The Effect of Organic and Conventional Cultivation Systems on the Profile of Volatile Organic Compounds in Winter Wheat Grain, Including Susceptibility to Fusarium Head Blight
Abstract
:1. Introduction
2. Material and Methods
2.1. Field Experiments
2.2. Analysis of VOCs
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shewry, P.R. Wheat. J. Exp. Bot. 2009, 60, 1537–1553. [Google Scholar] [CrossRef] [PubMed]
- Sissons, M. Durum Wheat Chemistry and Technology; Elsevier Science: Amsterdam, The Netherlands, 2016; ISBN 9780128104323. [Google Scholar]
- Przybylska-Balcerek, A.; Szablewski, T.; Cegielska-Radziejewska, R.; Góral, T.; Kurasiak-Popowska, D.; Stuper-Szablewska, K. Assessment of Antimicrobial Properties of Phenolic Acid Extracts from Grain Infected with Fungi from the Genus Fusarium. Molecules 2022, 27, 1741. [Google Scholar] [CrossRef] [PubMed]
- Stȩpień, Ł.; Chełkowski, J. Fusarium Head Blight of Wheat: Pathogenic Species and Their Mycotoxins. World Mycotoxin J. 2010, 3, 107–119. [Google Scholar] [CrossRef]
- Paul, P.A.; Lipps, P.E.; Hershman, D.E.; McMullen, M.P.; Draper, M.A.; Madden, L.V. Efficacy of Triazole-Based Fungicides for Fusarium Head Blight and Deoxynivalenol Control in Wheat: A Multivariate Meta-Analysis. Phytopathology 2008, 98, 999–1011. [Google Scholar] [CrossRef] [PubMed]
- van Bruggen, A.H.C.; Gamliel, A.; Finckh, M.R. Plant Disease Management in Organic Farming Systems. Pest Manag. Sci. 2016, 72, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Tsalidis, G.A. Human Health and Ecosystem Quality Benefits with Life Cycle Assessment Due to Fungicides Elimination in Agriculture. Sustainability 2022, 14, 846. [Google Scholar]
- Karlsson, I.; Friberg, H.; Kolseth, A.K.; Steinberg, C.; Persson, P. Organic Farming Increases Richness of Fungal Taxa in the Wheat Phyllosphere. Mol. Ecol. 2017, 26, 3424–3436. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the Yields of Organic and Conventional Agriculture. Nature 2012, 485, 229–232. [Google Scholar] [CrossRef]
- Mäder, P.; Hahn, D.; Dubois, D.; Gunst, L.; Alföldi, T.; Bergmann, H.; Oehme, M.; Amadò, R.; Schneider, H.; Graf, U.; et al. Wheat Quality in Organic and Conventional Farming: Results of a 21 Year Field Experiment. J. Sci. Food Agric. 2007, 87, 1826–1835. [Google Scholar] [CrossRef]
- Mohd Ali, M.; Hashim, N.; Abd Aziz, S.; Lasekan, O. Principles and Recent Advances in Electronic Nose for Quality Inspection of Agricultural and Food Products. Trends Food Sci. Technol. 2020, 99, 1–10. [Google Scholar] [CrossRef]
- Jeleń, H.H.; Latus-Ziętkiewicz, D.; Wąsowicz, E.; Kamiński, E. Trichodiene as a Volatile Marker for Trichothecenes Biosynthesis. J. Microbiol. Methods 1997, 31, 45–49. [Google Scholar] [CrossRef]
- Knudsen, J.T.; Eriksson, R.; Gershenzon, J.; Ståhl, B. Diversity and Distribution of Floral Scent. Bot. Rev. 2006, 72, 1. [Google Scholar] [CrossRef]
- Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. Biosynthesis, Function and Metabolic Engineering of Plant Volatile Organic Compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef]
- Korpi, A.; Jarnberg, J.; Pasanen, A.L. Microbial Volatile Organic Compounds. Crit. Rev. Toxicol. 2009, 39, 139–193. [Google Scholar] [CrossRef] [PubMed]
- Weisskopf, L.; Schulz, S.; Garbeva, P. Microbial Volatile Organic Compounds in Intra-Kingdom and Inter-Kingdom Interactions. Nat. Rev. Microbiol. 2021, 19, 391–404. [Google Scholar] [CrossRef] [PubMed]
- Góral, T.; Stuper-Szablewska, K.; Buśko, M.; Boczkowska, M.; Walentyn-Góral, D.; Wiśniewska, H.; Perkowski, J. Relationships Between Genetic Diversity and Fusarium Toxin Profiles of Winter Wheat Cultivars Relationships Between Genetic Diversity and Fusarium Toxin Profiles of Winter. Plant Pathol. J. 2015, 31, 226–244. [Google Scholar] [CrossRef]
- Lancashire, P.D.; Bleiholder, H.; Boom TV, D.; Langelüddeke, P.; Stauss, R.; Weber, E.; Witzenberger, A. A Uniform Decimal Code for Growth Stages of Crops and Weeds. Ann. Appl. Biol. 1991, 119, 561–601. [Google Scholar] [CrossRef]
- Góral, T.; Wiśniewska, H.; Ochodzki, P.; Walentyn-Góral, D.; Kwiatek, M. Reaction of Winter Triticale Breeding Lines to Fusarium Head Blight and Accumulation of Fusarium Metabolites in Grain in Two Environments under Drought Conditions. Cereal Res. Commun. 2013, 41, 106–115. [Google Scholar] [CrossRef]
- Góral, T.; Wiśniewska, H.; Ochodzki, P.; Nielsen, L.K.; Walentyn-Góral, D.; Stępień, Ł. Relationship between Fusarium Head Blight, Kernel Damage, Concentration of Fusarium Biomass, and Fusarium Toxins in Grain of Winter Wheat Inoculated with Fusarium culmorum. Toxins 2019, 11, 2. [Google Scholar] [CrossRef]
- Gracka, A.; Raczyk, M.; Hradecký, J.; Hajslova, J.; Jeziorski, S.; Karlovits, G.; Michalak, B.; Bąkowska, N.; Jeleń, H. Volatile Compounds and Other Indicators of Quality for Cold-Pressed Rapeseed Oils Obtained from Peeled, Whole, Flaked and Roasted Seeds. Eur. J. Lipid Sci. Technol. 2017, 119, 1600328. [Google Scholar] [CrossRef]
- Busko, M.; Jelen, H.; Goral, T.; Chmielewski, J.; Stuper, K.; Szwajkowska-Michalek, L.; Tyrakowska, B.; Perkowski, J. Volatile Metabolites in Various Cereal Grains. Food Addit. Contam. Part A-Chem. Anal. Control. Expo. Risk Assess. 2010, 27, 1574–1581. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Jeleń, H.H. Comprehensive Two-Dimensional Gas Chromatography–Time of Flight Mass Spectrometry (GC × GC-TOFMS) in Conventional and Reversed Column Configuration for the Investigation of Baijiu Aroma Types and Regional Origin. J. Chromatogr. A 2021, 1636, 461774. [Google Scholar] [CrossRef] [PubMed]
- Beleggia, R.; Platani, C.; Spano, G.; Monteleone, M.; Cattivelli, L. Metabolic Profiling and Analysis of Volatile Composition of Durum Wheat Semolina and Pasta. J. Cereal Sci. 2009, 49, 301–309. [Google Scholar] [CrossRef]
- Buśko, M.; Góral, T.; Boczkowska, M.; Perkowski, J. Relationships between Volatile Organic Compounds with an Emphasis on Terpene Compounds and Genetic Matrix in Inoculated and Non-Inoculated Winter Wheat Cultivars. Chem. Ecol. 2019, 35, 971–986. [Google Scholar] [CrossRef]
- Buśko, M.; Kulik, T.; Ostrowska, A.; Góral, T.; Perkowski, J. Quantitative Volatile Compound Profiles in Fungal Cultures of Three Different Fusarium graminearum Chemotypes. FEMS Microbiol. Lett. 2014, 359, 85–93. [Google Scholar] [CrossRef]
- Demyttenaere, J.C.R.; Moriña, R.M.; De Kimpe, N.; Sandra, P. Use of Headspace Solid-Phase Microextraction and Headspace Sorptive Extraction for the Detection of the Volatile Metabolites Produced by Toxigenic Fusarium Species. J. Chromatogr. A 2004, 1027, 147–154. [Google Scholar] [CrossRef]
- Girotti, J.R.; Malbrán, I.; Lori, G.A.; Juárez, M.P. Use of Solid Phase Microextraction Coupled to Capillary Gas Chromatography-Mass Spectrometry for Screening Fusarium Spp. Based on Their Volatile Sesquiterpenes. World Mycotoxin J. 2010, 3, 121–128. [Google Scholar] [CrossRef]
- Saccà, M.L.; Bianchi, G.; Scalzo, R. Lo Biosynthesis of 2-Heptanone, a Volatile Organic Compound with a Protective Role against Honey Bee Pathogens, by Hive Associated Bacteria. Microorganisms 2021, 9, 2218. [Google Scholar] [CrossRef]
- De Nys, R.; Givskov, M.; Kumar, N.; Kjelleberg, S.; Steinberg, P.D. Furanones; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Hartmann, M.; Frey, B.; Mayer, J.; Mäder, P.; Widmer, F. Distinct Soil Microbial Diversity under Long-Term Organic and Conventional Farming. ISME J. 2015, 9, 1177–1194. [Google Scholar] [CrossRef]
- Góral, T.; Łukanowski, A.; Małuszyńska, E.; Stuper-Szablewska, K.; Buśko, M.; Perkowski, J. Performance of Winter Wheat Cultivars Grown Organically and Conventionally with Focus on Fusarium Head Blight and Fusarium Trichothecene Toxins. Microorganisms 2019, 7, 439. [Google Scholar] [CrossRef]
- Yu, A.Q.; Pratomo Juwono, N.K.; Leong, S.S.J.; Chang, M.W. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes. Front. Bioeng. Biotechnol. 2014, 2, 78. [Google Scholar] [CrossRef] [PubMed]
- Perkowski, J.; Wiwart, M.; Busko, M.; Laskowska, M.; Berthiller, F.; Kandler, W.; Krska, R. Fusarium Toxins and Total Fungal Biomass Indicators in Naturally Contaminated Wheat Samples from North-Eastern Poland in 2003. Food Addit. Contam. 2007, 24, 1292–1298. [Google Scholar] [CrossRef] [PubMed]
- Ting AS, Y.; Mah, S.W.; Tee, C.S. Identification of volatile metabolites from fungal endophytes with biocontrol potential towards Fusarium oxysporum F. sp. cubense race 4. Am. J. Agric. Biol. Sci. 2010, 5, 177–182. [Google Scholar] [CrossRef]
- Kohlhaw, G.B. Leucine Biosynthesis in Fungi: Entering Metabolism through the Back Door. Microbiol. Mol. Biol. Rev. 2003, 67, 1–15. [Google Scholar] [CrossRef]
- Hollomon, D.W. Fungicide Resistance: Facing the Challenge. Plant Prot. Sci. 2015, 51, 170–176. [Google Scholar] [CrossRef]
- Kavamura, V.N.; Mendes, R.; Bargaz, A.; Mauchline, T.H. Defining the Wheat Microbiome: Towards Microbiome-Facilitated Crop Production. Comput. Struct. Biotechnol. J. 2021, 19, 1200–1213. [Google Scholar] [CrossRef]
- Podolska, G.; Bryła, M.; Sulek, A.; Waskiewicz, A.; Szymczyk, K.; Jedrzejczak, R. Influence of the Cultivar and Nitrogen Fertilisation Level on the Mycotoxin Contamination in Winter Wheat. Qual. Assur. Saf. Crops Foods 2017, 9, 451–461. [Google Scholar] [CrossRef]
No. | Cultivar | No. | Cultivar | No. | Cultivar | |||
---|---|---|---|---|---|---|---|---|
1 | Akteur | MS | 11 | Jenga | MS | 21 | Naridana | MS |
2 | Alcazar | S | 12 | Kampana | S | 22 | Nateja | R |
3 | Anthus | MS | 13 | Kohelia | MR | 23 | Ostka Strzelecka MS | |
4 | Batuta | MS | 14 | Legenda | MR | 24 | Ostroga | MR |
5 | Belenus | MS | 15 | Ludwig | MS | 25 | Slade | MS |
6 | Bogatka | MR | 16 | Markiza | MS | 26 | Smuga | S |
7 | Boomer | MR | 17 | Meteor | MS | 27 | Sukces | MR |
8 | Dorota | MR | 18 | Mewa | MS | 28 | Tonacja | MR |
9 | Figura | MS | 19 | Mulan | MS | 29 | Türkis | MS |
10 | Garantus | MS | 20 | Muszelka | S | 30 | Zyta | MR |
Months | May | June | July | |||
---|---|---|---|---|---|---|
Temperature °C | ||||||
Min | Max | Min | Max | Min | Max | |
I decade | 5.2 | 17.9 | 10.7 | 21.6 | 14.1 | 26.4 |
II decade | 4.6 | 16.8 | 15.4 | 26.4 | 12.2 | 24.8 |
III decade | 6.8 | 18.8 | 16.6 | 26.3 | 12.9 | 26.2 |
Average | 5.6 | 17.8 | 14.2 | 24.7 | 13.1 | 25.8 |
Average temperature | 11.8 | 19.1 | 19.2 | |||
Precipitation (mm) | ||||||
I decade | 18.8 | 16.0 | 0.6 | |||
II decade | 24.4 | 34.4 | 4.0 | |||
III decade | 30.8 | 2.9 | 6.6 | |||
Sum of precipitation | 74.0 | 53.3 | 11.2 |
Chemical Group | O | F | I | C | ||||
---|---|---|---|---|---|---|---|---|
Alcohol | 221.61 | b | 515.01 | a | 427.88 | a | 471.33 | a |
Aldehyde | 156.11 | b | 245.69 | a | 202.15 | ab | 182.96 | ab |
Aromatic hydrocarbons | 32.90 | c | 49.28 | a | 41.99 | b | 45.54 | ab |
Cyclic compounds | 259.31 | b | 241.66 | b | 276.15 | b | 349.16 | a |
Esters | 94.09 | ab | 128.43 | a | 88.34 | b | 91.11 | ab |
Furan derivatives | 64.23 | c | 120.39 | ab | 140.43 | a | 101.20 | b |
Heterocyclic compounds | 108.56 | ab | 112.93 | a | 161.01 | a | 120.47 | a |
Aliphatic hydrocarbon | 116.41 | b | 228.87 | a | 99.53 | b | 232.55 | a |
Ketone | 70.70 | b | 108.94 | a | 110.91 | a | 103.62 | a |
Nitrogen compounds | 7.49 | bc | 6.92 | c | 9.43 | a | 8.22 | b |
Phenolic compound | 4.58 | a | 4.44 | a | 4.09 | a | 5.05 | a |
Phenylpropanoids | 0.63 | a | 0.24 | c | 0.20 | c | 0.38 | b |
Sulfur compound | 4.10 | b | 58.89 | a | 4.21 | b | 2.92 | b |
Terpene | 28.43 | b | 37.59 | a | 36.85 | a | 35.25 | a |
Σ | 1169.15 | c | 1859.29 | a | 1603.17 | b | 1749.75 | a |
Chemical Group | Compound | O | F | I | C | ||||
---|---|---|---|---|---|---|---|---|---|
Alcohol | 1-Butanol *† | 34.383 | c | 51.170 | a | 36.418 | c | 43.881 | b |
1-Heptanol, 2-propyl- | 1.546 | c | 2.696 | b | 2.143 | bc | 4.831 | a | |
1-Hexanol * | 76.887 | b | 189.240 | a | 165.576 | a | 191.308 | a | |
1-Methylcycloheptanol † | 0.399 | d | 1.461 | b | 2.106 | a | 0.769 | c | |
1-Octanol * | 0.591 | b | 3.154 | a | 2.944 | a | 2.587 | a | |
1-Octen-3-ol | 6.649 | c | 17.572 | a | 17.936 | a | 12.644 | b | |
1-Pentanol * | 34.617 | c | 75.650 | a | 62.998 | b | 55.990 | b | |
1-Penten-3-ol * | 12.972 | c | 22.353 | b | 18.259 | bc | 33.323 | a | |
3-Octanol, 3,7-dimethyl- * | 0.586 | c | 0.977 | b | 1.223 | a | 1.027 | b | |
3-Pentanol, 2-methyl- † | 1.810 | bc | 2.935 | a | 1.503 | c | 2.259 | b | |
Benzenemethanol, α,α-dimethyl- | 0.423 | c | 0.616 | b | 0.590 | b | 0.787 | a | |
Ethanol, 2-butoxy- | 4.614 | d | 8.002 | b | 6.230 | c | 9.270 | a | |
Aldehyde | Benzeneacetaldehyde * | 5.084 | c | 8.790 | b | 11.335 | a | 9.611 | b |
Butanal, 2-ethyl-3-methyl- | 1.553 | c | 2.852 | a | 2.416 | b | 2.373 | b | |
Hexanal, 2-ethyl- * | 0.986 | c | 1.718 | a | 1.614 | a | 1.376 | b | |
Aromatic hydrocarbons | 1-(3-Methylbutyl)-2,3,4-trimethylbenzene | 0.243 | b | 0.336 | a | 0.370 | a | 0.323 | a |
1H-Indene, 1-ethylidene- | 6.253 | b | 11.032 | a | 10.498 | a | 11.021 | a | |
Benzaldehyde, 4-ethyl- *† | 2.431 | a | 0.572 | bc | 0.344 | c | 0.979 | b | |
Benzene, 1,2,3-trimethyl- | 3.824 | c | 5.148 | b | 5.638 | ab | 5.767 | a | |
Benzene, 1,3-dimethyl-5-(1-methylethyl)- *† | 0.226 | c | 0.327 | b | 0.241 | c | 0.736 | a | |
Benzene, 1,4-diethyl- * | 0.418 | c | 0.643 | b | 0.738 | a | 0.698 | ab | |
Biphenyl | 2.171 | b | 2.967 | a | 3.275 | a | 2.993 | a | |
Biphenylene * | 0.440 | b | 0.719 | a | 0.665 | a | 0.694 | a | |
Naphthalene, 1,2,3,4-tetrahydro- | 0.208 | b | 0.283 | a | 0.298 | a | 0.294 | a | |
Naphthalene, 1,2,3-trimethyl-4-propenyl-, (E)- | 0.153 | c | 0.250 | a | 0.158 | c | 0.203 | b | |
Phenol, 2,4-bis(1,1-dimethylethyl)- * | 0.207 | c | 0.443 | a | 0.327 | b | 0.448 | a | |
Cyclic compounds | 1,3,5,7-Cyclooctatetraene *† | 14.861 | b | 17.715 | b | 20.745 | b | 69.634 | a |
Esters | Benzoic acid, 2-hydroxy-, pentyl ester * | 0.171 | c | 0.213 | b | 0.225 | b | 0.266 | a |
Benzoic acid, 4-(1-methylethyl)-, methyl ester | 0.872 | c | 1.626 | ab | 1.782 | a | 1.312 | b | |
Furan derivatives | 2(3H)-Furanone, 5-ethenyldihydro-5-methyl- *† | 0.753 | b | 0.872 | b | 0.856 | b | 1.100 | a |
2(3H)-Furanone, 5-ethyldihydro- * | 6.083 | b | 9.844 | a | 10.542 | a | 9.883 | a | |
2(3H)-Furanone, 5-hexyldihydro- * | 2.793 | d | 5.959 | b | 7.904 | a | 5.031 | c | |
Dibenzofuran | 2.247 | b | 3.400 | a | 3.172 | a | 3.517 | a | |
Heterocyclic compounds | Benzothiazole * | 2.125 | c | 3.737 | b | 3.751 | b | 4.367 | a |
Oxepine, 2,7-dimethyl- | 0.654 | c | 0.865 | b | 0.937 | b | 1.092 | a | |
Aliphatic hydrocarbon | Decane, 2-methyl- | 0.875 | c | 1.227 | b | 0.959 | bc | 2.615 | a |
Hexane *† | 62.511 | b | 154.362 | a | 17.947 | c | 157.257 | a | |
Octane, 3,5-dimethyl- * | 1.636 | d | 2.653 | b | 3.133 | a | 2.258 | c | |
Tetradecane * | 20.006 | c | 21.870 | c | 25.761 | b | 30.290 | a | |
Undecane, 5-ethyl- | 3.068 | c | 4.163 | b | 4.834 | a | 3.568 | c | |
Ketone | 1-Penten-3-one * | 5.829 | a | 4.148 | b | 2.231 | c | 4.354 | b |
2,6,6-Trimethyl-2-cyclohexene-1,4-dione * | 1.178 | c | 1.917 | b | 1.770 | b | 2.341 | a | |
2-Cyclohexen-1-one, 3,5,5-trimethyl- | 0.589 | c | 0.880 | b | 1.054 | a | 1.002 | ab | |
2-Heptanone | 8.130 | d | 16.893 | b | 20.269 | a | 13.672 | c | |
2-Heptanone, 6-methyl- * | 3.155 | c | 4.603 | b | 5.414 | a | 4.476 | b | |
2-Hexanone * | 1.799 | b | 2.916 | a | 3.337 | a | 3.038 | a | |
2-Hexanone, 4-methyl- *† | 1.447 | b | 0.748 | c | 0.918 | c | 1.997 | a | |
2-Nonanone *† | 2.850 | c | 4.049 | b | 5.977 | a | 3.609 | bc | |
2-Pentanone * | 9.061 | b | 17.851 | a | 17.222 | a | 15.693 | a | |
3-Buten-2-one, 4-phenyl-, (E)- † | 0.998 | b | 0.613 | c | 1.351 | a | 1.157 | ab | |
3-Ethylcyclopentanone * | 0.581 | b | 0.862 | a | 0.817 | a | 0.928 | a | |
3-Heptanone | 2.564 | c | 4.215 | b | 4.218 | b | 5.619 | a | |
Benzophenone * | 0.322 | b | 0.534 | a | 0.384 | b | 0.550 | a | |
Cyclohexanone, 2,2,6-trimethyl- * | 0.366 | c | 0.611 | b | 1.000 | a | 0.675 | b | |
Cyclohexanone, 5-methyl-2-(1-methylethyl)- * | 0.202 | c | 0.294 | bc | 0.535 | a | 0.408 | b | |
Phenylpropanoids | 1,3-Benzodioxole, 5-(2-propenyl)- *† | 0.631 | a | 0.241 | c | 0.204 | c | 0.377 | b |
Sulfur compound | 2-Undecanethiol, 2-methyl- *† | 1.019 | c | 4.336 | a | 2.329 | b | 1.553 | bc |
Terpene | 2,5-Cyclohexadiene-1,4-dione, 2,6-bis(1,1-dimethylethyl)- | 0.172 | c | 0.228 | b | 0.283 | a | 0.240 | b |
3-Cyclohexene-1-methanol, Ó,Ó4-trimethyl- * | 0.539 | b | 0.998 | a | 1.052 | a | 0.983 | a | |
Benzenemethanol, Ó,Ó,4-trimethyl- † | 1.379 | c | 2.793 | b | 2.768 | b | 3.542 | a | |
Bicyclo[3,1,1]hept-2-ene, 2,6,6-trimethyl-, (˝)- | 6.866 | c | 10.668 | a | 10.696 | a | 8.495 | b | |
Trichodiene * | 0.985 | c | 1.687 | b | 2.662 | a | 1.521 | b |
Compound | O | F | I | C | ||||
---|---|---|---|---|---|---|---|---|
1-Butanol, 3-methyl- | 17.24 | c | 90.76 | a | 59.57 | b | 59.75 | b |
1-Octanol | 0.59 | b | 3.15 | a | 2.94 | a | 2.59 | a |
1-Octen-3-ol | 6.65 | c | 17.57 | a | 17.94 | a | 12.64 | b |
Hexanal | 55.40 | b | 104.65 | a | 65.84 | ab | 51.00 | b |
Octanal | 5.32 | a | 9.11 | a | 5.18 | a | 9.20 | a |
1,3,5,7-Cyclooctatetraene | 14.86 | b | 17.72 | b | 20.75 | b | 69.63 | a |
2-Heptanone | 8.13 | d | 16.89 | b | 20.27 | a | 13.67 | c |
2-Nonanone | 2.85 | c | 4.05 | b | 5.98 | a | 3.61 | bc |
2-Octanone | 6.57 | c | 20.33 | a | 14.85 | ab | 10.90 | bc |
3-Carene | 1.40 | a | 1.22 | a | 0.74 | b | 1.55 | a |
Trichodiene | 0.98 | c | 1.69 | b | 2.66 | a | 1.52 | b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buśko, M.; Gracka, A.; Jeleń, H.; Szablewska, K.S.; Przybylska-Balcerek, A.; Szwajkowska-Michałek, L.; Góral, T. The Effect of Organic and Conventional Cultivation Systems on the Profile of Volatile Organic Compounds in Winter Wheat Grain, Including Susceptibility to Fusarium Head Blight. Metabolites 2023, 13, 1045. https://doi.org/10.3390/metabo13101045
Buśko M, Gracka A, Jeleń H, Szablewska KS, Przybylska-Balcerek A, Szwajkowska-Michałek L, Góral T. The Effect of Organic and Conventional Cultivation Systems on the Profile of Volatile Organic Compounds in Winter Wheat Grain, Including Susceptibility to Fusarium Head Blight. Metabolites. 2023; 13(10):1045. https://doi.org/10.3390/metabo13101045
Chicago/Turabian StyleBuśko, Maciej, Anna Gracka, Henryk Jeleń, Kinga Stuper Szablewska, Anna Przybylska-Balcerek, Lidia Szwajkowska-Michałek, and Tomasz Góral. 2023. "The Effect of Organic and Conventional Cultivation Systems on the Profile of Volatile Organic Compounds in Winter Wheat Grain, Including Susceptibility to Fusarium Head Blight" Metabolites 13, no. 10: 1045. https://doi.org/10.3390/metabo13101045
APA StyleBuśko, M., Gracka, A., Jeleń, H., Szablewska, K. S., Przybylska-Balcerek, A., Szwajkowska-Michałek, L., & Góral, T. (2023). The Effect of Organic and Conventional Cultivation Systems on the Profile of Volatile Organic Compounds in Winter Wheat Grain, Including Susceptibility to Fusarium Head Blight. Metabolites, 13(10), 1045. https://doi.org/10.3390/metabo13101045