Relationship of Inflammatory Markers and Metabolic Syndrome in Postmenopausal Women
Abstract
:1. Introduction
2. Results
3. Discussion
4. Material and Methods
4.1. Type of Study and Included Patients
4.2. Anthropometric Parameters
4.3. Biochemical Parameters
4.4. Morbidities
4.5. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Assmann, G.; Guerra, R.; Fox, G.; Cullen, P.; Schulte, H.; Willett, D.; Grundy, S.M. Harmonizing the definition of the metabolic syndrome: Comparison of the criteria of the Adult Treatment Panel III and the International Diabetes Federation in United States American and European populations. Am. J. Cardiol. 2007, 99, 541–548. [Google Scholar] [CrossRef]
- Subramani, S.K.; Mahajan, S.; Chauhan, P.; Yadav, D.; Mishra, M.; Pakkirisamy, U.; Prasad, G.J.D.; Research, M.S.C. Prevalence of metabolic syndrome in Gwalior region of Central India: A comparative study using NCEP ATP III, IDF and Harmonized criteria. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 816–821. [Google Scholar] [CrossRef]
- Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002, 106, 3143–3421. [CrossRef]
- Alberti, K.G.; Zimmet, P.; Shaw, J. Metabolic syndrome—A new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. A J. Br. Diabet. Assoc. 2006, 23, 469–480. [Google Scholar] [CrossRef]
- Pokharel, D.R.; Khadka, D.; Sigdel, M.; Yadav, N.K.; Acharya, S.; Kafle, R.C.; Shukla, P.S. Prevalence of metabolic syndrome in Nepalese type 2 diabetic patients according to WHO, NCEP ATP III, IDF and Harmonized criteria. J. Diabetes Metab. Disord. 2014, 13, 104. [Google Scholar] [CrossRef] [Green Version]
- Silveira Rossi, J.L.; Barbalho, S.M.; Reverete de Araujo, R.; Bechara, M.D.; Portero Sloan, K.; Sloan, L.A. Metabolic Syndrome and Cardiovascular Diseases: Going Beyond Traditional Risk Factors. Diabetes/Metab. Res. Rev. 2021, e3502. [Google Scholar] [CrossRef]
- De Oliveira Dos Santos, A.R.; de Oliveira Zanuso, B.; Miola, V.F.B.; Barbalho, S.M.; Santos Bueno, P.C.; Flato, U.A.P.; Detregiachi, C.R.P.; Buchaim, D.V.; Buchaim, R.L.; Tofano, R.J.; et al. Adipokines, Myokines, and Hepatokines: Crosstalk and Metabolic Repercussions. Int. J. Mol. Sci. 2021, 22, 2639. [Google Scholar] [CrossRef]
- Barbalho, S.M.; Bechara, M.D.; Quesada, K.; Gabaldi, M.R.; Goulart, R.d.A.; Tofano, R.J.; Gasparini, R.G. Síndrome metabólica, aterosclerose e inflamação: Tríade indissociável? J. Vasc. Bras. 2015, 14, 319–327. [Google Scholar] [CrossRef] [Green Version]
- Tofano, R.J.; Pescinni-Salzedas, L.M.; Chagas, E.F.B.; Detregiachi, C.R.P.; Guiguer, E.L.; Araujo, A.C.; Bechara, M.D.; Rubira, C.J.; Barbalho, S.M.J.D.; Targets, O.; et al. Association of Metabolic Syndrome and Hyperferritinemia in Patients at Cardiovascular Risk. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 3239. [Google Scholar] [CrossRef]
- Ning, J.; Zhang, Y.; Hu, H.; Hu, W.; Li, L.; Pang, Y.; Ma, S.; Niu, Y.; Zhang, R. Association between ambient particulate matter exposure and metabolic syndrome risk: A systematic review and meta-analysis. Sci. Total Environ. 2021, 782, 146855. [Google Scholar] [CrossRef]
- Buono, G.; Crispo, A.; Giuliano, M.; De Angelis, C.; Schettini, F.; Forestieri, V.; Lauria, R.; De Laurentiis, M.; De Placido, P.; Rea, C.G.; et al. Metabolic syndrome and early stage breast cancer outcome: Results from a prospective observational study. Breast Cancer Res. Treat. 2020, 182, 401–409. [Google Scholar] [CrossRef]
- Hauner, D.; Hauner, H. Metabolic syndrome and breast cancer: Is there a link? Breast Care 2014, 9, 277–281. [Google Scholar] [CrossRef] [Green Version]
- Dong, S.; Wang, Z.; Shen, K.; Chen, X. Metabolic Syndrome and Breast Cancer: Prevalence, Treatment Response, and Prognosis. Front. Oncol. 2021, 11, 629666. [Google Scholar] [CrossRef]
- Tabatabaei-Malazy, O.; Djalalinia, S.; Asayesh, H.; Shakori, Y.; Esmaeili Abdar, M.; Mansourian, M.; Mahdavi Gorabi, A.; Noroozi, M.; Qorbani, M. Menopause and metabolic syndrome in the Middle East countries; a systematic review and meta-analysis study. J. Diabetes Metab. Disord. 2018, 17, 357–364. [Google Scholar] [CrossRef]
- Mehta, J.; Kling, J.M.; Manson, J.E. Risks, Benefits, and Treatment Modalities of Menopausal Hormone Therapy: Current Concepts. Front. Endocrinol. 2021, 12, 564781. [Google Scholar] [CrossRef]
- Kapoor, E.; Collazo-Clavell, M.L.; Faubion, S.S. Weight Gain in Women at Midlife: A Concise Review of the Pathophysiology and Strategies for Management. Mayo Clin. Proc. 2017, 92, 1552–1558. [Google Scholar] [CrossRef]
- Van Pelt, R.E.; Gavin, K.M.; Kohrt, W.M. Regulation of Body Composition and Bioenergetics by Estrogens. Endocrinol. Metab. Clin. N. Am. 2015, 44, 663–676. [Google Scholar] [CrossRef] [Green Version]
- Huan, L.; Deng, X.; He, M.; Chen, S.; Niu, W. Meta-analysis: Early Age at Natural Menopause and Risk for All-Cause and Cardiovascular Mortality. BioMed Res. Int. 2021, 2021, 6636856. [Google Scholar] [CrossRef]
- Gianos, E.; Karalis, D.G.; Gaballa, D.; Paparodis, R.; Mintz, G.L.; Balakrishnan, M.; Myerson, M.; Brinton, E.A.; Wild, R.A. Managing cardiometabolic risk factors across a woman’s lifespan: A lipidologist’s perspective. J. Clin. Lipidol. 2021, 15, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.R.; Chen, K.H. Utilization of Isoflavones in Soybeans for Women with Menopausal Syndrome: An Overview. Int. J. Mol. Sci. 2021, 22, 3212. [Google Scholar] [CrossRef]
- Rodriguez-San Nicolas, A.; Sanchez-Rodriguez, M.A.; Zacarias-Flores, M.; Correa-Munoz, E.; Mendoza-Nunez, V.M. Relationship between central obesity and oxidative stress in premenopausal versus postmenopausal women. Nutr. Hosp. 2020, 37, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Varghese, M.; Griffin, C.; McKernan, K.; Eter, L.; Abrishami, S.; Singer, K. Female adipose tissue has improved adaptability and metabolic health compared to males in aged obesity. Aging 2020, 12, 1725–1746. [Google Scholar] [CrossRef]
- Musialik, K. The influence of chosen adipocytokines on blood pressure values in patients with metabolic syndrome. Kardiol. Pol. 2012, 70, 1237–1242. [Google Scholar] [PubMed]
- Aroor, A.R.; McKarns, S.; Demarco, V.G.; Jia, G.; Sowers, J.R. Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance. Metab. Clin. Exp. 2013, 62, 1543–1552. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Higashimori, T.; Park, S.Y.; Choi, H.; Dong, J.; Kim, Y.J.; Noh, H.L.; Cho, Y.R.; Cline, G.; Kim, Y.B.; et al. Differential effects of interleukin-6 and -10 on skeletal muscle and liver insulin action in vivo. Diabetes 2004, 53, 1060–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nimrouzi, M.; Abolghasemi, J.; Sharifi, M.H.; Nasiri, K.; Akbari, A. Thyme oxymel by improving of inflammation, oxidative stress, dyslipidemia and homeostasis of some trace elements ameliorates obesity induced by high-fructose/fat diet in male rat. Biomed. Pharmacother. 2020, 126, 110079. [Google Scholar] [CrossRef]
- Almeida, C.D.G.; Viana, E.C.; Moreira, A.V.B.; Miguel, G.P.S.; Pedra, F.S.G.; Oliveira, F.E.; Quimquim, T.N.; Bissoli, N.S.; Alves, R.D.M.; Bressan, J. The fatty acid profile of adipose tissue as a predictor of the ponderal and inflammatory response in adult women six years after bariatric surgery. Lipids Health Dis. 2020, 19, 45. [Google Scholar] [CrossRef] [Green Version]
- Orostica, L.; Poblete, C.; Romero, C.; Vega, M. Pro-Inflammatory Markers Negatively Regulate IRS1 in Endometrial Cells and Endometrium from Women with Obesity and PCOS. Reprod. Sci. 2020, 27, 290–300. [Google Scholar] [CrossRef]
- Perry, C.D.; Alekel, D.L.; Ritland, L.M.; Bhupathiraju, S.N.; Stewart, J.W.; Hanson, L.N.; Matvienko, O.A.; Kohut, M.L.; Reddy, M.B.; Van Loan, M.D.; et al. Centrally located body fat is related to inflammatory markers in healthy postmenopausal women. Menopause 2008, 15, 619–627. [Google Scholar] [CrossRef] [Green Version]
- Arsenault, B.J.; Cote, M.; Cartier, A.; Lemieux, I.; Despres, J.P.; Ross, R.; Earnest, C.P.; Blair, S.N.; Church, T.S. Effect of exercise training on cardiometabolic risk markers among sedentary, but metabolically healthy overweight or obese postmenopausal women with elevated blood pressure. Atherosclerosis 2009, 207, 530–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [Green Version]
- Botoseneanu, A.; Ambrosius, W.T.; Beavers, D.P.; de Rekeneire, N.; Anton, S.; Church, T.; Folta, S.C.; Goodpaster, B.H.; King, A.C.; Nicklas, B.J.; et al. Prevalence of metabolic syndrome and its association with physical capacity, disability, and self-rated health in Lifestyle Interventions and Independence for Elders Study participants. J. Am. Geriatr. Soc. 2015, 63, 222–232. [Google Scholar] [CrossRef] [Green Version]
- Botoseneanu, A.; Chen, H.; Ambrosius, W.T.; Allore, H.G.; Anton, S.; Folta, S.C.; King, A.C.; Nicklas, B.J.; Spring, B.; Strotmeyer, E.S.; et al. Metabolic syndrome and the benefit of a physical activity intervention on lower-extremity function: Results from a randomized clinical trial. Exp. Gerontol. 2021, 150, 111343. [Google Scholar] [CrossRef]
- Biteli, P.; Barbalho, S.M.; Detregiachi, C.R.P.; Dos Santos Haber, J.F.; Chagas, E.F.B. Dyslipidemia influences the effect of physical exercise on inflammatory markers on obese women in post-menopause: A randomized clinical trial. Exp. Gerontol. 2021, 150, 111355. [Google Scholar] [CrossRef]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef]
- Gholami, A.; Mollanoroozy, E.; Reza Baradaran, H.; Hariri, M. The efficacy of soy isoflavones combined with soy protein on serum concentration of interleukin-6 and tumour necrosis factor-α among postmenopausal women? A systematic review and meta-analysis of randomized controlled trials. Clin. Exp. Pharmacol. Physiol. 2021, 49, 10–24. [Google Scholar] [CrossRef]
- Bradley, J. TNF-mediated inflammatory disease. J. Pathol. Soc. Great Br. Irel. 2008, 214, 149–160. [Google Scholar] [CrossRef]
- Farsi, F.; Heshmati, J.; Keshtkar, A.; Irandoost, P.; Alamdari, N.M.; Akbari, A.; Janani, L.; Morshedzadeh, N.; Vafa, M. Can coenzyme Q10 supplementation effectively reduce human tumor necrosis factor-α and interleukin-6 levels in chronic inflammatory diseases? A systematic review and meta-analysis of randomized controlled trials. Pharmacol. Res. 2019, 148, 104290. [Google Scholar] [CrossRef]
- Zannas, A.S.; Gordon, J.L.; Hinderliter, A.L.; Girdler, S.S.; Rubinow, D.R. IL-6 Response to Psychosocial Stress Predicts 12-month Changes in Cardiometabolic Biomarkers in Perimenopausal Women. J. Clin. Endocrinol. Metab. 2020, 105, e3757–e3765. [Google Scholar] [CrossRef]
- Santos-Marcos, J.A.; Rangel-Zuñiga, O.A.; Jimenez-Lucena, R.; Quintana-Navarro, G.M.; Garcia-Carpintero, S.; Malagon, M.M.; Landa, B.B.; Tena-Sempere, M.; Perez-Martinez, P.; Lopez-Miranda, J.; et al. Influence of gender and menopausal status on gut microbiota. Maturitas 2018, 116, 43–53. [Google Scholar] [CrossRef]
- Arias-Herrera, S.; Bascones-Ilundian, C.; Bascones-Martínez, A. Difference in the expression of inflammatory mediators in gingival crevicular fluid in postmenopausal patients with chronic periodontitis with and without menopausal hormone therapy. Eur. J. Obstet. Gynecol. Reprod. Biol. X 2019, 3, 100021. [Google Scholar] [CrossRef]
- Nishida, M.; Moriyama, T.; Sugita, Y.; Yamauchi-Takihara, K. Interleukin-10 associates with adiponectin predominantly in subjects with metabolic syndrome. Circ. J. Off. J. Jpn. Circ. Soc. 2007, 71, 1234–1238. [Google Scholar] [CrossRef] [Green Version]
- Chedraui, P.; Escobar, G.S.; Pérez-López, F.R.; Palla, G.; Montt-Guevara, M.; Cecchi, E.; Genazzani, A.R.; Simoncini, T. Angiogenesis, inflammation and endothelial function in postmenopausal women screened for the metabolic syndrome. Maturitas 2014, 77, 370–374. [Google Scholar] [CrossRef]
- Roy, B.; Palaniyandi, S.S. Tissue-specific role and associated downstream signaling pathways of adiponectin. Cell Biosci. 2021, 11, 77. [Google Scholar] [CrossRef]
- Alkhatib, D.H.; Jaleel, A.; Tariq, M.N.M.; Feehan, J.; Apostolopoulos, V.; Cheikh Ismail, L.; Stojanovska, L.; Dhaheri, A.S.A. The Role of Bioactive Compounds from Dietary Spices in the Management of Metabolic Syndrome: An Overview. Nutrients 2021, 14, 175. [Google Scholar] [CrossRef] [PubMed]
- Barańska, A.; Błaszczuk, A.; Kanadys, W.; Baczewska, B.; Jędrych, M.; Wawryk-Gawda, E.; Polz-Dacewicz, M. Effects of Soy Protein Containing of Isoflavones and Isoflavones Extract on Plasma Lipid Profile in Postmenopausal Women as a Potential Prevention Factor in Cardiovascular Diseases: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2021, 13, 2531. [Google Scholar] [CrossRef]
- Moher, D.; Hopewell, S.; Schulz, K.F.; Montori, V.; Gøtzsche, P.C.; Devereaux, P.J.; Elbourne, D.; Egger, M.; Altman, D.G. CONSORT 2010 explanation and elaboration: Updated guidelines for reporting parallel group randomised trials. Int. J. Surg. 2012, 10, 28–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szkup, M.; Chełmecka, E.; Lubkowska, A.; Owczarek, A.J.; Grochans, E.J.A. The influence of the TNFα rs1800629 polymorphism on some inflammatory biomarkers in 45–60-year-old women with metabolic syndrome. Aging 2018, 10, 2935. [Google Scholar] [CrossRef]
- Van Dijk, S.B.; Takken, T.; Prinsen, E.C.; Wittink, H. Different anthropometric adiposity measures and their association with cardiovascular disease risk factors: A meta-analysis. Neth. Heart J. Mon. J. Neth. Soc. Cardiol. Neth. Heart Found. 2012, 20, 208–218. [Google Scholar] [CrossRef] [Green Version]
- Kanellakis, S.; Kourlaba, G.; Moschonis, G.; Vandorou, A.; Manios, Y. Development and validation of two equations estimating body composition for overweight and obese postmenopausal women. Maturitas 2010, 65, 64–68. [Google Scholar] [CrossRef]
- Batista, M.L., Jr.; Rosa, J.C.; Lopes, R.D.; Lira, F.S.; Martins, E., Jr.; Yamashita, A.S.; Brum, P.C.; Lancha, A.H., Jr.; Lopes, A.C.; Seelaender, M. Exercise training changes IL-10/TNF-alpha ratio in the skeletal muscle of post-MI rats. Cytokine 2010, 49, 102–108. [Google Scholar] [CrossRef]
- Gotto, A.M. NCEP ATP III guidelines incorporate global risk assessment. Am. J. Manag. Care 2003, 9, 3. [Google Scholar]
- Santos, C.E.; Schrank, Y.; Kupfer, R. Critical analysis of WHO, IDF and NCEP criteria for metabolic syndrome among patients with type 1 diabetes mellitus. Arq. Bras. Endocrinol. Metabol. 2009, 53, 1096–1102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espírito Santo, H.; Daniel, F.J.P.J.o.B.; Research, S. Calcular e apresentar tamanhos do efeito em trabalhos científicos (2): Guia para reportar a força das relações [Calculating and reporting effect sizes on scientific papers (2): Guide to report the strength of relationships]. Port. J. Behav. Soc. Res. 2017, 3, 53–64. [Google Scholar]
Parameters | Mean | SD |
---|---|---|
Age (year) | 60.54 | 6.74 |
Time without menstruation (months) | 160.94 | 100.18 |
BMI (kg/m2) | 31.78 | 5.21 |
WC (cm) | 95.69 | 12.29 |
Lean mass (kg) | 35.22 | 5.51 |
Fat (%) | 54.88 | 3.18 |
SBP | 128.66 | 13.15 |
DBP | 81.94 | 8.95 |
Gl (mg/dL) | 95.97 | 18.39 |
TC (mg/dL) | 209.84 | 32.96 |
TG (mg/dL) | 147.27 | 64.32 |
HDL-c (mg/dL) | 53.57 | 11.82 |
LDL-c (mg/dL) | 129.04 | 30.31 |
VLDL-c (mg/dL) | 29.46 | 12.86 |
Non-HDL-c (mg/dL) | 156.27 | 33.34 |
IL-6 (pg/mL) | 3.95 | 2.72 |
TNF-α (pg/mL) | 9.03 | 4.65 |
IL-10 (pg/mL) | 12.30 | 4.44 |
IL10-IL6 (pg/mL) | 4.20 | 2.54 |
IL10-TNF-α (pg/mL) | 2.22 | 2.19 |
Condition | n | % |
Dyslipidemia | 46 | 65.7 |
Hypertension | 43 | 61.4 |
Diabetes Mellitus | 12 | 17.1 |
Osteoporosis | 9 | 12.9 |
Osteoarthritis | 21 | 30.0 |
Harmonized | IDF | NCEP ATP-III | |||||||
---|---|---|---|---|---|---|---|---|---|
% | CI 95% | % | CI 95% | % | CI 95% | ||||
LL | UL | LL | UL | LL | UL | ||||
WC | 94.2 a | 86.2 | 97.8 | 94.2 a | 86.2 | 97.8 | 67.1 b | 55.5 | 77.0 |
BP (mmHg) | 22.9 | 14.6 | 34.0 | 22.9 | 14.6 | 34.0 | 22.9 | 14.6 | 34.0 |
GL (mg/dL) | 25.7 | 16.9 | 37.0 | 25.7 | 16.9 | 37.0 | 18.6 | 11.2 | 29.2 |
TG (mg/dL) | 37.1 | 26.8 | 48.9 | 37.1 | 26.8 | 48.9 | 37.1 | 26.8 | 48.9 |
HDL (mg/dL) | 44.3 | 33.2 | 55.9 | 44.3 | 33.2 | 55.9 | 44.3 | 33.2 | 55.9 |
MS | 38.6 | 28.0 | 50.3 | 37.1 | 26.8 | 48.9 | 25.7 | 16.9 | 37.0 |
Criteria | Parameter | Cutoff Point for MS | AUC (IC95%) | p-Value | Sensitivity (IC95%) | Specificity (IC95%) |
---|---|---|---|---|---|---|
Harmonized | IL-10 (pg/mL) | >12.23 | 0.56 (0.44–0.68) | 0.34 | 59.2 (38.8–77.6) | 60.4 (44.4–75.0) |
IDF | >12.23 | 0.56 (0.43–0.67) | 0.40 | 57.6 (36.9–76.6) | 59.0 (43.2–73.7) | |
NCEP ATP-III | >12.23 | 0.61 (0.48–0.72) | 0.13 | 72.2 (46.5–90.3) | 61.5 (47.0–74.7) | |
Harmonized | IL-6 (pg/mL) | >2.17 | 0.55 (0.42–0.67) | 0.45 | 85.1 (66.3–95.8) | 41.8 (27.0–57.9) |
IDF | >2.17 | 0.53 (0.41–0.65) | 0.62 | 84.6 (65.1–95.6) | 40.9 (26.3–56.8) | |
NCEP ATP-III | >2.56 | 0.57 (0.45–0.69) | 0.35 | 72.2 (46.5–90.3) | 48.0 (34.0–62.4) | |
Harmonized | TNF-alfa (pg/mL) | ≤6.39 | 0.60 (0.47–0.71) | 0.15 | 44.4 (25.5–64.7) | 79.0 (64.0–90.0) |
IDF | ≤6.39 | 0.60 (0.47–0.71) | 0.16 | 46.1 (26.6–66.6) | 79.5 (64.7–90.2) | |
NCEP ATP-III | ≤5.24 | 0.63 (0.50–0.74) | 0.09 | 50.0 (26.0–74.0) | 80.7 (67.5–90.4) | |
Harmonized | IL-10/IL-6 (pg/mL) | >7.68 | 0.51 (0.39–0.63) | 0.83 | 3.7 (0.09–19.0) | 86.0 (72.1–94.7) |
IDF | >3.43 | 0.53 (0.40–0.65) | 0.66 | 61.5 (40.6–79.8) | 54.5 (38.8–69.6) | |
NCEP ATP-III | >6.51 | 0.51 (0.38–0.63) | 0.91 | 27.7 (9.7–53.5) | 88.4 (76.6–95.6) | |
Harmonized | IL-10/TNF-α (pg/mL) | >1.41 | 0.61 (0.49–0.73) | 0.09 | 59.2 (38.8–77.6) | 62.7 (46.7–77.0) |
IDF | >4.26 | 0.61 (0.49–0.73) | 0.10 | 30.7 (14.3–51.8) | 88.6 (75.4–96.2) | |
NCEP ATP-III | >1.41 | 0.67 (0.54–0.78) | 0.01 * | 72.2 (46.5–90.3) | 63.4 (49.0–76.4) |
Parameter | MS | Criteria | Two-Way ANOVA | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Harmonized | IDF | NCEP ATP-III | |||||||||||
Mean | CI95% | Mean | CI95% | Mean | CI95% | MS | Criteria | Interaction | |||||
LL | UL | LL | UL | LL | UL | p-Value a | p-Value b | p-Value c | |||||
WC (cm) | No | 94.6 | 90.7 | 98.5 | 94.7 | 90.9 | 98.5 | 93.8 | 90.5 | 97.1 | 0.020 * | 0.768 | 0.515 |
Yes | 97.4 | 92.7 | 102.0 | 97.4 | 92.5 | 102.2 | 101.1 | 95.0 | 107.1 | ||||
Fat (%) | No | 55.4 | 54.4 | 56.3 | 55.4 | 54.5 | 56.3 | 54.9 | 54.1 | 55.8 | 0.023 * | 0.983 | 0.569 |
Yes | 54.0 | 52.7 | 55.3 | 53.9 | 52.6 | 55.2 | 54.6 | 52.8 | 56.3 | ||||
IL-6 (pg/mL) | No | 3.90 | 3.03 | 4.77 | 3.95 | 3.10 | 4.81 | 3.78 | 3.04 | 4.51 | 0.520 | 0.939 | 0.779 |
Yes | 4.02 | 3.00 | 5.05 | 3.94 | 2.89 | 5.00 | 4.45 | 2.96 | 5.93 | ||||
TNF-α (pg/mL) | No | 9.70 | 8.31 | 11.09 | 9.69 | 8.33 | 11.04 | 9.60 | 8.32 | 10.87 | 0.005 * | 0.909 | 0.953 |
Yes | 7.96 | 6.08 | 9.85 | 7.91 | 5.96 | 9.87 | 7.38 | 5.10 | 9.66 | ||||
IL-10 (pg/mL) | No | 12.00 | 10.56 | 13.44 | 12.02 | 10.62 | 13.43 | 11.92 | 10.67 | 13.17 | 0.127 | 0.934 | 0.886 |
Yes | 12.79 | 11.18 | 14.40 | 12.77 | 11.10 | 14.45 | 13.40 | 11.30 | 15.50 | ||||
IL10/IL6 (pg/mL) | No | 4.29 | 3.42 | 5.17 | 4.25 | 3.39 | 5.11 | 4.22 | 3.49 | 4.94 | 0.739 | 0.999 | 0.979 |
Yes | 4.06 | 3.28 | 4.85 | 4.14 | 3.33 | 4.94 | 4.17 | 2.98 | 5.37 | ||||
IL10/TNF-α (pg/mL) | No | 1.88 | 1.30 | 2.46 | 1.87 | 1.30 | 2.44 | 2.00 | 1.40 | 2.60 | 0.005 * | 0.959 | 0.994 |
Yes | 2.77 | 1.77 | 3.77 | 2.82 | 1.79 | 3.86 | 2.87 | 1.76 | 3.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinatora, R.V.; Chagas, E.F.B.; Mattera, F.O.P.; Mellem, L.J.; Santos, A.R.d.O.d.; Pereira, L.P.; Aranão, A.L.d.C.; Guiguer, E.L.; Araújo, A.C.; Haber, J.F.d.S.; et al. Relationship of Inflammatory Markers and Metabolic Syndrome in Postmenopausal Women. Metabolites 2022, 12, 73. https://doi.org/10.3390/metabo12010073
Sinatora RV, Chagas EFB, Mattera FOP, Mellem LJ, Santos ARdOd, Pereira LP, Aranão ALdC, Guiguer EL, Araújo AC, Haber JFdS, et al. Relationship of Inflammatory Markers and Metabolic Syndrome in Postmenopausal Women. Metabolites. 2022; 12(1):73. https://doi.org/10.3390/metabo12010073
Chicago/Turabian StyleSinatora, Renata Vargas, Eduardo Federighi Baisi Chagas, Fernando Otavio Pires Mattera, Luciano Junqueira Mellem, Ana Rita de Oliveira dos Santos, Larissa Pires Pereira, Ana Luíza de Carvalho Aranão, Elen Landgraf Guiguer, Adriano Cressoni Araújo, Jesselina F. dos Santos Haber, and et al. 2022. "Relationship of Inflammatory Markers and Metabolic Syndrome in Postmenopausal Women" Metabolites 12, no. 1: 73. https://doi.org/10.3390/metabo12010073
APA StyleSinatora, R. V., Chagas, E. F. B., Mattera, F. O. P., Mellem, L. J., Santos, A. R. d. O. d., Pereira, L. P., Aranão, A. L. d. C., Guiguer, E. L., Araújo, A. C., Haber, J. F. d. S., Guissoni, L. C., & Barbalho, S. M. (2022). Relationship of Inflammatory Markers and Metabolic Syndrome in Postmenopausal Women. Metabolites, 12(1), 73. https://doi.org/10.3390/metabo12010073