Potential of Beetroot and Blackcurrant Compounds to Improve Metabolic Syndrome Risk Factors
Abstract
:1. Introduction
1.1. Bioactive Compounds in Beetroot
1.1.1. Dietary Nitrate
1.1.2. Betalains
1.2. Bioactive Compounds of Blackcurrant Juice
2. Effects of Dietary Nitrate and Beetroot Juice on MetS
2.1. Glucose Homeostasis
2.2. Hypertension
2.3. Dyslipidemia
3. Effects of Blackcurrant Anthocyanins on MetS
3.1. Glucose Homeostasis
3.2. Hypertension
3.3. Dyslipidemia
4. Future Perspectives
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Isomaa, B.; Almgren, P.; Tuomi, T.; Forsen, B.; Lahti, K.; Nissen, M.; Taskinen, M.R.; Groop, L. Cardiovascular Morbidity and Mortality Associated With the Metabolic Syndrome. Diabetes Care 2001, 24, 683–689. [Google Scholar]
- Shin, J.-A.; Lee, J.-H.; Lim, S.-Y.; Ha, H.-S.; Kwon, H.-S.; Park, Y.-M.; Lee, W.-C.; Kang, M.-I.; Yim, H.-W.; Yoon, K.-H.; et al. Metabolic syndrome as a predictor of type 2 diabetes, and its clinical interpretations and usefulness. J. Diabet. Investig. 2013, 4, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Eckel, R.H.; Alberti, K.G.; Grundy, S.M.; Zimmet, P.Z. The metabolic syndrome. Lancet 2010, 375, 181–183. [Google Scholar] [CrossRef]
- Alberti, K.G.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabet. Med. 1998, 15, 539–553. [Google Scholar] [CrossRef]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). J. Am. Med. Assoc. 2001, 285, 2486. [Google Scholar] [CrossRef] [PubMed]
- Balkau, B. Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR). Diabet. Med. 1999, 16, 442–443. [Google Scholar] [PubMed]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, P.T.; Loria, C.M.; Smith, S.C. Harmonizing the metabolic syndrome. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [Green Version]
- Desroches, S.; Lamarche, B. The evolving definitions and increasing prevalence of the metabolic syndrome. Appl. Physiol. Nutr. Metab. 2007, 32, 23–32. [Google Scholar] [CrossRef]
- Gentles, D.; Metcalf, P.; Dyall, L.; Sundborn, G.; Schaaf, D.; Black, P.; Scragg, R.; Jackson, R. Metabolic syndrome prevalence in a multicultural population in Auckland, New Zealand. N. Z. Med. J. 2007, 120, U2399. [Google Scholar]
- Moore, J.X.; Chaudhary, N.; Akinyemiju, T. Metabolic Syndrome Prevalence by Race/Ethnicity and Sex in the United States, National Health and Nutrition Examination Survey, 1988–2012. Prev. Chronic Dis. 2017, 14, E24. [Google Scholar] [CrossRef] [Green Version]
- Utter, J.; Denny, S.; Crengle, S.; Ameratunga, S.; Robinson, E.; Clark, T.; Percival, T.; Maddison, R. Overweight among New Zealand adolescents: Associations with ethnicity and deprivation. Int. J. Pediatric Obes. 2010, 5, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Assari, S.; Caldwell, C.H.; Bazargan, M. Parental Educational Attainment and Black-White Adolescents’ Achievement Gap: Blacks’ Diminished Returns. Open J. Soc. Sci. 2020, 08, 282–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, B.; Lu, Y.; Hajifathalian, K.; Bentham, J.; Di Cesare, M.; Danaei, G.; Bixby, H.; Cowan, M.; Ali, M.; Taddei, C.; et al. Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4·4 million participants. Lancet 2016, 387, 1513–1530. [Google Scholar] [CrossRef] [Green Version]
- Guariguata, L.; Whiting, D.R.; Hambleton, I.; Beagley, J.; Linnenkamp, U.; Shaw, J.E. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 2014, 103, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Best Practice Journal New Zealand (BPAC NZ). A Rising Tide of Type 2 Diabetes in Younger People: What Can Primary Care Do? Available online: https://bpac.org.nz/2018/docs/diabetes.pdf (accessed on 10 October 2020).
- Galassi, A.; Reynolds, K.; He, J. Metabolic syndrome and risk of cardiovascular disease: A meta-analysis. Am. J. Med. 2006, 119, 812–819. [Google Scholar] [CrossRef]
- Laaksonen, D.E.; Lakka, H.-M.; Niskanen, L.K.; Kaplan, G.A.; Salonen, J.T.; Lakka, T.A. Metabolic syndrome and development of diabetes mellitus: Application and validation of recently suggested definitions of the metabolic syndrome in a prospective cohort study. Am. J. Epidemiol. 2002, 156, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Povel, C.M.; Beulens, J.W.; Van Der Schouw, Y.T.; Dolle, M.E.T.; Spijkerman, A.M.W.; Verschuren, W.M.M.; Feskens, E.J.M.; Boer, J.M.A. Metabolic Syndrome Model Definitions Predicting Type 2 Diabetes and Cardiovascular Disease. Diabetes Care 2013, 36, 362–368. [Google Scholar] [CrossRef] [Green Version]
- Gow, M.L.; Baur, L.A.; Johnson, N.A.; Cowell, C.T.; Garnett, S.P. Reversal of type 2 diabetes in youth who adhere to a very-low-energy diet: A pilot study. Diabetologia 2017, 60, 406–415. [Google Scholar] [CrossRef] [Green Version]
- Tierney, A.C.; McMonagle, J.; Shaw, D.I.; Gulseth, H.L.; Helal, O.; Saris, W.H.M.; Paniagua, J.A.; Gołąbek-Leszczyñska, I.; Defoort, C.; Williams, C.M.; et al. Effects of dietary fat modification on insulin sensitivity and on other risk factors of the metabolic syndrome—LIPGENE: A European randomized dietary intervention study. Int. J. Obes. 2011, 35, 800–809. [Google Scholar] [CrossRef] [Green Version]
- Lankinen, M.; Schwab, U.; Kolehmainen, M.; Paananen, J.; Nygren, H.; Seppänen-Laakso, T.; Poutanen, K.; Hyötyläinen, T.; Risérus, U.; Savolainen, M.J. A healthy Nordic diet alters the plasma lipidomic profile in adults with features of metabolic syndrome in a multicenter randomized dietary intervention. J. Nutr. 2015, 146, 662–672. [Google Scholar] [CrossRef] [Green Version]
- Abbate, M.; Gallardo-Alfaro, L.; Bibiloni, M.D.M.; Tur, J.A. Efficacy of dietary intervention or in combination with exercise on primary prevention of cardiovascular disease: A systematic review. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1080–1093. [Google Scholar] [CrossRef] [PubMed]
- Apostolidou, C.; Adamopoulos, K.; Lymperaki, E.; Iliadis, S.; Papapreponis, P.; Kourtidou-Papadeli, C. Cardiovascular risk and benefits from antioxidant dietary intervention with red wine in asymptomatic hypercholesterolemics. Clin. Nutr. ESPEN 2015, 10, e224–e233. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S. Functional foods against metabolic syndrome (obesity, diabetes, hypertension and dyslipidemia) and cardiovasular disease. Trends Food Sci. Technol. 2014, 35, 114–128. [Google Scholar] [CrossRef]
- Cassidy, A.; Bertoia, M.; Chiuve, S.; Flint, A.; Forman, J.; Rimm, E.B. Habitual intake of anthocyanins and flavanones and risk of cardiovascular disease in men. Am. J. Clin. Nutr. 2016, 104, 587–594. [Google Scholar] [CrossRef] [Green Version]
- Wedick, N.M.; Pan, A.; Cassidy, A.; Rimm, E.B.; Sampson, L.; Rosner, B.; Willett, W.; Hu, F.B.; Sun, Q.; Van Dam, R.M. Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. Am. J. Clin. Nutr. 2012, 95, 925–933. [Google Scholar] [CrossRef] [Green Version]
- Muraki, I.; Imamura, F.; Manson, J.E.; Hu, F.B.; Willett, W.C.; Van Dam, R.M.; Sun, Q. Fruit consumption and risk of type 2 diabetes: Results from three prospective longitudinal cohort studies. BMJ 2013, 347, f5001. [Google Scholar] [CrossRef] [Green Version]
- Khalifi, S.; Rahimipour, A.; Jeddi, S.; Ghanbari, M.; Kazerouni, F.; Ghasemi, A. Dietary nitrate improves glucose tolerance and lipid profile in an animal model of hyperglycemia. Nitric Oxide 2015, 44, 24–30. [Google Scholar] [CrossRef]
- Gilchrist, M.; Winyard, P.G.; Aizawa, K.; Anning, C.; Shore, A.; Benjamin, N. Effect of dietary nitrate on blood pressure, endothelial function, and insulin sensitivity in type 2 diabetes. Free Radic. Biol. Med. 2013, 60, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Larsen, F.J.; Ekblom, B.; Sahlin, K.; Lundberg, J.O.; Weitzberg, E. Effects of Dietary Nitrate on Blood Pressure in Healthy Volunteers. N. Engl. J. Med. 2006, 355, 2792–2793. [Google Scholar] [CrossRef] [Green Version]
- Stanaway, L.; Rutherfurd-Markwick, K.; Page, R.; Wong, M.; Jirangrat, W.; Teh, K.H.; Ali, A. Acute Supplementation with Nitrate-Rich Beetroot Juice Causes a Greater Increase in Plasma Nitrite and Reduction in Blood Pressure of Older Compared to Younger Adults. Nutrients 2019, 11, 1683. [Google Scholar] [CrossRef] [Green Version]
- Carlström, M.; Larsen, F.J.; Nyström, T.; Hezel, M.; Borniquel, S.; Weitzberg, E.; Lundberg, J.O. Dietary inorganic nitrate reverses features of metabolic syndrome in endothelial nitric oxide synthase-deficient mice. Proc. Natl. Acad. Sci. USA 2010, 107, 17716–17720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J. Agric. Food Chem. 2006, 54, 4069–4075. [Google Scholar] [CrossRef]
- Castro-Acosta, M.L.; Smith, L.; Miller, R.J.; McCarthy, D.I.; Farrimond, J.A.; Hall, W.L. Drinks containing anthocyanin-rich blackcurrant extract decrease postprandial blood glucose, insulin and incretin concentrations. J. Nutr. Biochem. 2016, 38, 154–161. [Google Scholar] [CrossRef] [Green Version]
- Kujala, T.; Vienola, M.; Klika, K.; Loponen, J.; Pihlaja, K. Betalain and phenolic compositions of four beetroot (Beta vulgaris) cultivars. Eur. Food Res. Technol. 2002, 214, 505–510. [Google Scholar] [CrossRef]
- Gheibi, S.; Jeddi, S.; Carlström, M.; Gholami, H.; Ghasemi, A. Effects of long-term nitrate supplementation on carbohydrate metabolism, lipid profiles, oxidative stress, and inflammation in male obese type 2 diabetic rats. Nitric Oxide 2018, 75, 27–41. [Google Scholar] [CrossRef]
- Wootton-Beard, P.C.; Brandt, K.; Fell, D.; Warner, S.; Ryan, L. Effects of a beetroot juice with high neobetanin content on the early-phase insulin response in healthy volunteers. J. Nutr. Sci. 2014, 3, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuchs, D.; Nyakayiru, J.; Draijer, R.; Mulder, T.P.; Hopman, M.T.; Eijsvogels, T.M.; Thijssen, D.H. Impact of flavonoid-rich black tea and beetroot juice on postprandial peripheral vascular resistance and glucose homeostasis in obese, insulin-resistant men: A randomized controlled trial. Nutr. Metab. 2016, 13, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shepherd, A.I.; Wilkerson, D.P.; Fulford, J.; Winyard, P.G.; Benjamin, N.; Shore, A.C.; Gilchrist, M. Effect of nitrate supplementation on hepatic blood flow and glucose homeostasis: A double-blind, placebo-controlled, randomized control trial. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 311, G356–G364. [Google Scholar] [CrossRef] [Green Version]
- Holy, B.I.N.; Briggs, N. Post-prandial effect of beetroot (beta vulgaris) juice on glucose and lipids levels of apparently healthy subjects. Eur. J. Pharm. Med. Res. 2017, 4, 60–62. [Google Scholar]
- Chang, P.; Hafiz, M.; Boesch, C. Beetroot juice attenuates glycaemic response in healthy volunteers. Proc. Nutr. Soc. 2018, 77, E165. [Google Scholar] [CrossRef]
- Castro-Acosta, M.L.; Stone, S.G.; Mok, J.E.; Mhajan, R.K.; Fu, C.-I.; Lenihan-Geels, G.N.; Corpe, C.P.; Hall, W.L. Apple and blackcurrant polyphenol-rich drinks decrease postprandial glucose, insulin and incretin response to a high-carbohydrate meal in healthy men and women. J. Nutr. Biochem. 2017, 49, 53–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nolan, A.; Brett, R.; Strauss, J.A.; Stewart, C.E.; Shepherd, S.O. Short-term, but not acute, intake of New Zealand blackcurrant extract improves insulin sensitivity and free-living postprandial glucose excursions in individuals with overweight or obesity. Eur. J. Nutr. 2020, 60, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Cook, M.D.; Sandu, B.; Kaur, A.; Joyce, P. Jennifer Patricia, Effect of New Zealand Blackcurrant on Blood Pressure, Cognitive Function and Functional Performance in Older Adults. J. Nutr. Gerontol. Geriatr. 2020, 39, 99–113. [Google Scholar] [CrossRef]
- Park, J.H.; Kho, M.C.; Kim, H.Y.; Ahn, Y.M.; Lee, Y.J.; Kang, D.G.; Lee, H.S. Blackcurrant Suppresses Metabolic Syndrome Induced by High-Fructose Diet in Rats. Evid. Based Complement. Altern. Med. 2015, 2015, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Capper, T.; Houghton, D.; Stewart, C.J.; Blain, A.P.; McMahon, N.; Siervo, M.; West, D.J.; Stevenson, E.J. Whole beetroot consumption reduces systolic blood pressure and modulates diversity and composition of the gut microbiota in older participants. NFS J. 2020, 21, 28–37. [Google Scholar] [CrossRef]
- Yashwant, K. Beetroot: A super food. IJESTA 2015, 1, 20–26. [Google Scholar]
- National Health and Medical Research Council. Nutrient Reference Values for Australia and New Zealand: Executive Summary; NHMRC: Canberra, Australia, 2006.
- Santamaria, P. Nitrate in vegetables: Toxicity, content, intake and EC regulation. J. Sci. Food Agric. 2006, 86, 10–17. [Google Scholar] [CrossRef]
- Wruss, J.; Waldenberger, G.; Huemer, S.; Uygun, P.; Lanzerstorfer, P.; Müller, U.; Höglinger, O.; Weghuber, J. Compositional characteristics of commercial beetroot products and beetroot juice prepared from seven beetroot varieties grown in Upper Austria. J. Food Compos. Anal. 2015, 42, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Umar, S.; Iqbal, M.; Abrol, Y. Are nitrate concentrations in leafy vegetables within safe limits? Curr. Sci. 2007, 92, 355–360. [Google Scholar]
- Gee, L.C.; Ahluwalia, A. Dietary Nitrate Lowers Blood Pressure: Epidemiological, Pre-clinical Experimental and Clinical Trial Evidence. Curr. Hypertens. Rep. 2016, 18, 17. [Google Scholar] [CrossRef] [Green Version]
- Dharmashankar, K.; Widlansky, M.E. Vascular Endothelial Function and Hypertension: Insights and Directions. Curr. Hypertens. Rep. 2010, 12, 448–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shesely, E.G.; Maeda, N.; Kim, H.S.; Desai, K.M.; Krege, J.H.; Laubach, V.E.; Sherman, P.A.; Sessa, W.C.; Smithies, O. Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. USA 1996, 93, 13176–13181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, D.; Perreault, M.; Marette, A. Insulin stimulation of glucose uptake in skeletal muscles and adipose tissues in vivo is NO dependent. Am. J. Physiol. Endocrinol. Metab. 1998, 274, E692–E699. [Google Scholar] [CrossRef] [PubMed]
- Avogaro, A.; Toffolo, G.; Kiwanuka, E.; De Kreutzenberg, S.V.; Tessari, P.; Cobelli, C. L-Arginine-Nitric Oxide Kinetics in Normal and Type 2 Diabetic Subjects: A Stable-Labelled 15N Arginine Approach. Diabetes 2003, 52, 795–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amore, A.; Cirina, P.; Mitola, S.; Peruzzi, L.; Gianoglio, B.; Rabbone, I.; Sacchetti, C.; Cerutti, F.; Grillo, C.; Coppo, R. Nonenzymatically glycated albumin (Amadori adducts) enhances nitric oxide synthase activity and gene expression in endothelial cells. Kidney Int. 1997, 51, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Wagner, D.A.; Schultz, D.S.; Deen, W.M.; Young, V.R.; Tannenbaum, S.R. Metabolic fate of an oral dose of 15N-labeled nitrate in humans: Effect of diet supplementation with ascorbic acid. Cancer Res. 1983, 43, 1921–1925. [Google Scholar]
- Qin, L.; Liu, X.; Sun, Q.; Fan, Z.; Xia, D.; Ding, G.; Ong, H.L.; Adams, D.; Gahl, W.A.; Zheng, C.; et al. Sialin (SLC17A5) functions as a nitrate transporter in the plasma membrane. Proc. Natl. Acad. Sci. USA 2012, 109, 13434–13439. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Duncan, C.; Townend, J.; Killham, K.; Smith, L.M.; Johnston, P.; Dykhuizen, R.; Kelly, D.; Golden, M.; Benjamin, N. Nitrate-reducing bacteria on rat tongues. Appl. Environ. Microbiol. 1997, 63, 924–930. [Google Scholar] [CrossRef] [Green Version]
- Lundberg, J.O.; Govoni, M. Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radic. Biol. Med. 2004, 37, 395–400. [Google Scholar] [CrossRef]
- Lundberg, J.O.; Weitzberg, E.; Gladwin, M.T. The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Fisc. 2008, 7, 156–167. [Google Scholar] [CrossRef]
- Lee, E.J.; An, D.; Nguyen, C.T.; Patil, B.S.; Kim, J.; Yoo, K.S. Betalain and betaine composition of greenhouse-or field-produced beetroot (Beta vulgaris L.) and inhibition of HepG2 cell proliferation. J. Agric. Food Chem. 2014, 62, 1324–1331. [Google Scholar] [CrossRef]
- Stafford, H.A. Anthocyanins and betalains: Evolution of the mutually exclusive pathways. Plant. Sci. 1994, 101, 91–98. [Google Scholar] [CrossRef]
- Cai, Y.; Sun, M.; Corke, H. Antioxidant activity of betalains from plants of the Amaranthaceae. J. Agric. Food Chem. 2003, 51, 2288–2294. [Google Scholar] [CrossRef] [PubMed]
- Sawicki, T.; Bączek, N.; Wiczkowski, W. Betalain profile, content and antioxidant capacity of red beetroot dependent on the genotype and root part. J. Funct. Foods 2016, 27, 249–261. [Google Scholar] [CrossRef]
- Frank, T.; Stintzing, F.C.; Carle, R.; Bitsch, I.; Quaas, D.; Straß, G.; Bitsch, R.; Netzel, M. Urinary pharmacokinetics of betalains following consumption of red beet juice in healthy humans. Pharmacol. Res. 2005, 52, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Kanner, J.; Harel, S.; Granit, R. Betalains a new class of dietary cationized antioxidants. J. Agric. Food Chem. 2001, 49, 5178–5185. [Google Scholar] [CrossRef] [PubMed]
- Haytowitz, D.; Ahuja, J.; Wu, X.; Khan, M.; Somanchi, M.; Nickle, M.; Nguyen, Q.; Roseland, J.; Williams, J.; Patterson, K. USDA National Nutrient Database for Standard Reference, Legacy. In USDA National Nutrient Database for Standard Reference; The United States Department of Agriculture: Washington, DC, USA, 2018. [Google Scholar]
- Parkar, S.G.; Redgate, E.L.; McGhie, T.K.; Hurst, R.D. In vitro studies of modulation of pathogenic and probiotic bacterial proliferation and adhesion to intestinal cells by blackcurrant juices. J. Funct. Foods 2014, 8, 35–44. [Google Scholar] [CrossRef]
- Schrage, B.; Stevenson, D.; Wells, R.W.; Lyall, K.; Holmes, S.; Deng, D.; Hurst, R.D. Evaluating the health benefits of fruits for physical fitness: A research platform. J. Berry Res. 2010, 1, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Moyer, R.A.; Hummer, K.E.; Finn, C.E.; Frei, B.; Wrolstad, R.E. Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes. J. Agric. Food Chem. 2002, 50, 519–525. [Google Scholar] [CrossRef]
- Lätti, A.K.; Riihinen, K.R.; Kainulainen, P.S. Analysis of Anthocyanin Variation in Wild Populations of Bilberry (Vaccinium myrtillus L.) in Finland. J. Agric. Food Chem. 2008, 56, 190–196. [Google Scholar] [CrossRef]
- Wu, X.; Gu, L.; Prior, R.L.; McKay, S. Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. J. Agric. Food Chem. 2004, 52, 7846–7856. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.J.; Howard, L.R.; Prior, R.L.; Clark, J.R. Flavonoid glycosides and antioxidant capacity of various blackberry, blueberry and red grape genotypes determined by high-performance liquid chromatography/mass spectrometry. J. Sci. Food Agric. 2004, 84, 1771–1782. [Google Scholar] [CrossRef]
- Gao, L.; Mazza, G. Quantitation and Distribution of Simple and Acylated Anthocyanins and Other Phenolics in Blueberries. J. Food Sci. 1994, 59, 1057–1059. [Google Scholar] [CrossRef]
- Romani, A.; Vignolini, P.; Galardi, C.; Mulinacci, N.; Benedettelli, S.; Heimler, D. Germplasm Characterization of Zolfino Landraces (Phaseolus vulgarisL.) by Flavonoid Content. J. Agric. Food Chem. 2004, 52, 3838–3842. [Google Scholar] [CrossRef] [PubMed]
- Kaack, K.; Austed, T. Interaction of vitamin C and flavonoids in elderberry (Sambucus nigraL.) during juice processing. Plant. Foods Hum. Nutr. 1998, 52, 187–198. [Google Scholar] [CrossRef]
- Gao, L.; Mazza, G. Characterization, quantitation, and distribution of anthocyanins and colorless phenolics in sweet cherries. J. Agric. Food Chem. 1995, 43, 343–346. [Google Scholar] [CrossRef]
- Romani, A.; Mulinacci, N.; Pinelli, P.; Vincieri, F.F.; Cimato, A. Polyphenolic content in five tuscany cultivars of Olea europaea L. J. Agric. Food Chem. 1999, 47, 964–967. [Google Scholar] [CrossRef]
- Kim, D.-O.; Chun, O.K.; Kim, Y.J.; Moon, H.-Y.; Lee, C.Y. Quantification of Polyphenolics and Their Antioxidant Capacity in Fresh Plums. J. Agric. Food Chem. 2003, 51, 6509–6515. [Google Scholar] [CrossRef]
- De Rosso, V.V.; Mercadante, A.Z. HPLC–PDA–MS/MS of Anthocyanins and Carotenoids from Dovyalis and Tamarillo Fruits. J. Agric. Food Chem. 2007, 55, 9135–9141. [Google Scholar] [CrossRef]
- Sadilova, E.; Stintzing, F.C.; Carle, R. Anthocyanins, Colour and Antioxidant Properties of Eggplant (Solanum melongena L.) and Violet Pepper (Capsicum annuum L.) Peel Extracts. Z. Nat. C 2006, 61, 527–535. [Google Scholar] [CrossRef]
- Welch, C.R.; Wu, Q.; Simon, J.E. Recent advances in anthocyanin analysis and characterization. Curr. Anal. Chem. 2008, 4, 75–101. [Google Scholar] [CrossRef] [Green Version]
- Fleschhut, J.; Kratzer, F.; Rechkemmer, G.; Kulling, S.E. Stability and biotransformation of various dietary anthocyanins in vitro. Eur. J. Nutr. 2006, 45, 7–18. [Google Scholar] [CrossRef]
- de Ferrars, R.M.; Czank, C.; Saha, S.; Needs, P.W.; Zhang, Q.; Raheem, K.S.; Botting, N.P.; Kroon, P.A.; Kay, C.D. Methods for isolating, identifying, and quantifying anthocyanin metabolites in clinical samples. Anal. Chem. 2014, 86, 10052–10058. [Google Scholar] [CrossRef] [Green Version]
- Roöhrig, T.; Kirsch, V.; Schipp, D.; Galan, J.; Richling, E. Absorption of anthocyanin rutinosides after consumption of a blackcurrant (Ribes nigrum L.) Extract. J. Agric. Food Chem. 2019, 67, 6792–6797. [Google Scholar] [CrossRef] [Green Version]
- Lundberg, J.O.; Carlström, M.; Weitzberg, E. Metabolic Effects of Dietary Nitrate in Health and Disease. Cell Metab. 2018, 28, 9–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincent, M.A.; Dawson, D.; Clark AD, H.; Lindner, J.R.; Rattigan, S.; Clark, M.G.; Barrett, E.J. Skeletal Muscle Microvascular Recruitment by Physiological Hyperinsulinemia Precedes Increases in Total Blood Flow. Diabetes 2002, 51, 42–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baron, A.D.; Brechtel-Hook, G.; Johnson, A.; Cronin, J.; Leaming, R.; Steinberg, H.O. Effect of perfusion rate on the time course of insulin-mediated skeletal muscle glucose uptake. Am. J. Physiol. Endocrinol. Metab. 1996, 271, E1067–E1072. [Google Scholar] [CrossRef]
- Mather, K.; Laakso, M.; Edelman, S.; Hook, G.; Baron, A. Evidence for physiological coupling of insulin-mediated glucose metabolism and limb blood flow. Am. J. Physiol. Endocrinol. Metab. 2000, 279, E1264–E1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.-A.; Koh, K.K.; Quon, M.J. The Union of Vascular and Metabolic Actions of Insulin in Sickness and in Health. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 889–891. [Google Scholar] [CrossRef] [Green Version]
- Joris, P.J.; Mensink, R.P. Beetroot juice improves in overweight and slightly obese men postprandial endothelial function after consumption of a mixed meal. Atherosclerosis 2013, 231, 78–83. [Google Scholar] [CrossRef]
- Cassidy, Y.M.; McSorley, E.M.; Allsopp, P.J. Effect of soluble dietary fibre on postprandial blood glucose response and its potential as a functional food ingredient. J. Funct. Foods 2018, 46, 423–439. [Google Scholar] [CrossRef]
- Prieto-Santiago, V.; Cavia, M.M.; Alonso-Torre, S.R.; Carrillo, C. Relationship between color and betalain content in different thermally treated beetroot products. J. Food Sci. Technol. 2020, 57, 3305–3313. [Google Scholar] [CrossRef] [PubMed]
- Herbach, K.; Stintzing, F.; Carle, R. Impact of thermal treatment on color and pigment pattern of red beet (Beta vulgaris L.) preparations. J. Food Sci. 2004, 69, C491–C498. [Google Scholar] [CrossRef]
- Olumese, F.; Oboh, H. Effects of Daily Intake of Beetroot Juice on Blood Glucose and Hormones in Young Healthy Subjects. Niger. Q. J. Hosp. Med. 2016, 26, 455–462. [Google Scholar]
- Hobbs, D.A.; Goulding, M.G.; Nguyen, A.; Malaver, T.; Walker, C.F.; George, T.W.; Methven, L.; Lovegrove, J.A. Acute ingestion of beetroot bread increases endothelium-independent vasodilation and lowers diastolic blood pressure in healthy men: A randomized controlled trial. J. Nutr. 2013, 143, 1399–1405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raubenheimer, K.; Hickey, D.; Leveritt, M.; Fassett, R.; Ortiz de Zevallos Munoz, J.; Allen, J.D.; Briskey, D.; Parker, T.J.; Kerr, G.; Peake, J.M. Acute effects of nitrate-rich beetroot juice on blood pressure, hemostasis and vascular inflammation markers in healthy older adults: A randomized, placebo-controlled crossover study. Nutrients 2017, 9, 1270. [Google Scholar] [CrossRef] [Green Version]
- McDonagh, S.T.; Wylie, L.J.; Webster, J.M.; Vanhatalo, A.; Jones, A.M. Influence of dietary nitrate food forms on nitrate metabolism and blood pressure in healthy normotensive adults. Nitric Oxide 2018, 72, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Asgary, S.; Afshani, M.R.; Sahebkar, A.; Keshvari, M.; Taheri, M.; Jahanian, E.; Rafieian-Kopaei, M.; Malekian, F.; Sarrafzadegan, N. Improvement of hypertension, endothelial function and systemic inflammation following short-term supplementation with red beet (Beta vulgaris L.) juice: A randomized crossover pilot study. J. Hum. Hypertens. 2016, 30, 627–632. [Google Scholar] [CrossRef]
- Ashor, A.; Jajja, A.; Sutyarjoko, A.; Brandt, K.; Qadir, O.; Lara, J.; Siervo, M. Effects of beetroot juice supplementation on microvascular blood flow in older overweight and obese subjects: A pilot randomised controlled study. J. Hum. Hypertens. 2015, 29, 511–513. [Google Scholar] [CrossRef]
- Erisna, M.; Arma, M.R.; Sumarni, S.; Triana, H. In Does Beetroot Juice Lower Blood Pressure? A Systematic Review. In Proceedings of the International Conference on Applied Science and Health, Nakhon Pathom, Thailand, 23–24 July 2019; pp. 271–281. [Google Scholar]
- Ormesher, L.; Myers, J.E.; Chmiel, C.; Wareing, M.; Greenwood, S.L.; Tropea, T.; Lundberg, J.O.; Weitzberg, E.; Nihlen, C.; Sibley, C.P. Effects of dietary nitrate supplementation, from beetroot juice, on blood pressure in hypertensive pregnant women: A randomised, double-blind, placebo-controlled feasibility trial. Nitric Oxide 2018, 80, 37–44. [Google Scholar] [CrossRef]
- Bondonno, C.P.; Liu, A.H.; Croft, K.D.; Ward, N.C.; Shinde, S.; Moodley, Y.; Lundberg, J.O.; Puddey, I.B.; Woodman, R.J.; Hodgson, J.M. Absence of an effect of high nitrate intake from beetroot juice on blood pressure in treated hypertensive individuals: A randomized controlled trial. Am. J. Clin. Nutr. 2015, 102, 368–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siervo, M.; Lara, J.; Jajja, A.; Sutyarjoko, A.; Ashor, A.; Brandt, K.; Qadir, O.; Mathers, J.; Benjamin, N.; Winyard, P.G. Ageing modifies the effects of beetroot juice supplementation on 24-h blood pressure variability: An individual participant meta-analysis. Nitric Oxide 2015, 47, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Coles, L.T.; Clifton, P.M. Effect of beetroot juice on lowering blood pressure in free-living, disease-free adults: A randomized, placebo-controlled trial. Nutr. J. 2012, 11, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonilla Ocampo, D.A.; Paipilla, A.F.; Marín, E.; Vargas-Molina, S.; Petro, J.L.; Pérez-Idárraga, A. Dietary nitrate from beetroot juice for hypertension: A systematic review. Biomolecules 2018, 8, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahadoran, Z.; Mirmiran, P.; Kabir, A.; Azizi, F.; Ghasemi, A. The nitrate-independent blood pressure–lowering effect of beetroot juice: A systematic review and meta-analysis. Adv. Nutr. 2017, 8, 830–838. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, T.; Hashimoto, Y.; Kobayashi, R.; Nakazato, K.; Willems ME, T. Effects of blackcurrant extract on arterial functions in older adults: A randomized, double-blind, placebo-controlled, crossover trial. Clin. Exp. Hypertens. 2020, 42, 640–647. [Google Scholar] [CrossRef]
- Singh, A.; Verma, S.; Singh, V.; Nanjappa, C.; Roopa, N.; Raju, P.S.; Singh, S.N. Beetroot juice supplementation increases high density lipoprotein-cholesterol and reduces oxidative stress in physically active individuals. J. Pharm. Nutr. Sci. 2015, 5, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Rabeh, M.N.; Ibrahim, E.M. Antihypercholesterolemic effects of beet (Beta vulgaris L.) root waste extract on hypercholesterolemic rats and its antioxidant potential properties. Pak. J. Nutr. 2014, 13, 500. [Google Scholar] [CrossRef] [Green Version]
- Al-Dosari, M.; Alqasoumi, S.; Ahmed, M.; Al-Yahya, M.; Ansari, M.N.; Rafatullah, S. Effect of Beta vulgaris L. on cholesterol rich diet-induced hypercholesterolemia in rats. Farmacia 2011, 59, 669–678. [Google Scholar]
- Törrönen, R.; McDougall, G.J.; Dobson, G.; Stewart, D.; Hellström, J.; Mattila, P.; Pihlava, J.-M.; Koskela, A.; Karjalainen, R. Fortification of blackcurrant juice with crowberry: Impact on polyphenol composition, urinary phenolic metabolites, and postprandial glycemic response in healthy subjects. J. Funct. Foods 2012, 4, 746–756. [Google Scholar] [CrossRef]
- Schulze, C.; Bangert, A.; Kottra, G.; Geillinger, K.E.; Schwanck, B.; Vollert, H.; Blaschek, W.; Daniel, H. Inhibition of the intestinal sodium-coupled glucose transporter 1 (SGLT1) by extracts and polyphenols from apple reduces postprandial blood glucose levels in mice and humans. Mol. Nutr. Food Res. 2014, 58, 1795–1808. [Google Scholar] [CrossRef] [PubMed]
- Grussu, D.; Stewart, D.; McDougall, G.J. Berry Polyphenols Inhibit α-Amylasein Vitro: Identifying Active Components in Rowanberry and Raspberry. J. Agric. Food Chem. 2011, 59, 2324–2331. [Google Scholar] [CrossRef] [PubMed]
- Barik, S.K.; Russell, W.R.; Moar, K.M.; Cruickshank, M.; Scobbie, L.; Duncan, G.; Hoggard, N. The anthocyanins in black currants regulate postprandial hyperglycaemia primarily by inhibiting α-glucosidase while other phenolics modulate salivary α-amylase, glucose uptake and sugar transporters. J. Nutr. Biochem. 2020, 78, 108325. [Google Scholar] [CrossRef] [PubMed]
- Watson, A.W.; Haskell-Ramsay, C.F.; Kennedy, D.O.; Cooney, J.M.; Trower, T.; Scheepens, A. Acute supplementation with blackcurrant extracts modulates cognitive functioning and inhibits monoamine oxidase-B in healthy young adults. J. Funct. Foods 2015, 17, 524–539. [Google Scholar] [CrossRef] [Green Version]
- Törrönen, R.; Kolehmainen, M.; Sarkkinen, E.; Mykkänen, H.; Niskanen, L. Postprandial glucose, insulin, and free fatty acid responses to sucrose consumed with blackcurrants and lingonberries in healthy women. Am. J. Clin. Nutr. 2012, 96, 527–533. [Google Scholar] [CrossRef]
- Benn, T.; Kim, B.; Park, Y.-K.; Yang, Y.; Pham, T.X.; Ku, C.S.; Farruggia, C.; Harness, E.; Smyth, J.A.; Lee, J.-Y. Polyphenol-rich blackcurrant extract exerts hypocholesterolaemic and hypoglycaemic effects in mice fed a diet containing high fat and cholesterol. Br. J. Nutr. 2015, 113, 1697–1703. [Google Scholar] [CrossRef] [Green Version]
- Stull, A.J.; Cash, K.C.; Johnson, W.D.; Champagne, C.M.; Cefalu, W.T. Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women. J. Nutr. 2010, 140, 1764–1768. [Google Scholar] [CrossRef]
- Collins, R.; Peto, R.; MacMahon, S.; Godwin, J.; Qizilbash, N.; Hebert, P.; Eberlein, K.; Taylor, J.; Hennekens, C.; Fiebach, N. Blood pressure, stroke, and coronary heart disease: Part 2, short-term reductions in blood pressure: Overview of randomised drug trials in their epidemiological context. Lancet 1990, 335, 827–838. [Google Scholar] [CrossRef]
- Bell, D.R.; Gochenaur, K. Direct vasoactive and vasoprotective properties of anthocyanin-rich extracts. J. Appl. Physiol. 2006, 100, 1164–1170. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.N.; Han, S.N.; Ha, T.J.; Kim, H.-K. Black soybean anthocyanins attenuate inflammatory responses by suppressing reactive oxygen species production and mitogen activated protein kinases signaling in lipopolysaccharide-stimulated macrophages. Nutr. Res. Pract. 2017, 11, 357–364. [Google Scholar] [CrossRef] [Green Version]
- Parichatikanond, W.; Pinthong, D.; Mangmool, S. Blockade of the renin-angiotensin system with delphinidin, cyanin, and quercetin. Planta Med. 2012, 78, 1626–1632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanashima, N.; Horie, K.; Yamanouchi, K.; Tomisawa, T.; Kitajima, M.; Oey, I.; Maeda, H. Blackcurrant (Ribes nigrum) Extract Prevents Dyslipidemia and Hepatic Steatosis in Ovariectomized Rats. Nutrients 2020, 12, 1541. [Google Scholar] [CrossRef]
- Lobo, R.A. Metabolic syndrome after menopause and the role of hormones. Maturitas 2008, 60, 10–18. [Google Scholar] [CrossRef]
- Nanashima, N.; Horie, K.; Tomisawa, T.; Chiba, M.; Nakano, M.; Fujita, T.; Maeda, H.; Kitajima, M.; Takamagi, S.; Uchiyama, D. Phytoestrogenic activity of blackcurrant (Ribes nigrum) anthocyanins is mediated through estrogen receptor alpha. Mol. Nutr. Food Res. 2015, 59, 2419–2431. [Google Scholar] [CrossRef] [PubMed]
- Nanashima, N.; Horie, K.; Maeda, H. Phytoestrogenic activity of blackcurrant anthocyanins is partially mediated through estrogen receptor beta. Molecules 2018, 23, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawicki, T.; Topolska, J.; Romaszko, E.; Wiczkowski, W. Profile and content of betalains in plasma and urine of volunteers after long-term exposure to fermented red beet juice. J. Agric. Food Chem. 2018, 66, 4155–4163. [Google Scholar] [CrossRef]
- Mullen, W.; Edwards, C.A.; Crozier, A. Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl-and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions. Br. J. Nutr. 2006, 96, 107–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Y.; Shi, J.; Xie, S.-Y.; Zhang, T.-Y.; Soladoye, O.P.; Aluko, R.M. Red beetroot betalains: Perspectives on extraction, processing, and potential health benefits. J. Agric. Food Chem. 2020, 68, 11595–11611. [Google Scholar] [CrossRef]
- Kruszewski, B.; Zawada, K.; Karpinski, P. Impact of High-Pressure homogenization parameters on physicochemical characteristics, bioactive compounds content, and antioxidant capacity of blackcurrant juice. Molecules 2021, 26, 1802. [Google Scholar] [CrossRef]
- Otalora, C.M.; Bonifazi, E.L.; Fissore, E.N.; Basanta, M.F.; Gerschenson, L.N. Thermal stability of betalains in by-products of the blanching and cutting of Beta vulgaris L. var conditiva. Pol. J. Food Nutr. Sci. 2020, 70, 15–24. [Google Scholar] [CrossRef]
- Paciulli, M.; Medina-Meza, I.G.; Chiavaro, E.; Barbosa-Cánovas, G.V. Impact of thermal and high pressure processing on quality parameters of beetroot (Beta vulgaris L.). LWT Food Sci. Technol. 2016, 68, 98–104. [Google Scholar] [CrossRef]
Criteria: three of the following five risk factors: | Diagnostic cutoff |
Increased waist circumference | Country and ethnicity dependant |
Raised blood pressure * | Systolic ≥ 130 and/or diastolic ≥ 85 mm Hg |
Raised fasting glucose * | ≥5.6mmol/L |
Raised triglycerides * | ≥1.7 mmol/L |
Lowered HDL-C * | <1.0 mmol/L males <1.3 mmol/L females |
Anthocyanin | Plant/Fruit | Mean Content (mg/100 g FW) | Reference |
---|---|---|---|
Delphinidin 3-O-glucoside | Bilberry | 136.0 | [73] |
Blackcurrant | 86.68 | [74] | |
Black grape | 16.61 | [75] | |
Blueberry | 15.17 | [76] | |
Black bean | 14.50 | [77] | |
Cyanidin 3-O-glucoside | Elderberry | 794.13 | [78] |
Blackberry | 138.72 | [75] | |
Blackcurrant | 25.07 | [74] | |
Sweet cherry | 18.73 | [79] | |
Black olive | 10.62 | [80] | |
Cyanidin 3-O-rutinoside | Blackcurrant | 160.78 | [74] |
Sweet cherry | 143.27 | [79] | |
Black olive | 72.35 | [80] | |
Plum | 33.85 | [81] | |
Raspberry | 5.20 | [79] | |
Delphinidin 3-O-rutinoside | Blackcurrant | 304.91 | [74] |
Eggplant peel | 37.80 | [82] | |
Tamarillo | 5.26 | [83] |
Study Author | MetS Measures | Trial Type | Subjects (n) | Subject Characteristics | Duration | Intervention Dosage | Placebo/Control | Outcome |
---|---|---|---|---|---|---|---|---|
Khalifi et al. 2015 [28] | Hyperglycemia, glucose tolerance | Within-groups crossover | 8, 8/8 | Diabetic male Wistar rats | 8 weeks | 100 mg/L sodium nitrate, ad libitum | Water | ↓ Serum glucose ↑ Glucose tolerance |
Gheibi et al. 2018 [36] | Hyperglycemia, glucose tolerance | Within-groups crossover | 10, 10/10 | Diabetic male Wistar rats | 8 weeks | 100 mg/L sodium nitrate, ad libitum | Water | ↓ Serum glucose ↑ GLUT4 translocation ↑ Glucose tolerance |
Wootton-Beard et al. 2014 [37] | Insulin and glucose responses | Within-groups crossover | 16, 16/16 | Healthy adults | Acute | 225 mL BR, 990 mg nitrate | Sugar-matched placebo drink | ↓ Postprandial insulin (0–60 min) ↓ Glucose response (0–30 min), ↓ glucose peak |
Fuchs et al. 2016 [38] | Vascular resistance and glucose response | Within-groups crossover | 16, 16/16 | Obese, insulin-dependent males | Acute | 100 mL BR, 300 mg nitrate | Sugar-matched placebo | ↓ Postprandial vascular resistance, no effect on glucose homeostasis |
Shepherd et al. 2016 [39] | Plasma glucose, C-peptide, incretins | Within-groups crossover | 31, 31/31 | 16 Healthy young (18–35 years), 15 healthy older (50–75 years) | Acute | 140 mL BR, 738 mg nitrate | Nitrate-depleted beetroot juice | No significant differences between groups |
Holy et al. 2017 [40] | Blood glucose, lipid profile | Between groups, placebo-controlled | 50, 30/20 | Healthy adults | Acute | 250 mL BR (nitrate not specified) | Water | ↓ Blood glucose |
Chang et al. 2018 [41] | Blood glucose | Within-groups crossover | 10, 10/10 | Healthy, 20–24 years | Acute | 270 mL BR (nitrate not specified) | Sugar-matched placebo | ↓ Blood glucose after 15, 30, 90 and 180 min |
Olumese and Obah, 2016 [97] | Blood glucose | Within-groups, before–after | 30 | Healthy young, (aged 18–29) (18 m, 12 f) | 6 weeks | 10% BR (volume and nitrate not specified) | No control | ↓ Plasma glucose |
Study Author | MetS Measures | Trial Type | Subjects (n) | Subject Characteristics | Duration | Intervention Dosage | Placebo/Control | Outcome |
---|---|---|---|---|---|---|---|---|
Coles and Clifton, 2012 [107] | Blood pressure | Within-groups crossover | 30, 30/30 | Healthy adults (15 m, 15 f) | Acute | 500 g beetroot and apple juice (465 mg nitrate) | Apple juice concentrate | ↓ SBP in males |
Hobbs et al. 2013 [98] | Blood pressure, vasodilation | Within-groups crossover | 24, 24/24 | Healthy adults | Acute | 200 g beetroot bread (68.2 mg nitrate) | 200 g control white bread | ↓ DBP ↑ vasodilation |
Raubenheimer et al. 2017 [99] | Blood pressure | Within-groups crossover | 12, 12/12 | Older adults (57–71 years) (5 m, 7 f) | Acute | 140 mL BR (800 mg nitrate) | Nitrate-depleted beetroot juice | ↓ DBP ↓ SBP |
McDonagh et al. 2018 [100] | Blood pressure | Within-groups crossover | 10, 10/10 | Healthy males | Acute | 55 mL BR conc (357 mg nitrate) | 70 mL deionized water | ↓ DBP ↓ Mean arterial BP |
Stanaway et al. 2019 [31] | Blood pressure | Within-groups crossover | 24, 24/24 | 13 healthy young (18–30 years), 11 healthy older (50–70 years) | Acute | 150 mL BR (651 mg nitrate) | Beetroot juice concentrate (1 mmol/150 mL nitrate) | ↓ DBP in older adults, ↓ SBP in both groups |
Bondonno et al. 2015 [105] | Blood pressure | Within-groups crossover | 27, 27/27 | Hypertensive adults (53–70 years, SBP 120–160 mmHg) | 1 w | 2 × 70 mL BR daily (nitrate not specified) | Nitrate-depleted beetroot juice | No significant differences between groups |
Ormesher et al. 2018 [104] | Blood pressure | Between groups, placebo-controlled | 41, 20/21 | Hypertensive, pregnant females (SBP 130–144 mmHg and/or DBP 80–94 mmHg) | 8 d | 70 mL BR (400 mg nitrate) | 70 mL nitrate-depleted beetroot juice | No significant differences between groups |
Asgary et al. 2016 [101] | Blood Pressure, systemic inflammation | Within-groups crossover | 24, 24/24 | Hypertensive adults (25–68 years) | 2 w | 250 mL BR or 250 g cooked beetroot daily (nitrate not specified) | No control | ↓ SBP ↓ DBP, ↑ FMD, ↓ Inflammatory markers |
Ashor et al. 2015 [102] | Blood pressure | Between groups, placebo-controlled | 21, 10/11 | Overweight older adults (55–70 years, BMI 25–40 kg/m2) | 3 w | 70 mL BR conc (300–400 mg nitrate) | Blackcurrant juice (<5 mg nitrate) | No significant differences between groups |
Capper et al. 2020 [46] | Blood pressure, gut microbiota | Between groups, placebo-controlled | 36, 19/17 | Healthy older adults | 8 w | 150 g whole beetroot and banana every other day (590 mg nitrate) | Banana every other day | ↓ SBP |
Study Author | MetS Measures | Trial Type | Subjects (n) | Subject Characteristics | Duration | Intervention Dosage | Placebo/ Control | Outcome |
---|---|---|---|---|---|---|---|---|
Rabeh and Ibrahim, 2014 [112] | Lipid profile | Between groups, placebo-controlled | 35, 7/7/7/7 | Hypercholesterolemic Sprague-Dawley rats | 4 w | Beetroot waste extract, 200, 400 or 600 mg/kg/day | Basal diet only | ↓ TC ↓ LDL-C ↓ TG ↑ HDL-C |
Khalifi et al. 2015 [28] | Hyperglycemia lipid profile | Between groups, placebo-controlled | 8, 8/8 | Diabetic male Wistar rats | 8 w | 100 mg/L sodium nitrate ad libitum | Water | ↓ LDL-C ↓ TG ↑ HDL-C |
Al-Dosari et al. 2011 [113] | Lipid profile, Free radical generation | Between groups, placebo-controlled | 30, 6/6/6/6 | Hypercholesterolemic Wistar rats | 10 w | Beetroot, 250 or 500 mg/kg/day (nitrate not specified) | Basal diet only | ↓ TC ↓ TG ↑ HDL-C |
Holy et al. 2017 [40] | Lipid profile | Between groups, placebo-controlled | 50, 30/20 | Healthy adults | Acute | 250 mL BR (nitrate not specified) | Water | ↓TC ↓TG ↓LDL-C |
Singh et al. 2015 [111] | Lipid profile | Within groups, before–after study | 30, 30/0 | Physically active soldiers | 15 days | 2 × 400 mL BR daily (nitrate not specified) | No placebo group | ↓ LDL-C ↑ HDL-C |
Study Author | MetS Measures | Trial Type | Subjects (n) | Subject Characteristics | Duration | Intervention Dosage | Placebo/Control | Outcome |
---|---|---|---|---|---|---|---|---|
Park et al. 2015 [45] | Glucose tolerance | Between groups, placebo-controlled | 30, 10/10/10 | Sprague-Dawley mice with metabolic syndrome | 4 w | 100 mg/kg/day or 300 mg/kg/day of BCE | Basal diet only | ↓ iAUC glucose ↓ IRS-1 ↓ p-AMPK in muscle |
Benn et al. 2015 [120] | Glucose tolerance | Between groups, placebo-controlled | 24, 13/11 | Male hypercholesterolemic rats | 12 w | Equivalent 540 mg BCE in humans (actual mg unclear) | Basal diet only | ↓ Plasma glucose |
Törrönen et al. 2012 [114] | Blood glucose | Within-groups, crossover | 14, 14/14 | Healthy participants (3 m, 11 f) | Acute | 300 mL BC juice and 300 mL BC juice with crowberry powder (159 and 293 mg/100 mL polyphenols) | Water | ↓ Glucose response (0–30 min) ↓ Insulin response (0–30 min) |
Watson et al. 2015 [118] | Blood glucose | Within-groups, crossover | 36, 36/36 | Healthy participants (18–34 years, BMI < 35) | Acute | Anthocyanin-enriched BCE extract or 142 mL BC juice (each containing 525 mg polyphenols) | Placebo drink (0 mg polyphenols) | ↑ Blood glucose (60 and 150 min) |
Castro-Acosta et al. 2016 [34] | Blood glucose insulin Incretins | Between groups, placebo-controlled | 23, 23/23/23/23 | Healthy participants (14 m, 9 f) | Acute | BCE, (150, 300 and 600 mg anthocyanins) | No extract | ↓ Plasma glucose ↓ Plasma insulin ↓ Plasma GIP ↓ Plasma GLP-1 |
Castro-Acosta et al. 2017 [42] | Blood glucose-insulin incretins | Between groups, placebo-controlled | 25 25/25/25 | Healthy participants (20 m, 5 f) | Acute | 1200 mg apple polyphenols or 600 mg apple polyphenols + 600 mg blackcurrant anthocyanins | Placebo drink (0 mg polyphenols) | ↓ iAUC glucose ↓ Plasma insulin ↓ C-peptide ↓ plasma GIP |
Nolan et al. 2020 [43] | Insulin sensitivity, free-living glucose, inflammation | Within-groups crossover | 13 13/13 | Overweight, inactive adults (BMI 28.8 ± 3.9 kg/m−2, <1 h structured PA/week | 8 days | 2 × 300 mg BC extract daily (pre-breakfast and dinner) | Placebo capsule | ↑ Insulin sensitivity ↓ C-reactive protein ↓ Postprandial glucose responses |
Study Author | MetS Measures | Trial Type | Subjects (n) | Subject Characteristics | Duration | Intervention Dosage | Placebo/Control | Outcome |
---|---|---|---|---|---|---|---|---|
Hypertension | ||||||||
Cook et al. 2020 [44] | Blood pressure | Within-groups crossover | 14, 14/14 | Older adults (69 ± 4 years) | 1 week | 2 × 300 mg BC extract daily (210 mg anthocyanins) | 300 mg microcrystalline cellulose | ↓ DBP↓ SBP |
Okamoto et al. 2020 [110] | Arterial function, central blood pressure | Within-groups crossover | 14, 14/14 | Older adults (73.3 ± 1.7 years) | 1 week | 2 × 300 mg BC extract daily (210 mg anthocyanins) | 300 mg microcrystalline cellulose | ↓ Central blood pressure ↓ Carotid-femoral pulse-wave velocity |
Dyslipidemia | ||||||||
Park et al. 2015 [45] | Lipid profile | Between groups, placebo-controlled | 30, 10/10/10 | Sprague-Dawley mice with metabolic syndrome | 8 weeks | 100 mg/kg/day or 300 mg/kg/day of BC | Basal diet only | ↓ TC ↓ TG ↓ LDL-C |
Nanashima et al. 2020 [126] | Lipid profile | Between groups, placebo-controlled | 20, 10/10 | Ovariectomized female Sprague-Dawley rats | 12 weeks | 3% BC extract (ad libitum) | Basal diet only | ↓ TC ↓ TG ↓ LDL-C |
Benn et al. 2015 [120] | Lipid profile | Between groups, placebo-controlled | 24, 13/11 | Male hypercholesterolemic rats | 12 weeks | Equivalent 540 mg BC extract in humans (Actual mg unclear) | Basal diet only | ↓ TC |
Törrönen et al. 2012 [119] | Glucose, insulin, free fatty acids | Within-groups crossover | 20, 20/20 | Healthy females | Acute | 150 g BC puree with 35 g sucrose (anthocyanins not specified) | Water | ↓ FFA rebound following a meal |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haswell, C.; Ali, A.; Page, R.; Hurst, R.; Rutherfurd-Markwick, K. Potential of Beetroot and Blackcurrant Compounds to Improve Metabolic Syndrome Risk Factors. Metabolites 2021, 11, 338. https://doi.org/10.3390/metabo11060338
Haswell C, Ali A, Page R, Hurst R, Rutherfurd-Markwick K. Potential of Beetroot and Blackcurrant Compounds to Improve Metabolic Syndrome Risk Factors. Metabolites. 2021; 11(6):338. https://doi.org/10.3390/metabo11060338
Chicago/Turabian StyleHaswell, Cameron, Ajmol Ali, Rachel Page, Roger Hurst, and Kay Rutherfurd-Markwick. 2021. "Potential of Beetroot and Blackcurrant Compounds to Improve Metabolic Syndrome Risk Factors" Metabolites 11, no. 6: 338. https://doi.org/10.3390/metabo11060338
APA StyleHaswell, C., Ali, A., Page, R., Hurst, R., & Rutherfurd-Markwick, K. (2021). Potential of Beetroot and Blackcurrant Compounds to Improve Metabolic Syndrome Risk Factors. Metabolites, 11(6), 338. https://doi.org/10.3390/metabo11060338