A Metabolomic Profile Predictive of New Osteoporosis or Sarcopenia Development
Abstract
:1. Introduction
2. Results
2.1. High Serum Gly Levels Are Significantly Associated with New Osteoporosis Development
2.2. Low Serum Taurine Levels Are Significantly Associated with New Sarcopenia Development
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. IGF1 ELISA
4.3. Metabolite Extraction from Serum
4.4. Metabolome Analysis by CE-TOFMS
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Edwards, M.H.; Dennison, E.M.; Aihie Sayer, A.; Fielding, R.; Cooper, C. Osteoporosis and sarcopenia in older age. Bone 2015, 80, 126–130. [Google Scholar] [CrossRef] [Green Version]
- Reginster, J.Y.; Beaudart, C.; Buckinx, F.; Bruyère, O. Osteoporosis and sarcopenia: Two diseases or one? Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Curtis, E.; Litwic, A.; Cooper, C.; Dennison, E. Determinants of muscle and bone aging. J. Cell Physiol. 2015, 230, 2618–2625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshimura, N.; Muraki, S.; Oka, H.; Mabuchi, A.; En-Yo, Y.; Yoshida, M.; Saika, A.; Yoshida, H.; Suzuki, T.; Yamamoto, S.; et al. Prevalence of knee osteoarthritis, lumbar spondylosis, and osteoporosis in Japanese men and women: The research on osteoarthritis/osteoporosis against disability study. J. Bone Miner. Metab. 2009, 27, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, T.; Hirayama, A.; Sato, Y.; Koboyashi, T.; Katsuyama, E.; Kanagawa, H.; Miyamoto, H.; Mori, T.; Yoshida, S.; Fujie, A.; et al. A serum metabolomics-based profile in low bone mineral density postmenopausal women. Bone 2017, 95, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, T.; Hirayama, A.; Sato, Y.; Koboyashi, T.; Katsuyama, E.; Kanagawa, H.; Fujie, A.; Morita, M.; Watanabe, R.; Tando, T.; et al. Metabolomics-based profiles predictive of low bone mass in menopausal women. Bone Rep. 2018, 9, 11–18. [Google Scholar] [CrossRef]
- Kanis, J.A.; Oden, A.; Johnell, O.; Johansson, H.; De Laet, C.; Brown, J.; Burckhardt, P.; Cooper, C.; Christiansen, C.; Cummings, S.; et al. The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos. Int. 2007, 18, 1033–1046. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. European Working Group on Sarcopenia in Older People. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.K.; Liu, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Bahyah, K.S.; Chou, M.Y.; Chen, L.Y.; Hsu, P.S.; Krairit, O.; et al. Sarcopenia in Asia: Consensus report of the Asian Working Group for Sarcopenia. J. Am. Med. Dir. Assoc. 2014, 15, 95–101. [Google Scholar] [CrossRef]
- Bowden Davies, K.A.; Pickles, S.; Sprung, V.S.; Kemp, G.J.; Alam, U.; Moore, D.R.; Tahrani, A.A.; Cuthbertson, D.J. Reduced physical activity in young and older adults: Metabolic and musculoskeletal implications. Ther. Adv. Endocrinol. Metab. 2019, 10. [Google Scholar] [CrossRef]
- Yoshimura, N.; Muraki, S.; Oka, H.; Iidaka, T.; Kodama, R.; Kawaguchi, H.; Nakamura, K.; Tanaka, S.; Akune, T. Is osteoporosis a predictor for future sarcopenia or vice versa? Four-year observations between the second and third ROAD study surveys. Osteoporos. Int. 2017, 28, 189–199. [Google Scholar] [CrossRef]
- Yoshimura, N.; Muraki, S.; Oka, H.; Kawaguchi, H.; Nakamura, K.; Akune, T. Cohort profile: Research on Osteoarthritis/Osteoporosis Against Disability study. Int. J. Epidemiol. 2010, 39, 988–995. [Google Scholar] [CrossRef] [Green Version]
- Dettmer, K.; Aronov, P.A.; Hammock, B.D. Mass spectrometry-based metabolomics. Mass Spectrom. Rev. 2007, 26, 51–78. [Google Scholar] [CrossRef] [PubMed]
- Cuevas-Córdoba, B.; Santiago-García, J. Saliva: A fluid of study for OMICS. OMICS 2014, 18, 87–97. [Google Scholar] [CrossRef] [PubMed]
- You, Y.S.; Lin, C.Y.; Liang, H.J.; Lee, S.H.; Tsai, K.S.; Chiou, J.M.; Chen, Y.C.; Tsao, C.K.; Chen, J.H. Association between the metabolome and low bone mineral density in Taiwanese women determined by 1H NMR spectroscopy. J. Bone Miner. Res. 2014, 29, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, Y.; Cheng, M.; Zhang, X.; Xiao, H. A metabolomics study of the inhibitory effect of 17-beta-estradiol on osteoclast proliferation and differentiation. Mol. Biosyst. 2015, 11, 635–646. [Google Scholar] [CrossRef]
- Qi, H.; Bao, J.; An, G.; Ouyang, G.; Zhang, P.; Wang, C.; Ying, H.; Ouyang, P.; Ma, B.; Zhang, Q. Association between the metabolome and bone mineral density in pre- and post-menopausal Chinese women using GC-MS. Mol. Biosyst. 2016, 12, 2265–2275. [Google Scholar] [CrossRef]
- Lee, M.Y.; Kim, H.Y.; Singh, D.; Yeo, S.H.; Baek, S.Y.; Park, Y.K.; Lee, C.H. Metabolite Profiling Reveals the Effect of Dietary Rubus coreanus Vinegar on Ovariectomy-Induced Osteoporosis in a Rat Model. Molecules 2016, 21, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villareal, M.O.; Matsukawa, T.; Isoda, H. L-Citrulline Supplementation-Increased Skeletal Muscle PGC-1α Expression is Associated With Exercise Performance and Increased Skeletal Muscle Weight. Mol. Nutr. Food Res. 2018, 62, e1701043. [Google Scholar] [CrossRef]
- Bettis, T.; Kim, B.J.; Hamrick, M.W. Impact of muscle atrophy on bone metabolism and bone strength: Implications for muscle-bone crosstalk with aging and disuse. Osteoporos. Int. 2018, 29, 1713–1720. [Google Scholar] [CrossRef]
- Bonewald, L. Use it or lose it to age: A review of bone and muscle communication. Bone 2019, 120, 212–218. [Google Scholar] [CrossRef]
- Colaianni, G.; Storlino, G.; Sanesi, L.; Colucci, S.; Grano, M. Myokines and Osteokines in the Pathogenesis of Muscle and Bone Diseases. Curr. Osteoporos. Rep. 2020, 18, 401–407. [Google Scholar] [CrossRef]
- Anastasilakis, A.D.; Polyzos, S.A.; Makras, P.; Gkiomisi, A.; Bisbinas, I.; Katsarou, A.; Filippaios, A.; Mantzoros, C.S. Circulating irisin is associated with osteoporotic fractures in postmenopausal women with low bone mass but is not affected by either teriparatide or denosumab treatment for 3 months. Osteoporos. Int. 2014, 25, 1633–1642. [Google Scholar] [CrossRef] [PubMed]
- Schnyder, S.; Handschin, C. Skeletal muscle as an endocrine organ: PGC-1α, myokines and exercise. Bone 2015, 80, 115–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colaianni, G.; Cuscito, C.; Mongelli, T.; Pignataro, P.; Buccoliero, C.; Liu, P.; Lu, P.; Sartini, L.; Di Comite, M.; Mori, G.; et al. The myokine irisin increases cortical bone mass. Proc. Natl. Acad. Sci. USA 2015, 112, 12157–12162. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Wrann, C.D.; Jedrychowski, M.; Vidoni, S.; Kitase, Y.; Nagano, K.; Zhou, C.; Chou, J.; Parkman, V.A.; Novick, S.J.; et al. Irisin Mediates Effects on Bone and Fat via αV Integrin Receptors. Cell 2018, 175, 1756–1768. [Google Scholar] [CrossRef] [Green Version]
- Takafuji, Y.; Tatsumi, K.; Ishida, M.; Kawao, N.; Okada, K.; Kaji, H. Extracellular vesicles secreted from mouse muscle cells suppress osteoclast formation: Roles of mitochondrial energy metabolism. Bone 2020, 134, 115298. [Google Scholar] [CrossRef]
- Xian, L.; Wu, X.; Pang, L.; Lou, M.; Rosen, C.J.; Qiu, T.; Crane, J.; Frassica, F.; Zhang, L.; Rodriguez, J.P.; et al. Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat. Med. 2012, 18, 1095–1101. [Google Scholar] [CrossRef] [Green Version]
- Tando, T.; Hirayama, A.; Furukawa, M.; Sato, Y.; Kobayashi, T.; Funayama, A.; Kanaji, A.; Hao, W.; Watanabe, R.; Morita, M.; et al. Smad2/3 Proteins Are Required for Immobilization-induced Skeletal Muscle Atrophy. J. Biol. Chem. 2016, 291, 12184–12194. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, S.; Sato, Y.; Kobayashi, T.; Oike, T.; Kaneko, Y.; Miyamoto, K.; Funayama, A.; Oya, A.; Nishiwaki, T.; Matsumoto, M.; et al. Insulin-like growth factor-I is required to maintain muscle volume in adult mice. J. Bone Miner. Metab. 2019, 37, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Wu, X.; Lei, W.; Pang, L.; Wan, C.; Shi, Z.; Zhao, L.; Nagy, T.R.; Peng, X.; Hu, J.; et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat. Med. 2009, 15, 757–765. [Google Scholar] [CrossRef] [Green Version]
- Waning, D.L.; Mohammad, K.S.; Reiken, S.; Xie, W.; Andersson, D.C.; John, S.; Chiechi, A.; Wright, L.E.; Umanskaya, A.; Niewolna, M.; et al. Excess TGF-β mediates muscle weakness associated with bone metastases in mice. Nat. Med. 2015, 21, 1262–1271. [Google Scholar] [CrossRef]
- Wilmanski, T.; Rappaport, N.; Earls, J.C.; Magis, A.T.; Manor, O.; Lovejoy, J.; Omenn, G.S.; Hood, L.; Gibbons, S.M.; Price, N.D. Blood metabolome predicts gut microbiome α-diversity in humans. Nat. Biotechnol. 2019, 37, 1217–1228. [Google Scholar] [CrossRef]
- Wang, T.J.; Larson, M.G.; Vasan, R.S.; Cheng, S.; Rhee, E.P.; McCabe, E.; Lewis, G.D.; Fox, C.S.; Jacques, P.F.; Fernandez, C.; et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 2011, 17, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Freire, M.; Moaddel, R.; Sun, K.; Fabbri, E.; Zhang, P.; Khadeer, M.; Salem, N., Jr.; Ferrucci, L.; Semba, R.D. Targeted Metabolomics Shows Low Plasma Lysophosphatidylcholine 18:2 Predicts Greater Decline of Gait Speed in Older Adults: The Baltimore Longitudinal Study of Aging. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 62–67. [Google Scholar] [CrossRef]
- Pernow, Y.; Thorén, M.; Sääf, M.; Fernholm, R.; Anderstam, B.; Hauge, E.M.; Hall, K. Associations between amino acids and bone mineral density in men with idiopathic osteoporosis. Bone 2010, 47, 959–965. [Google Scholar] [CrossRef] [PubMed]
- Jennings, A.; MacGregor, A.; Spector, T.; Cassidy, A. Amino Acid Intakes Are Associated With Bone Mineral Density and Prevalence of Low Bone Mass in Women: Evidence From Discordant Monozygotic Twins. J. Bone Miner. Res. 2016, 31, 326–335. [Google Scholar] [CrossRef] [Green Version]
- de Paz-Lugo, P.; Lupiáñez, J.A.; Meléndez-Hevia, E. High glycine concentration increases collagen synthesis by articular chondrocytes in vitro: Acute glycine deficiency could be an important cause of osteoarthritis. Amino Acids 2018, 50, 1357–1365. [Google Scholar] [CrossRef] [Green Version]
- Calvani, R.; Picca, A.; Marini, F.; Biancolillo, A.; Gervasoni, J.; Persichilli, S.; Primiano, A.; Coelho-Junior, H.J.; Bossola, M.; Urbani, A.; et al. A Distinct Pattern of Circulating Amino Acids Characterizes Older Persons with Physical Frailty and Sarcopenia: Results from the BIOSPHERE Study. Nutrients 2018, 10, 1691. [Google Scholar] [CrossRef] [Green Version]
- Sieber, C.C. Malnutrition and sarcopenia. Aging Clin. Exp. Res. 2019, 31, 793–798. [Google Scholar] [CrossRef]
- Scicchitano, B.M.; Sica, G. The Beneficial Effects of Taurine to Counteract Sarcopenia. Curr. Protein Pept. Sci. 2018, 19, 673–680. [Google Scholar] [CrossRef]
- Yoshimura, N.; Oka, H.; Muraki, S.; Akune, T.; Hirabayashi, N.; Matsuda, S.; Nojiri, T.; Hatanaka, K.; Ishimoto, Y.; Nagata, K.; et al. Reference values for hand grip strength, muscle mass, walking time, and one-leg standing time as indices for locomotive syndrome and associated disability: The second survey of the ROAD study. J. Orthop. Sci. 2011, 16, 768–777. [Google Scholar] [CrossRef] [PubMed]
- Soga, T.; Igarashi, K.; Ito, C.; Mizobuchi, K.; Zimmermann, H.P.; Tomita, M. Metabolomic profiling of anionic metabolites by capillary electrophoresis mass spectrometry. Anal. Chem. 2009, 81, 6165–6174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soga, T.; Heiger, D.N. Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry. Anal. Chem. 2000, 72, 1236–1241. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, A.; Sugimoto, M.; Suzuki, A.; Hatakeyama, Y.; Enomoto, A.; Harada, S.; Soga, T.; Tomita, M.; Takebayashi, T. Effects of processing and storage conditions on charged metabolomics profilies in blood. Electrophoresis 2015, 36, 2148–2155. [Google Scholar] [CrossRef]
- Sugimoto, M.; Wong, D.T.; Hirayama, A.; Soga, T.; Tomita, M. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics 2010, 6, 78–95. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, M.; Kawakami, M.; Robert, M.; Soga, T.; Tomita, M. Bioinformatics Tools for Mass Spectroscopy-Based Metabolomic Data Processing and Analysis. Curr. Bioinform. 2012, 7, 96–108. [Google Scholar] [CrossRef]
Non-Osteoporosis | New Osteoporosis | p Value | |
---|---|---|---|
Age (years) | 65.2 ± 10.8 | 69.8 ± 8.0 | 0.014 |
Female sex (%) | 60.0 | 80.0 | 0.0181 |
Height (cm) | 156.0 ± 8.8 | 150.6 ± 8.0 | 0.0004 |
Weight (kg) | 57.1 ± 9.4 | 50.0 ± 6.6 | <0.0001 |
BMI (kg/cm2) | 23.4 ± 3.0 | 22.0 ± 2.5 | 0.0076 |
Waist (cm) | 82.6 ± 8.6 | 79.2 ± 9.9 | 0.0295 |
BMD (L2–4) (g/cm2) | 0.993 ± 0.172 | 0.818 ± 0.147 | <0.0001 |
BMD (femoral neck) (g/cm2) | 0.701 ± 0.121 | 0.562 ± 0.355 | <0.0001 |
Grip strength (maximum) (kg) | 32.1 ± 9.2 | 26.4 ± 6.8 | 0.0004 |
Usual walking speed (m/s) | 1.13 ± 0.24 | 1.09 ± 0.23 | 0.3843 |
Sarcopenia at the second survey (%) | 2.4 | 5.7 | 0.2314 |
New sarcopenia at the third survey (%) | 5.8 | 15.2 | 0.0353 |
Non-Osteoporosis | New Osteoporosis | p Value | |
---|---|---|---|
IGF1 (ng/mL) | 86.0 ± 31.0 | 71.2 ± 12.8 | 0.0052 |
5-Oxoproline | 81.6 ± 39.7 | 96.0 ± 47.7 | 0.0422 |
2-Oxoglutarate | 13.1 ± 8.6 | 8.6 ± 6.5 | 0.0027 |
cis-Aconitate | 3.61 ± 0.87 | 3.98 ± 0.78 | 0.0154 |
Gly | 486.0 ± 113.6 | 550.1 ± 140.8 | 0.0017 |
3-Aminoisobutyrate | 2.10 ± 2.16 | 3.07 ± 2.02 | 0.0109 |
Taurine | 252.0 ± 80.1 | 283.1 ± 126.1 | 0.0364 |
Pipecolate | 2.60 ± 3.09 | 4.99 ± 15.85 | 0.0099 |
p Value after Adjustment for Age | p Value after Adjustment for Age, Sex, and BMI | Odds Ratio | 95% Confidence Interval | |
---|---|---|---|---|
BMD (L2–4) (g/cm2) | <0.001 | <0.001 | 0.0004 | 9.72 × 10−6–0.161 |
BMD (femoral neck) (g/cm2) | <0.001 | <0.001 | 3.53 × 10−8 | 5.47 × 10−11–0.00002 |
Grip strength (maximum) (kg) | 0.003 | 0.174 | ||
IGF1 | 0.088 | |||
5-Oxoproline | 0.07 | |||
2-Oxoglutarate | 0.003 | 0.055 | ||
cis-Aconitate | 0.088 | |||
Gly | 0.001 | 0.021 | 1.003 | 1.000–1.006 |
3-Aminoisobutyrate | 0.066 | |||
Taurine | 0.038 | 0.127 | ||
Pipecolate | 0.095 |
Non-Sarcopenia | New Sarcopenia | p Value | |
---|---|---|---|
Age (years) | 64.9 ± 10.5 | 75.9 ± 5.7 | <0.0001 |
Female sex (%) | 65.1 | 64.1 | 0.8983 |
Height (cm) | 155.2 ± 8.9 | 151.7 ± 8.8 | 0.0197 |
Weight (kg) | 56.5 ± 9.5 | 48.6 ± 7.1 | <0.0001 |
BMI (kg/cm2) | 23.4 ± 3.0 | 21.1 ± 2.4 | <0.0001 |
Waist (cm) | 82.5 ± 8.5 | 77.4 ± 8.9 | 0.0004 |
BMD (L2–4) (g/cm2) | 0.959 ± 0.189 | 0.877 ± 0.228 | 0.0106 |
BMD (femoral neck) (g/cm2) | 0.685 ± 0.125 | 0.605 ± 0.134 | 0.0002 |
Grip strength (maximum) (kg) | 31.6 ± 9.2 | 26.1 ± 7.0 | 0.0003 |
Usual walking speed (m/s) | 1.13 ± 0.23 | 0.98 ± 0.15 | <0.0001 |
Osteoporosis at the second survey (%) | 10.6 | 46.2 | <0.0001 |
New osteoporosis at the third survey (%) | 6.7 | 17.2 | 0.0353 |
Non-Sarcopenia | New Sarcopenia | p Value | |
---|---|---|---|
IGF1 (ng/mL) | 85.0 ± 30.8 | 71.5 ± 24.5 | 0.0077 |
2-Hydroxybutyrate | 27.5 ± 11.6 | 23.5 ± 9.2 | 0.0376 |
4-Methyl2oxopentanoate | 50.3 ± 14.0 | 44.0 ± 13.8 | 0.0071 |
2-AB | 17.1 ± 5.6 | 14.9 ± 5.3 | 0.0221 |
Val | 350.7 ± 72.1 | 326.0 ± 70.4 | 0.0040 |
Ile | 90.9 ± 26.9 | 82.0 ± 21.4 | 0.0448 |
Leu | 196.5 ± 49.6 | 175.4 ± 46.0 | 0.0107 |
Taurine | 257.6 ± 86.5 | 227.5 ± 46.3 | 0.0328 |
Trp | 72.9 ± 13.6 | 66.9 ± 14.1 | 0.0079 |
Cystine | 42.1 ± 8.6 | 38.5 ± 7.8 | 0.0122 |
p Value after Adjustment for Age | p Value after Adjustment for Age, Sex, and BMI | Odds Ratio | 95% Confidence Interval | |
---|---|---|---|---|
BMD (L2–4) (g/cm2) | 0.076 | |||
BMD (femoral neck) (g/cm2) | 0.066 | |||
Grip strength (maximum) (kg) | 0.071 | |||
Usual walking speed (m/s) | 0.263 | |||
Osteoporosis at the second survey (%) | <0.001 | 0.018 | 3.118 | 1.215–7.997 |
IGF1 | 0.915 | |||
2-Hydroxybutyrate | 0.093 | |||
4-Methyl2oxopentanoate | 0.093 | |||
2-AB | 0.077 | |||
Val | 0.06 | |||
Ile | 0.06 | |||
Leu | 0.074 | |||
Taurine | 0.038 | 0.039 | 0.991 | 0.982–0.999 |
Trp | 0.102 | |||
Cystine | 0.03 | 0.108 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyamoto, K.; Hirayama, A.; Sato, Y.; Ikeda, S.; Maruyama, M.; Soga, T.; Tomita, M.; Nakamura, M.; Matsumoto, M.; Yoshimura, N.; et al. A Metabolomic Profile Predictive of New Osteoporosis or Sarcopenia Development. Metabolites 2021, 11, 278. https://doi.org/10.3390/metabo11050278
Miyamoto K, Hirayama A, Sato Y, Ikeda S, Maruyama M, Soga T, Tomita M, Nakamura M, Matsumoto M, Yoshimura N, et al. A Metabolomic Profile Predictive of New Osteoporosis or Sarcopenia Development. Metabolites. 2021; 11(5):278. https://doi.org/10.3390/metabo11050278
Chicago/Turabian StyleMiyamoto, Kana, Akiyoshi Hirayama, Yuiko Sato, Satsuki Ikeda, Midori Maruyama, Tomoyoshi Soga, Masaru Tomita, Masaya Nakamura, Morio Matsumoto, Noriko Yoshimura, and et al. 2021. "A Metabolomic Profile Predictive of New Osteoporosis or Sarcopenia Development" Metabolites 11, no. 5: 278. https://doi.org/10.3390/metabo11050278
APA StyleMiyamoto, K., Hirayama, A., Sato, Y., Ikeda, S., Maruyama, M., Soga, T., Tomita, M., Nakamura, M., Matsumoto, M., Yoshimura, N., & Miyamoto, T. (2021). A Metabolomic Profile Predictive of New Osteoporosis or Sarcopenia Development. Metabolites, 11(5), 278. https://doi.org/10.3390/metabo11050278