Multi-Omics for Economic Traits in Cattle
Abstract
:1. Introduction
2. Characterizations of Metabolomic Profiles in Cattle
2.1. Candidate Metabolic Biomarkers for Various Tissues Associated with Production and Healthy Traits in Cattle Identified by Previous Studies
Cattle | Trait | Sample Source | Metabolic Biomarker | Reference |
---|---|---|---|---|
Dairy cows (n = 1044) | Left displaced abomasum | Serum | β-hydroxybutyrate, Non-esterified fatty acids | LeBlanc et al. (2005) [20] |
Holstein cows (n = 2356) | Early lactation milk loss | Serum | Non-esterified fatty acids, β-hydroxybutyrate | Chapinal et al. (2012) [22] |
Holstein cows (n = 8) | Barley grain diet | Rumen fluid | Phenylalanine, Ornithine, Lysine, Leucine, Arginine, Valine, Phenylacetylglycine | Saleem et al. (2012) [29] |
Danish Holstein and Jersey cows (n = 892) | Somatic cell count | Milk | β-hydroxybutyrate, Acetate, Butyrate, Fumarate, Hippurate, Isoleucine, Lactate | Sundekilde et al. (2012) [21] |
Holstein cows (n = 1305) | Fat content | Milk | 1,3-Dihydroxyaceton, Arabitol, Aspartic acid, Galactitol, Glucaric acid-1,4-lactone, Myo-Inositol-1-phosphate, Pyroglutamic acid | Melzer et al. (2013) [18] |
Holstein cows (n = 1305) | pH value | Milk | β-Alanine, Glycerol-2-phosphate, Glycerol-3-phosphate, Glycine | Melzer et al. (2013) [18] |
Holstein cows (n = 1305) | Protein content | Milk | Myo-Inositol-1-phosphate, Phosphoenolpyruvic acid, Pyroglutamic acid, Spermidine, 4-methyl-5-hydroxyethyl-Thiazole | Melzer et al. (2013) [18] |
Holstein cows (n = 1305) | Lactose | Milk | 1,3-Dihydroxyacetone, Glucaric acid-1,4-lactone, Leucine, Methionine, Phenylalanine, Tyrosine | Melzer et al. (2013) [18] |
Holstein cows (n = 1305) | Milk quantity | Milk | Arabitol, 2-amino-Butanoic acid, 4-methylthio-2-oxo-Butanoic acid, 2-Piperidinecarboxylic acid | Melzer et al. (2013) [18] |
Holstein cows (n = 1305) | Somatic cell score | Milk | 1,3-Dihydroxyacetone, 2-hydroxy-Butanoic acid, Lactic acid, Leucine, Methionine, Phenylalanine, Tryptophan, Tyrosine, Uracil | Melzer et al. (2013) [18] |
Holstein cows (n = 20) | Energy balance | Milk & Serum | Unsaturated fatty acids, Galactose-1-phosphate, Cholesterol, Stomatin | Lu et al. (2013) [30] |
Holstein cows (n = 28) | Hepatic lipidosis | Serum | Glutamine, Glycine, Phosphatidyl-cholines, Sphingomyelins, Hydroxy-sphingomyelins | Imhasly et al. (2014) [31] |
Crossbred beef cattle (Angus, Simmental, etc.) (n = 112) | Residual feed intake | Plasma | Acetate, Betaine, Carnitine, Citrate, Creatine, Formate, Glutamate, Glycine, Hippurate, Hydroxyisobutyrate, Lysine, Phenylalanine, Threonine, Tyrosine | Karisa et al. (2014) [7] |
Crossbred beef cattle (Angus, Simmental, etc.) (n = 112) | Average daily gain | Plasma | Choline, Glutamate, Hippurate, Isoleucine | Karisa et al. (2014) [7] |
Crossbred beef cattle (Angus, Simmental, etc.) (n = 112) | Average feed intake | Plasma | Acetate, Dimethyglycine, Glycerol, Glycol, Hippurate, Hydroxyisobutyrate, Lysine, Propylene, Succinate, Tyrosine | Karisa et al. (2014) [7] |
Crossbred beef cattle (Angus, Simmental, etc.) (n = 112) | Average body weight | Plasma | Acetone, Formate, Glycerol, Hippurate, Hydroxyisobutyrate, Isopropanol, Lysine, Phenylalanine, Lysine | Karisa et al. (2014) [7] |
Holstein calves (n = 12) | Systemic immune response | Plasma | Glycocholic acid, Glycine, Uric acid, Biliverdin, Taurodeoxycholic acid, Propionylcarnitine | Gray et al. (2015) [32] |
German Holstein cows (n = 26) | Metabolic transition | Serum | Acylcarnitines, Glycerophospholipids, Sphingolipids | Kenéz et al. (2016) [11] |
Simmental cows (n = 18) | Subacute rumen acidosis | Serum | Non-esterified fatty acids | Aditya et al. (2018) [33] |
Holstein cows (n = 40) | Milk protein yield | Serum | Total cholesterol, Malonaldehyde | Wu et al. (2018) [8] |
Danish Holstein and Jersey cows (n = 20) | Residual feed intake | Plasma | α-ketoglutarate, Succinic acid | Wang and Kadarmideen (2019) [9] |
Beef steers (n = 29) | Residual feed intake | Rumen fluid | 3,4-dihydroxyphenylacetate, 4-pyridoxate, Citraconate, Hypoxanthine, Succinate/Methylmalonate, Thymine, Xylose | Clemmons et al. (2020) [10] |
Nellore and Angus beef cattle (n = 30) | Beef tenderness | Meat | Acetyl-carnitine, Adenine, Beta-alanine, Fumarate, Glutamine, Valine | Antonel et al. (2020) [34] |
2.2. Revealed Metabolic Pathways in Cattle
3. Applications of Metabolomics in Cattle
3.1. Revealed Biologically Genetic and Metabolic Related Mechanisms
3.2. Improved Genomic Prediction for Complex Traits
3.3. Understood Nutritional Biochemical Physiologies
4. Integrated Metabolomic Analysis with Other Omics
4.1. Genomics-Metabolomic Analysis
4.2. Transcriptomic-Metabolomic Analysis
4.3. Other Two-Layer Omics−Metabolomic Analysis
4.4. Multiple Integrated Omics−Metabolomic Analysis
5. Methods and Tools Applied in Metabolomics Analysis
Analysis Tool | Environment | Feature | Reference |
---|---|---|---|
WGCNA | R | Weighted correlation network analysis | Langfelder et al. (2008) [107] |
MetaboAnalyst | Web/R | Statistical, biomarker, pathway, joint-pathway, network, meta-analysis, etc. | Xia et al. (2009) [93]/Xia et al. (2012) [111]/Xia and Wishart (2016) [112]/Chong and Xia (2018) [113]/Chong et al. (2019) [71] |
glmnet | R | Statistical analysis in lasso or elastic net model | Friedman et al. (2010) [114] |
MetabR | R | Statistical analysis in linear model | Ernest et al. (2012) [94] |
muma | R | Step-wise pipeline for metabolomics univariate and multivariate statistical analyses | Gaude et al. (2013) [115] |
limma | R | Statistical analysis in linear model by considering the metabolite values as the expression data | Ritchie et al. (2015) [110] |
MetabNet | R | Targeted metabolome-wide association study for pathway and network mapping | Uppal et al. (2015) [116] |
MIMOSA | Web | Quantitative relationships between the relative abundance of genes in a metagenome and the abundance of the particular compounds in a metabolome | Noecker et al. (2016) [85] |
IntLIM | R | Integration analysis of transcriptomic and metabolomic data | Siddiqui et al. (2018) [79] |
MetaboClust | R | Interactive time-series cluster | Rusilowicz et al. (2018) [96] |
MetaboDiff | R | Exploration of sample traits in a data-derived metabolic correlation network | Mock et al. (2018) [117] |
NormalizeMets | R | Visualisation of metabolomics data using interactive graphical displays and to obtain end statistical results for clustering, classification, biomarker identification adjusting for confounding variables, and correlation analysis | de Livera et al. (2018) [118] |
AMON | R | Prediction of compounds that could have been produced by community of bacteria or the host | Shaffer et al. (2019) [84] |
MelonnPan | R | Unobserved metabolite feature prediction in new microbial communities by incorporating biological knowledge | Mallick et al. (2019) [86] |
hcapca | R | Automated hierarchical cluster | Chanana et al. (2020) [97] |
MetaboShiny | R | Database- and formula-prediction-based annotation and visualization for mass spectrometry data | Wolthuis et al. (2020) [119] |
MetENP | Web/R | Species-specific pathway analysis, pathway enrichment scores, gene-enzyme information, and enzymatic activities of the significantly altered metabolites | Choudhary et al. (2020) [120] |
VOCCluster | R | Untargeted feature cluster using gas chromatography/mass spectrometry (GC/MS) data | Alkhalifah et al. (2020) [95] |
6. Implications and Further Potentialities
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hasin, Y.; Seldin, M.; Lusis, A. Multi-omics approaches to disease. Genome Biol. 2017, 18, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Wasinger, V.; Cordwell, S.; Poljak, A.; Yan, J.X.; Gooley, A.A.; Wilkins, M.R.; Duncan, M.; Harris, R.; Williams, K.L.; Humphery-Smith, I. Progress with gene-product mapping of the mollicutes: Mycoplasma genitalium. Electrophoresis 1995, 16, 1090–1094. [Google Scholar] [CrossRef] [PubMed]
- Vailati-Riboni, M.; Palombo, V.; Loor, J.J. What are omics sciences? In Periparturient Diseases of Dairy Cows: A Systems Biology Approach; Springer: Cham, Switzerland, 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Oliver, S.G. Systematic functional analysis of the yeast genome. Trends Biotechnol. 1998, 16, 373–378. [Google Scholar] [CrossRef]
- Schena, M.; Shalon, D.; Davis, R.W.; Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995, 270, 467–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiehn, O. Metabolomics—The link between genotypes and phenotypes. Plant Mol. Biol. 2002, 48, 155–171. [Google Scholar] [CrossRef]
- Karisa, B.; Thomson, J.; Wang, Z.; Li, C.; Montanholi, Y.; Miller, S.; Moore, S.; Plastow, G. Plasma metabolites associated with residual feed intake and other productivity performance traits in beef cattle. Livest. Sci. 2014, 165, 200–211. [Google Scholar] [CrossRef]
- Wu, X.; Sun, H.; Xue, M.; Wang, D.; Guan, L.L.; Liu, J. Serum metabolome profiling revealed potential biomarkers for milk protein yield in dairy cows. J. Proteom. 2018, 184, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Kadarmideen, H.N. Metabolomics analyses in high-low feed efficient dairy cows reveal novel biochemical mechanisms and predictive biomarkers. Metabolites 2019, 9, 151. [Google Scholar] [CrossRef] [Green Version]
- Clemmons, B.A.; Powers, J.B.; Campagna, S.R.; Seay, T.B.; Embree, M.M.; Myer, P.R. Rumen fluid metabolomics of beef steers differing in feed efficiency. Metabolomics 2020, 16, 23–29. [Google Scholar] [CrossRef]
- Kenéz, Á.; Dänicke, S.; Rolle-Kampczyk, U.; von Bergen, M.; Huber, K. A metabolomics approach to characterize phenotypes of metabolic transition from late pregnancy to early lactation in dairy cows. Metabolomics 2016, 12, 165. [Google Scholar] [CrossRef]
- Novais, F.J.; Pires, P.R.L.; Alexandre, P.A.; Dromms, R.A.; Iglesias, A.H.; Ferraz, J.B.S.; Styczynski, M.P.-W.; Fukumasu, H. Identification of a metabolomic signature associated with feed efficiency in beef cattle. BMC Genom. 2019, 20, 8. [Google Scholar] [CrossRef] [Green Version]
- Cônsolo, N.; Buarque, V.; Silva, J.; Poleti, M.; Barbosa, L.; Higuera-Padilla, A.; Gómez, J.; Colnago, L.; Gerrard, D.; Netto, A.S.; et al. Muscle and liver metabolomic signatures associated with residual feed intake in Nellore cattle. Anim. Feed. Sci. Technol. 2021, 271, 114757. [Google Scholar] [CrossRef]
- Connor, E. Invited review: Improving feed efficiency in dairy production: Challenges and possibilities. Animal 2015, 9, 395–408. [Google Scholar] [CrossRef] [Green Version]
- Koch, R.M.; Swiger, L.A.; Chambers, D.; Gregory, K.E. Efficiency of feed use in beef cattle. J. Anim. Sci. 1963, 22, 486–494. [Google Scholar] [CrossRef]
- Archer, J.A.; Richardson, E.C.; Herd, R.M.; Arthur, P.F. Potential for selection to improve efficiency of feed use in beef cattle: A review. Aust. J. Agric. Res. 1999, 50, 147–161. [Google Scholar] [CrossRef]
- Digiacomo, K.; Norris, E.; Dunshea, F.; Hayes, B.; Marett, L.; Wales, W.; Leury, B. Responses of dairy cows with divergent residual feed intake as calves to metabolic challenges during midlactation and the nonlactating period. J. Dairy Sci. 2018, 101, 6474–6485. [Google Scholar] [CrossRef] [Green Version]
- Melzer, N.; Wittenburg, D.; Hartwig, S.; Jakubowski, S.; Kesting, U.; Willmitzer, L.; Lisec, J.; Reinsch, N.; Repsilber, D. Investigating associations between milk metabolite profiles and milk traits of Holstein cows. J. Dairy Sci. 2013, 96, 1521–1534. [Google Scholar] [CrossRef] [Green Version]
- Newgard, C.B. Metabolomics and metabolic diseases: Where do we stand? Cell Metab. 2017, 25, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Leblanc, S.J.; Leslie, K.E.; Duffield, T.F. Metabolic predictors of displaced abomasum in dairy cattle. J. Dairy Sci. 2005, 88, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Sundekilde, U.; Poulsen, N.; Larsen, L.B.; Bertram, H. Nuclear magnetic resonance metabonomics reveals strong association between milk metabolites and somatic cell count in bovine milk. J. Dairy Sci. 2013, 96, 290–299. [Google Scholar] [CrossRef]
- Chapinal, N.; Carson, M.; LeBlanc, S.; Leslie, K.; Godden, S.; Capel, M.; Santos, J.; Overton, M.; Duffield, T. The association of serum metabolites in the transition period with milk production and early-lactation reproductive performance. J. Dairy Sci. 2012, 95, 1301–1309. [Google Scholar] [CrossRef] [Green Version]
- Benedet, A.; Manuelian, C.L.; Zidi, A.; Penasa, M.; de Marchi, M. Invited review: β-hydroxybutyrate concentration in blood and milk and its associations with cow performance. Animal 2019, 13, 1676–1689. [Google Scholar] [CrossRef] [Green Version]
- McArt, J.; Nydam, D.; Ospina, P.; Oetzel, G. A field trial on the effect of propylene glycol on milk yield and resolution of ketosis in fresh cows diagnosed with subclinical ketosis. J. Dairy Sci. 2011, 94, 6011–6020. [Google Scholar] [CrossRef] [Green Version]
- McArt, J.; Nydam, D.; Oetzel, G. Epidemiology of subclinical ketosis in early lactation dairy cattle. J. Dairy Sci. 2012, 95, 5056–5066. [Google Scholar] [CrossRef] [Green Version]
- Weigel, K.; Pralle, R.S.; Adams, H.; Cho, K.; Do, C.; White, H. Prediction of whole--genome risk for selection and management of hyperketonemia in Holstein dairy cattle. J. Anim. Breed. Genet. 2017, 134, 275–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanholder, T.; Papen, J.; Bemers, R.; Vertenten, G.; Berge, A.C. Risk factors for subclinical and clinical ketosis and association with production parameters in dairy cows in the Netherlands. J. Dairy Sci. 2015, 98, 880–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutherford, A.J.; Oikonomou, G.; Smith, R.F. The effect of subclinical ketosis on activity at estrus and reproductive performance in dairy cattle. J. Dairy Sci. 2016, 99, 4808–4815. [Google Scholar] [CrossRef] [Green Version]
- Saleem, F.; Ametaj, B.; Bouatra, S.; Mandal, R.; Zebeli, Q.; Dunn, S.; Wishart, D.S. A metabolomics approach to uncover the effects of grain diets on rumen health in dairy cows. J. Dairy Sci. 2012, 95, 6606–6623. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Fernandes, E.A.; Cano, A.E.P.; Vinitwatanakhun, J.; Boeren, S.; van Hooijdonk, T.; van Knegsel, A.; Vervoort, J.; Hettinga, K.A. Changes in milk proteome and metabolome associated with dry period length, energy balance, and lactation stage in postparturient dairy cows. J. Proteome Res. 2013, 12, 3288–3296. [Google Scholar] [CrossRef]
- Imhasly, S.; Naegeli, H.; Baumann, S.; von Bergen, M.; Luch, A.; Jungnickel, H.; Potratz, S.; Gerspach, C. Metabolomic biomarkers correlating with hepatic lipidosis in dairy cows. BMC Vet.-Res. 2014, 10, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, D.W.; Welsh, M.D.; Doherty, S.; Mansoor, F.; Chevallier, O.P.; Elliott, C.T.; Mooney, M.H. Identification of systemic immune response markers through metabolomic profiling of plasma from calves given an intra-nasally delivered respiratory vaccine. Vet. Res. 2015, 46, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aditya, S.; Humer, E.; Pourazad, P.; Khiaosa-Ard, R.; Zebeli, Q. Metabolic and stress responses in dairy cows fed a concentrate-rich diet and submitted to intramammary lipopolysaccharide challenge. Animal 2018, 12, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Antonelo, D.; Gerrard, D.E.; Gómez, J.F.M.; Balieiro, J.C.; Colnago, L.A.; Beline, M.; Cônsolo, N.; Silva, S.L.; Suman, S.P.; Schilling, W.; et al. Metabolites and metabolic pathways correlated with beef tenderness. Meat Muscle Biol. 2020, 4, 1–9. [Google Scholar] [CrossRef]
- Xia, J.; Wishart, D.S. MetPA: A web-based metabolomics tool for pathway analysis and visualization. Bioinformatics 2010, 26, 2342–2344. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Fang, S.; Yang, H.; Chen, C. Identification of the relationship between the gut microbiome and feed efficiency in a commercial pig cohort. J. Anim. Sci. 2021, 99, skab045. [Google Scholar] [CrossRef]
- Kyriacou, S.V.; Deutscher, M.P. An important role for the multienzyme aminoacyl-tRNA synthetase complex in mammalian translation and cell growth. Mol. Cell 2008, 29, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Bergert, M.; Walther, A.; Suter, B. Double-sieving-defective aminoacyl-tRNA synthetase causes protein mistranslation and affects cellular physiology and development. Nat. Commun. 2014, 5, 5650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, S.F.; Kennedy, T.; Chevallier, O.; Gordon, A.; Farmer, L.; Elliott, C.; Moss, B. The application of NMR to study changes in polar metabolite concentrations in beef longissimus dorsi stored for different periods post mortem. Metabolomics 2010, 6, 395–404. [Google Scholar] [CrossRef]
- Loor, J.J.; Bionaz, M.; Invernizzi, G. Systems biology and animal nutrition: Insights from the dairy cow during growth and the lactation cycle. In Systems Biology and Livestock Science; Wiley: Hoboken, NJ, USA, 2011; pp. 215–245. [Google Scholar]
- Sun, H.-Z.; Shi, K.; Wu, X.-H.; Xue, M.-Y.; Wei, Z.-H.; Liu, J.-X.; Liu, H.-Y. Lactation-related metabolic mechanism investigated based on mammary gland metabolomics and 4 biofluids’ metabolomics relationships in dairy cows. BMC Genom. 2017, 18, 936. [Google Scholar] [CrossRef] [Green Version]
- Garnsworthy, P.C. (Ed.) Nutrition and Lactation in the Dairy Cow; Butterworths: London, UK, 1988. [Google Scholar]
- Wu, N.; Yang, M.; Gaur, U.; Xu, H.; Yao, Y.; Li, D. Alpha-ketoglutarate: Physiological functions and applications. Biomol. Ther. 2016, 24, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Tretter, L.; Patocs, A.; Chinopoulos, C. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim. Biophys. Acta BBA Bioenergy 2016, 1857, 1086–1101. [Google Scholar] [CrossRef]
- Soghomonian, J.-J.; Martin, D.L. Two isoforms of glutamate decarboxylase: Why? Trends Pharmacol. Sci. 1998, 19, 500–505. [Google Scholar] [CrossRef]
- Do, D.N.; Ostersen, T.; Strathe, A.B.; Mark, T.; Jensen, J.; Kadarmideen, H.N. Genome-wide association and systems genetic analyses of residual feed intake, daily feed consumption, backfat and weight gain in pigs. BMC Genet. 2014, 15, 27. [Google Scholar] [CrossRef] [Green Version]
- Gemmer, M.R.; Richter, C.; Jiang, Y.; Schmutzer, T.; Raorane, M.L.; Junker, B.; Pillen, K.; Maurer, A. Can metabolic prediction be an alternative to genomic prediction in barley? PLoS ONE 2020, 15, e0234052. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Z.; Liu, G.; Jiang, Y.; Maurer, H.P.; Würschum, T.; Mock, H.-P.; Matros, A.; Ebmeyer, E.; Schachschneider, R.; et al. Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding. Proc. Natl. Acad. Sci. USA 2015, 112, 15624–15629. [Google Scholar] [CrossRef] [Green Version]
- Tong, H.; Küken, A.; Nikoloski, Z. Integrating molecular markers into metabolic models improves genomic selection for Arabidopsis growth. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Magwire, M.M.; Basten, C.J.; Xu, Z.; Wang, D. Evaluation of the utility of gene expression and metabolic information for genomic prediction in maize. Theor. Appl. Genet. 2016, 129, 2413–2427. [Google Scholar] [CrossRef] [PubMed]
- Box, G.E.P.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. Ser. B Stat. Methodol. 1964, 26, 211–243. [Google Scholar] [CrossRef]
- Fontanesi, L. Metabolomics and livestock genomics: Insights into a phenotyping frontier and its applications in animal breeding. Anim. Front. 2016, 6, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Kadarmideen, H.N. Metabolite genome-wide association study (mGWAS) and gene-metabolite interaction network analysis reveal potential biomarkers for feed efficiency in pigs. Metabolites 2020, 10, 201. [Google Scholar] [CrossRef]
- Ametaj, B.N.; Zebeli, Q.; Saleem, F.; Psychogios, N.; Lewis, M.J.; Dunn, S.M.; Xia, J.; Wishart, D.S. Metabolomics reveals unhealthy alterations in rumen metabolism with increased proportion of cereal grain in the diet of dairy cows. Metabolomics 2010, 6, 583–594. [Google Scholar] [CrossRef]
- Magan, J.B.; O’Callaghan, T.F.; Zheng, J.; Zhang, L.; Mandal, R.; Hennessy, D.; Fenelon, M.A.; Wishart, D.S.; Kelly, A.L.; McCarthy, N.A. Impact of bovine diet on metabolomic profile of skim milk and whey protein ingredients. Metabolites 2019, 9, 305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, J.Y.; Kim, M.; Reddy, K.E.; Lee, S.; Cho, S.; Lee, H.-J. PSXI-12 comparative metabolomics of blood plasma from Hanwoo beef cattle at different ages and fed diets with different nutritional levels, by using liquid chromatography-mass spectrometry. J. Anim. Sci. 2019, 97, 406–407. [Google Scholar] [CrossRef]
- Kadarmideen, H. Genomics to systems biology in animal and veterinary sciences: Progress, lessons and opportunities. Livest. Sci. 2014, 166, 232–248. [Google Scholar] [CrossRef] [Green Version]
- Suravajhala, P.; Kogelman, L.J.A.; Kadarmideen, H.N. Multi-omic data integration and analysis using systems genomics approaches: Methods and applications in animal production, health and welfare. Genet. Sel. Evol. 2016, 48, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Cheng, A.; Wang, M.; Liu, M.; Zhu, D.; Yang, Q.; Wu, Y.; Jia, R.; Chen, S.; Zhao, X.; et al. Comparative genomics and metabolomics analysis of Riemerella anatipestifer strain CH-1 and CH-2. Sci. Rep. 2021, 11, 1–13. [Google Scholar] [CrossRef]
- Planchon, M.; Léger, T.; Spalla, O.; Huber, G.; Ferrari, R. Metabolomic and proteomic investigations of impacts of titanium dioxide nanoparticles on Escherichia coli. PLoS ONE 2017, 12, e0178437. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Akanno, E.C.; Valente, T.S.; Abo-Ismail, M.; Karisa, B.K.; Wang, Z.; Plastow, G.S. Genomic heritability and genome-wide association studies of plasma metabolites in crossbred beef cattle. Front. Genet. 2020, 11, 538600. [Google Scholar] [CrossRef]
- Widmann, P.; Reverter, A.; Fortes, M.R.S.; Weikard, R.; Suhre, K.; Hammon, H.; Albrecht, E.; Kuehn, C. A systems biology approach using metabolomic data reveals genes and pathways interacting to modulate divergent growth in cattle. BMC Genom. 2013, 14, 798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gieger, C.; Geistlinger, L.; Altmaier, E.; de Angelis, M.H.; Kronenberg, F.; Meitinger, T.; Mewes, H.-W.; Wichmann, H.-E.; Weinberger, K.; Adamski, J.; et al. Genetics meets metabolomics: A genome-wide association study of metabolite profiles in human serum. PLoS Genet. 2008, 4, e1000282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 2012, 44, 821–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, H.M.; Sul, J.H.; Service, S.K.; Zaitlen, N.A.; Kong, S.-Y.; Freimer, N.B.; Sabatti, C.; Eskin, E. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 2010, 42, 348–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011, 88, 76–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lippert, C.; Listgarten, J.; Liu, Y.; Kadie, C.M.; Davidson, R.I.; Heckerman, D. FaST linear mixed models for genome-wide association studies. Nat. Methods 2011, 8, 833–835. [Google Scholar] [CrossRef] [PubMed]
- Bacanu, S.-A.; Devlin, B.; Roeder, K. Association studies for quantitative traits in structured populations. Genet. Epidemiol. 2002, 22, 78–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devlin, B.; Roeder, K. Genomic control for association studies. Biometrics 1999, 55, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018, 46, W486–W494. [Google Scholar] [CrossRef] [Green Version]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr. Protoc. Bioinform. 2019, 68, e86. [Google Scholar] [CrossRef]
- Wanichthanarak, K.; Fan, S.; Grapov, D.; Barupal, D.K.; Fiehn, O. Metabox: A toolbox for Metabolomic data analysis, interpretation and integrative exploration. PLoS ONE 2017, 12, e0171046. [Google Scholar] [CrossRef]
- Huan, T.; Forsberg, E.M.; Rinehart, D.; Johnson, C.; Ivanisevic, J.; Benton, H.P.; Fang, M.; Aisporna, A.; Hilmers, B.; Poole, F.L.; et al. Systems biology guided by XCMS online metabolomics. Nat. Methods 2017, 14, 461–462. [Google Scholar] [CrossRef] [PubMed]
- Kamburov, A.; Cavill, R.; Ebbels, T.; Herwig, R.; Keun, H.C. Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA. Bioinformatics 2011, 27, 2917–2918. [Google Scholar] [CrossRef]
- Xia, J.; Fjell, C.; Mayer, M.L.; Pena, O.M.; Wishart, D.S.; Hancock, R. INMEX—A web-based tool for integrative meta-analysis of expression data. Nucleic Acids Res. 2013, 41, W63–W70. [Google Scholar] [CrossRef] [PubMed]
- Caspi, R.; Billington, R.; Ferrer, L.; Foerster, H.; Fulcher, C.A.; Keseler, I.M.; Kothari, A.; Krummenacker, M.; Latendresse, M.; Mueller, L.A.; et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2016, 44, D471–D480. [Google Scholar] [CrossRef]
- Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa, M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999, 27, 29–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The UniProt Consortium. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019, 47, D506–D515. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, J.K.; Baskin, E.; Liu, M.; Cantemir-Stone, C.Z.; Zhang, B.; Bonneville, R.; McElroy, J.P.; Coombes, K.R.; Mathé, E.A. IntLIM: Integration using linear models of metabolomics and gene expression data. BMC Bioinform. 2018, 19, 81. [Google Scholar] [CrossRef]
- Banerjee, P.; Carmelo, V.A.O.; Kadarmideen, H.N. Integrative analysis of metabolomic and transcriptomic profiles uncovers biological pathways of feed efficiency in pigs. Metabolites 2020, 10, 275. [Google Scholar] [CrossRef] [PubMed]
- Boulesteix, A.-L.; Janitza, S.; Hapfelmeier, A.; van Steen, K.; Strobl, C. Letter to the editor: On the term ’interaction’ and related phrases in the literature on random forests. Brief. Bioinform. 2015, 16, 338–345. [Google Scholar] [CrossRef]
- Wong, C.C.; Qian, Y.; Yu, J. Interplay between epigenetics and metabolism in oncogenesis: Mechanisms and therapeutic approaches. Oncogene 2017, 36, 3359–3374. [Google Scholar] [CrossRef]
- Petersen, A.-K.; Zeilinger, S.; Kastenmüller, G.; Römisch-Margl, W.; Brugger, M.; Peters, A.; Meisinger, C.; Strauch, K.; Hengstenberg, C.; Pagel, P.; et al. Epigenetics meets metabolomics: An epigenome-wide association study with blood serum metabolic traits. Hum. Mol. Genet. 2014, 23, 534–545. [Google Scholar] [CrossRef] [Green Version]
- Shaffer, M.; Thurimella, K.; Quinn, K.; Doenges, K.; Zhang, X.; Bokatzian, S.; Reisdorph, N.; Lozupone, C.A. AMON: Annotation of metabolite origins via networks to integrate microbiome and metabolome data. BMC Bioinform. 2019, 20, 614. [Google Scholar] [CrossRef] [Green Version]
- Noecker, C.; Eng, A.; Srinivasan, S.; Theriot, C.M.; Young, V.B.; Jansson, J.K.; Fredricks, D.; Borenstein, E. Metabolic model-based integration of microbiome taxonomic and metabolomic profiles elucidates mechanistic links between ecological and metabolic variation. MSystems 2016, 1, e00013-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallick, H.; Franzosa, E.A.; Mclver, L.J.; Banerjee, S.; Sirota-Madi, A.; Kostic, A.D.; Clish, C.B.; Vlamakis, H.; Xavier, R.J.; Huttenhower, C. Predictive metabolomic profiling of microbial communities using amplicon or metagenomic sequences. Nat. Commun. 2019, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Lam, S.M.; Tian, H.; Shui, G. Lipidomics, en route to accurate quantitation. Biochim. Biophys. Acta BBA—Mol. Cell Biol. Lipids 2017, 1862, 752–761. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Li, B.; Lam, S.M.; Shui, G. Integration of lipidomics and metabolomics for in-depth understanding of cellular mechanism and disease progression. J. Genet. Genom. 2020, 47, 69–83. [Google Scholar] [CrossRef]
- Acharjee, A.; Ament, Z.; West, J.A.; Stanley, E.; Griffin, J.L. Integration of metabolomics, lipidomics and clinical data using a machine learning method. BMC Bioinform. 2016, 17, 440. [Google Scholar] [CrossRef] [Green Version]
- M’Baya-Moutoula, E.; Louvet, L.; Molinié, R.; Guerrera, I.C.; Cerutti, C.; Fourdinier, O.; Nourry, V.; Gutierrez, L.; Morlière, P.; Mesnard, F.; et al. A multi-omics analysis of the regulatory changes induced by miR-223 in a monocyte/macrophage cell line. Biochim. Biophys. Acta BBA—Mol. Basis Dis. 2018, 1864, 2664–2678. [Google Scholar] [CrossRef]
- Jamil, I.N.; Remali, J.; Azizan, K.A.; Nor Muhammad, N.A.; Arita, M.; Goh, H.H.; Aizat, W.M. Systematic multi-omics integration (MOI) approach in plant systems biology. Front. Plant Sci. 2020, 11, 944. [Google Scholar] [CrossRef]
- Frau, A.; Hough, R.; Ijaz, U.; Campbell, B.; Kenny, J.; Hall, N.; Anson, J.; Darby, A.; Probert, C. Metabolomics & multi-omics analysis of Crohn’s disease. Gut 2019, 68, A68. [Google Scholar]
- Xia, J.; Psychogios, N.; Young, N.; Wishart, D.S. MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009, 37, W652–W660. [Google Scholar] [CrossRef] [Green Version]
- Ernest, B.; Gooding, J.R.; Campagna, S.R.; Saxton, A.M.; Voy, B.H. MetabR: An R script for linear model analysis of quantitative metabolomic data. BMC Res. Notes 2012, 5, 596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkhalifah, Y.; Phillips, I.; Soltoggio, A.; Darnley, K.; Nailon, W.H.; McLaren, D.; Eddleston, M.; Thomas, C.L.P.; Salman, D. VOCCluster: Untargeted metabolomics feature clustering approach for clinical breath gas chromatography/mass spectrometry data. Anal. Chem. 2019, 92, 2937–2945. [Google Scholar] [CrossRef] [PubMed]
- Rusilowicz, M.J.; Dickinson, M.; Charlton, A.J.; O’Keefe, S.; Wilson, J. MetaboClust: Using interactive time-series cluster analysis to relate metabolomic data with perturbed pathways. PLoS ONE 2018, 13, e0205968. [Google Scholar] [CrossRef] [Green Version]
- Chanana, S.; Thomas, C.S.; Zhang, F.; Rajski, S.R.; Bugni, T.S. HCAPCA: Automated hierarchical clustering and principal component analysis of large metabolomic datasets in R. Metabolites 2020, 10, 297. [Google Scholar] [CrossRef] [PubMed]
- Rogers, A.; McGeachie, M.; Baron, R.M.; Gazourian, L.; Haspel, J.A.; Nakahira, K.; Fredenburgh, L.E.; Hunninghake, G.M.; Raby, B.A.; Matthay, M.A.; et al. Metabolomic derangements are associated with mortality in critically ill adult patients. PLoS ONE 2014, 9, e87538. [Google Scholar] [CrossRef] [Green Version]
- Kelly, R.S.; McGeachie, M.J.; Lee-Sarwar, K.A.; Kachroo, P.; Chu, S.; Virkud, Y.V.; Huang, M.; Litonjua, A.A.; Weiss, S.T.; Lasky-Su, J. Partial least squares discriminant analysis and Bayesian networks for metabolomic prediction of childhood asthma. Metabolites 2018, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Min, S.; Lee, B.; Yoon, S. Deep learning in bioinformatics. Brief. Bioinform. 2016, 18, 851–869. [Google Scholar] [CrossRef] [Green Version]
- Brereton, R.G.; Lloyd, G.R. Support vector machines for classification and regression. Analyst 2010, 135, 230–267. [Google Scholar] [CrossRef]
- Touw, W.G.; Bayjanov, J.R.; Overmars, L.; Backus, L.; Boekhorst, J.; Wels, M.; van Hijum, S.A. Data mining in the life sciences with random forest: A walk in the park or lost in the jungle? Brief. Bioinform. 2013, 14, 315–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liebal, U.W.; Phan, A.N.T.; Sudhakar, M.; Raman, K.; Blank, L.M. Machine learning applications for mass spectrometry-based metabolomics. Metabolites 2020, 10, 243. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.Y.; Hu, T. Computational methods for the discovery of metabolic markers of complex traits. Metabolites 2019, 9, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghaffari, M.H.; Jahanbekam, A.; Sadri, H.; Schuh, K.; Dusel, G.; Prehn, C.; Adamski, J.; Koch, C.; Sauerwein, H. Metabolomics meets machine learning: Longitudinal metabolite profiling in serum of normal versus overconditioned cows and pathway analysis. J. Dairy Sci. 2019, 102, 11561–11585. [Google Scholar] [CrossRef]
- Zhang, B.; Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 2005, 4, 1–45. [Google Scholar] [CrossRef] [PubMed]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Pei, G.; Niu, X.; Shi, M.; Zhang, M.; Chen, L.; Zhang, W. Metabolomic analysis reveals functional overlapping of three signal transduction proteins in regulating ethanol tolerance in cyanobacterium Synechocystis sp. PCC 6803. Mol. BioSyst. 2015, 11, 770–782. [Google Scholar] [CrossRef] [PubMed]
- Pei, G.; Chen, L.; Zhang, W. WGCNA application to proteomic and metabolomic data analysis. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2017; Volume 585, pp. 135–158. [Google Scholar]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef]
- Xia, J.; Mandal, R.; Sinelnikov, I.V.; Broadhurst, D.; Wishart, D.S. MetaboAnalyst 2.0—A comprehensive server for metabolomic data analysis. Nucleic Acids Res. 2012, 40, W127–W133. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Wishart, D.S. Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Curr. Protoc. Bioinform. 2016, 55, 1–14. [Google Scholar] [CrossRef]
- Chong, J.; Xia, J. MetaboAnalystR: An R package for flexible and reproducible analysis of metabolomics data. Bioinformatics 2018, 34, 4313–4314. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.; Hastie, T.; Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaude, E.; Chignola, F.; Spiliotopoulos, D.; Spitaleri, A.; Ghitti, M.; Garcia-Manteiga, J.M.; Mari, S.; Musco, G. Muma, an R package for metabolomics univariate and multivariate statistical analysis. Curr. Metab. 2013, 1, 180–189. [Google Scholar] [CrossRef]
- Uppal, K.; Soltow, Q.A.; Promislow, D.E.L.; Wachtman, L.M.; Quyyumi, A.A.; Jones, D.P. MetabNet: An R package for metabolic association analysis of high-resolution metabolomics data. Front. Bioeng. Biotechnol. 2015, 3, 87. [Google Scholar] [CrossRef] [Green Version]
- Mock, A.; Warta, R.; Dettling, S.; Brors, B.; Jäger, D.; Herold-Mende, C. MetaboDiff: An R package for differential metabolomic analysis. Bioinformatics 2018, 34, 3417–3418. [Google Scholar] [CrossRef]
- De Livera, A.M.; Olshansky, G.; Simpson, J.A.; Creek, D.J. NormalizeMets: Assessing, selecting and implementing statistical methods for normalizing metabolomics data. Metabolomics 2018, 14, 54. [Google Scholar] [CrossRef] [PubMed]
- Wolthuis, J.C.; Magnusdottir, S.; Pras-Raves, M.; Moshiri, M.; Jans, J.J.M.; Burgering, B.; van Mil, S.; de Ridder, J. MetaboShiny: Interactive analysis and metabolite annotation of mass spectrometry-based metabolomics data. Metabolomics 2020, 16, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, K.S.; Fahy, E.; Coakley, K.; Sud, M.; Maurya, M.R.; Subramaniam, S. MetENP/MetENPWeb: An R package and web application for metabolomics enrichment and pathway analysis in metabolomics workbench. bioRxiv 2020. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, D.; Bai, J.; Du, J.; Wu, X.; Thomsen, B.; Gao, H.; Su, G.; Wang, X. Overview of Metabolomic Analysis and the Integration with Multi-Omics for Economic Traits in Cattle. Metabolites 2021, 11, 753. https://doi.org/10.3390/metabo11110753
Hao D, Bai J, Du J, Wu X, Thomsen B, Gao H, Su G, Wang X. Overview of Metabolomic Analysis and the Integration with Multi-Omics for Economic Traits in Cattle. Metabolites. 2021; 11(11):753. https://doi.org/10.3390/metabo11110753
Chicago/Turabian StyleHao, Dan, Jiangsong Bai, Jianyong Du, Xiaoping Wu, Bo Thomsen, Hongding Gao, Guosheng Su, and Xiao Wang. 2021. "Overview of Metabolomic Analysis and the Integration with Multi-Omics for Economic Traits in Cattle" Metabolites 11, no. 11: 753. https://doi.org/10.3390/metabo11110753
APA StyleHao, D., Bai, J., Du, J., Wu, X., Thomsen, B., Gao, H., Su, G., & Wang, X. (2021). Overview of Metabolomic Analysis and the Integration with Multi-Omics for Economic Traits in Cattle. Metabolites, 11(11), 753. https://doi.org/10.3390/metabo11110753