Enhancing Metabolism and Milk Production Performance in Periparturient Dairy Cattle through Rumen-Protected Methionine and Choline Supplementation
Abstract
:1. Introduction
2. Materials and Methods
3. Interplay of Methionine and Choline in One-Carbon Metabolism and Amino Acid Regulation
4. The Role of RPM and RPC in Metabolism and Milk Production Performance of Dairy Cattle
4.1. RPM Role in Metabolism and Nitrogen Utilization of Dairy Cattle
4.2. Rumen-Protected Methionine’s Role in Ruminants’ Milk Production
4.3. Molecular Mechanisms Unveiling the Influence of Methionine Supplementation on Dairy Cattle Milk Production Performance
4.4. Rumen-Protected Choline Role in Metabolism of Dairy Cattle
4.5. RPC Role in Milk Production of Dairy Cattle
RPC Treatment | Main Outcomes | Author |
---|---|---|
RPC at 15 g/day/head. |
| [171] |
RPC at 54 g for 40 days before and 120 days after calving. |
| [169] |
Supplementing 12.9 g/d of choline ion. |
| [56] |
The RPC supplementation was initiated during the final month of the transitional period and two months postparturient at 50 g/day/head. |
| [178] |
The RPC product supplemented (60 g/d ReaShure, Balchem Corp., New Hampton, NY, USA) contained 28.8% choline chloride as per manufacture information, which supplied supplemented cows a daily dose of 12.9 g of choline ion. |
| [38] |
RPC supplementation. |
| [179] |
RPC supplementation. |
| [37] |
200 g RPC after calving for 60 days of lactation, which provided 50 g per day choline. |
| [180] |
22 g choline ion from an established product (prepartum: 0.10 ± 0.004 choline ion, %DM. |
| [181] |
RPC at 15 to 50 g/day/head. |
| [55] |
The RPC supplemented at 40 g/d/head. |
| [35] |
RPC at 54 g for 90 days (pre- and postcalving). |
| [182] |
RPC at 10 g 20 days pre-calving and 64 days post-calving. |
| [183] |
RPC at 30 g for 8 weeks after calving. |
| [184] |
RPC and vitamin B supplementation. |
| [185] |
60 g/d of RPC (13.0 g/d of choline ion). |
| [186] |
Supplemented 60 g of RPC/d (providing 15 g choline chloride) during the first 10 weeks of lactation. |
| [187] |
RPC at 30 g/day per cow for the first 16 d of lactation. |
| [188] |
RPC supplementation. |
| [189] |
RPC was supplemented at 17.3 g/d/per cow from 21 days before the calving date to 21 days after. |
| [176] |
RPC at 60 g/d. |
| [15,121] |
Dose of RPC was from 15 to 50 g. |
| [190] |
RPC |
| [191] |
RPC |
| [192] |
RPC |
| [193] |
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kabir, M.; Hasan, M.M.; Tanni, N.S.; Parvin, M.S.; Asaduzzaman, M.; Ehsan, M.A.; Islam, M.T. Metabolic profiling in periparturient dairy cows and its relation with metabolic diseases. BMC Res. Notes 2022, 15, 231. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.Z.; Liu, S.; Ma, Y.; Ma, M.; Ullah, Q.; Khan, I.M.; Wang, J.; Xiao, J.; Chen, T.; Khan, A.; et al. Overview of the effect of rumen-protected limiting amino acids (methionine and lysine) and choline on the immunity, antioxidative, and inflammatory status of periparturient ruminants. Front. Immunol. 2023, 13, 1042895. [Google Scholar] [CrossRef] [PubMed]
- Janovick, N.A.; Drackley, J.K. Prepartum dietary management of energy intake affects postpartum intake and lactation performance by primiparous and multiparous Holstein cows. J. Dairy Sci. 2010, 93, 3086–3102. [Google Scholar] [CrossRef] [PubMed]
- Janovick, N.A.; Boisclair, Y.R.; Drackley, J.K. Prepartum dietary energy intake affects metabolism and health during the periparturient period in primiparous and multiparous Holstein cows. J. Dairy Sci. 2011, 94, 1385–1400. [Google Scholar] [CrossRef] [PubMed]
- Gumen, A.H.; Keskin, A.B.; Yilmazbas-Mecitoglu, G.U.; Karakaya, E.; Wiltbank, M.C. Dry period management and optimization of post-partum reproductive management in dairy cattle. Reprod. Domest. Anim. 2011, 46, 11–17. [Google Scholar] [CrossRef]
- Xiao, J.; Khan, M.Z.; Ma, Y.; Alugongo, G.M.; Ma, J.; Chen, T.; Khan, A.; Cao, Z. The antioxidant properties of selenium and vitamin E; their role in periparturient dairy cattle health regulation. Antioxidants 2021, 10, 1555. [Google Scholar] [CrossRef]
- Khan, M.Z.; Ma, Y.; Xiao, J.; Chen, T.; Ma, J.; Liu, S.; Wang, Y.; Khan, A.; Alugongo, G.M.; Cao, Z. Role of Selenium and Vitamins E and B9 in the Alleviation of Bovine Mastitis during the Periparturient Period. Antioxidants 2022, 11, 657. [Google Scholar] [CrossRef]
- Khan, M.Z.; Zhang, Z.; Liu, L.; Wang, D.; Mi, S.; Liu, X.; Liu, G.; Guo, G.; Li, X.; Wang, Y.; et al. Folic acid supplementation regulates key immunity-associated genes and pathways during the periparturient period in dairy cows. Asian-Australas. J. Anim. Sci. 2020, 33, 1507. [Google Scholar] [CrossRef]
- Sordillo, L.M.; Raphael, W. Significance of metabolic stress, lipid mobilization, and inflammation on transition cow disorders. Vet. Clin. N. Am. Food Anim. Pract. 2013, 29, 267–278. [Google Scholar] [CrossRef]
- Drackley, J.K.; Dann, H.M.; Douglas, N.; Guretzky, N.A.; Litherland, N.B.; Underwood, J.P.; Loor, J.J. Physiological and pathological adaptations in dairy cows that may increase susceptibility to periparturient diseases and disorders. Ital. J. Anim. Sci. 2005, 4, 323–344. [Google Scholar] [CrossRef]
- Li, C.; Batistel, F.; Osorio, J.S.; Drackley, J.K.; Luchini, D.; Loor, J.J. Peripartal rumen-protected methionine supplementation to higher energy diets elicits positive effects on blood neutrophil gene networks, performance, and liver lipid content in dairy cows. J. Anim. Sci. Biotechnol. 2016, 7, 18. [Google Scholar] [CrossRef]
- Abreu, M.B.; Valldecabres, A.; Marcondes, M.I.; Correa, A.; Lobos, N.E.; Peterson, C.B.; Atwell, D.; Silva-del-Rio, N. Implications of supplementing mid-lactation multiparous Holstein cows fed high by-product low-forage diets with rumen-protected methionine and lysine in a commercial dairy. Animal 2023, 17, 100749. [Google Scholar] [CrossRef] [PubMed]
- Batistel, F.; Arroyo, J.M.; Garces, C.I.; Trevisi, E.; Parys, C.; Ballou, M.A.; Cardoso, F.C.; Loor, J.J. Ethyl-cellulose rumen-protected methionine alleviates inflammation and oxidative stress and improves neutrophil function during the periparturient period and early lactation in Holstein dairy cows. J. Dairy Sci. 2018, 101, 480–490. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Coleman, D.N.; Hu, L.; Martinez-Cortés, I.; Wang, M.; Parys, C.; Shen, X.; Loor, J.J. Methionine and arginine supplementation alter inflammatory and oxidative stress responses during lipopolysaccharide challenge in bovine mammary epithelial cells in vitro. J. Dairy Sci. 2020, 103, 676–689. [Google Scholar] [CrossRef]
- Arshad, U.; Husnain, A.; Poindexter, M.B.; Zimpel, R.; Nelson, C.D.; Santos, J.E. Rumen-protected choline reduces hepatic lipidosis by increasing hepatic triacylglycerol-rich lipoprotein secretion in dairy cows. J. Dairy Sci. 2023, in press. [Google Scholar] [CrossRef]
- Arshad, U.; Husnain, A.; Poindexter, M.B.; Zimpel, R.; Perdomo, M.C.; Santos, J.E. Effect of source and amount of rumen-protected choline on hepatic metabolism during induction of fatty liver in dairy cows. J. Dairy Sci. 2023, 106, 6860–6879. [Google Scholar] [CrossRef]
- Toledo, M.Z.; Stangaferro, M.L.; Oliveira, R.C.; Monteiro, P.L., Jr.; Gennari, R.S.; Luchini, D.; Shaver, R.D.; Giordano, J.O.; Wiltbank, M.C. Effects of feeding rumen-protected methionine pre- and postpartum in multiparous Holstein cows: Health disorders and interactions with production and reproduction. J. Dairy Sci. 2023, 106, 2137–2152. [Google Scholar] [CrossRef]
- Bell, M.J.; Wall, E.; Russell, G.; Simm, G.; Stott, A.W. The effect of improving cow productivity, fertility, and longevity on the global warming potential of dairy systems. J. Dairy Sci. 2011, 94, 3662–3678. [Google Scholar] [CrossRef]
- Katongole, C.B.; Yan, T. Effect of varying dietary crude protein level on feed intake, nutrient digestibility, milk production, and nitrogen use efficiency by lactating Holstein-Friesian cows. Animals 2020, 10, 2439. [Google Scholar] [CrossRef]
- Sinclair, K.D.; Garnsworthy, P.C.; Mann, G.E.; Sinclair, L.A. Reducing dietary protein in dairy cow diets: Implications for nitrogen utilization, milk production, welfare and fertility. Animal 2014, 8, 262–274. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, J.M.; Garnsworthy, P.C. Impact of diet and fertility on greenhouse gas emissions and nitrogen efficiency of milk production. Livestock 2017, 22, 140–144. [Google Scholar] [CrossRef]
- Prestegaard-Wilson, J.M.; Daley, V.L.; Drape, T.A.; Hanigan, M.D. A survey of United States dairy cattle nutritionists’ practices and perceptions of reducing crude protein in lactating dairy cow diets. Appl. Anim. Sci. 2021, 37, 697–709. [Google Scholar] [CrossRef]
- Place, S.E.; Mitloehner, F.M. The nexus of environmental quality and livestock welfare. Annu. Rev. Anim. Biosci. 2014, 2, 555–569. [Google Scholar] [CrossRef]
- Abbasi, I.H.; Abbasi, F.; Abd El-Hack, M.E.; Abdel-Latif, M.A.; Soomro, R.N.; Hayat, K.; Mohamed, M.A.; Bodinga, B.M.; Yao, J.; Cao, Y. Critical analysis of excessive utilization of crude protein in ruminants ration: Impact on environmental ecosystem and opportunities of supplementation of limiting amino acids—A review. Environ. Sci. Pollut. Res. 2018, 25, 181–190. [Google Scholar] [CrossRef]
- Aneja, V.P.; Schlesinger, W.H.; Erisman, J.W.; Behera, S.N.; Sharma, M.; Battye, W. Reactive nitrogen emissions from crop and livestock farming in India. Atmos. Environ. 2012, 47, 92–103. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; National Research Council National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Huhtanen, P.; Hristov, A.N. A meta-analysis of the effects of dietary protein concentration and degradability on milk protein yield and milk N efficiency in dairy cows. J. Dairy Sci. 2009, 92, 3222. [Google Scholar] [CrossRef]
- Cabrita, A.R.; Dewhurst, R.J.; Melo, D.S.; Moorby, J.M.; Fonseca, A.J. Effects of dietary protein concentration and balance of absorbable amino acids on productive responses of dairy cows fed corn silage-based diets. J. Dairy Sci. 2011, 94, 4647–4656. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Hristov, A.N.; Heyler, K.S.; Cassidy, T.W.; Long, M.; Corl, B.A.; Karnati, S.K. Effects of dietary protein concentration and coconut oil supplementation on nitrogen utilization and production in dairy cows. J. Dairy Sci. 2011, 94, 5544–5557. [Google Scholar] [CrossRef] [PubMed]
- Giallongo, F.; Hristov, A.N.; Oh, J.; Frederick, T.; Weeks, H.; Werner, J.; Lapierre, H.; Patton, R.A.; Gehman, A.; Parys, C. Effects of slow-release urea and rumen-protected methionine and histidine on performance of dairy cows. J. Dairy Sci. 2015, 98, 3292–3308. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Yang, Z.; Shen, Y.; Cao, Y.; Li, Q.; Gao, Y.; Li, J. Effects of rumen-protected lysine and methionine supplementation in low-crude protein diets on lactation performance, nitrogen metabolism, rumen fermentation, and blood metabolites in Holstein cows. Anim. Feed Sci. Technol. 2022, 292, 115427. [Google Scholar] [CrossRef]
- Lee, C.; Giallongo, F.; Hristov, A.N.; Lapierre, H.; Cassidy, T.W.; Heyler, K.S.; Varga, G.A.; Parys, C. Effect of dietary protein level and rumen-protected amino acid supplementation on amino acid utilization for milk protein in lactating dairy cows. J. Dairy Sci. 2015, 98, 1885–1902. [Google Scholar] [CrossRef]
- Giallongo, F.; Harper, M.T.; Oh, J.; Lopes, J.C.; Lapierre, H.; Patton, R.A.; Parys, C.; Shinzato, I.; Hristov, A.N. Effects of rumen-protected methionine, lysine, and histidine on lactation performance of dairy cows. J. Dairy Sci. 2016, 99, 4437–4452. [Google Scholar] [CrossRef] [PubMed]
- Schwab, C.G.; Broderick, G.A. A 100-Year Review: Protein and amino acid nutrition in dairy cows. J. Dairy Sci. 2017, 100, 10094–10112. [Google Scholar] [CrossRef] [PubMed]
- Jayaprakash, G.; Sathiyabarathi, M.; Robert, M.A.; Tamilmani, T. Rumen-protected choline: A significance effect on dairy cattle nutrition. Vet. World 2016, 9, 837. [Google Scholar] [CrossRef]
- Vailati-Riboni, M.; Zhou, Z.; Jacometo, C.B.; Minuti, A.; Trevisi, E.; Luchini, D.N.; Loor, J.J. Supplementation with rumen-protected methionine or choline during the transition period influences whole-blood immune response in periparturient dairy cows. J. Dairy Sci. 2017, 100, 3958–3968. [Google Scholar] [CrossRef] [PubMed]
- Bollatti, J.M.; Zenobi, M.G.; Artusso, N.A.; Alfaro, G.F.; Lopez, A.M.; Barton, B.A.; Nelson, C.D.; Staples, C.R.; Santos, J.E. Timing of initiation and duration of feeding rumen-protected choline affects performance of lactating Holstein cows. J. Dairy Sci. 2020, 103, 4174–4191. [Google Scholar] [CrossRef] [PubMed]
- Bollatti, J.M.; Zenobi, M.G.; Artusso, N.A.; Lopez, A.M.; Nelson, C.D.; Barton, B.A.; Staples, C.R.; Santos, J.E. Effects of rumen-protected choline on the inflammatory and metabolic status and health of dairy cows during the transition period. J. Dairy Sci. 2020, 103, 4192–4205. [Google Scholar] [CrossRef]
- Pereira, A.B.; Moura, D.C.; Whitehouse, N.L.; Brito, A.F. Production and nitrogen metabolism in lactating dairy cows fed finely ground field pea plus soybean meal or canola meal with or without rumen-protected methionine supplementation. J. Dairy Sci. 2020, 103, 3161–3176. [Google Scholar] [CrossRef]
- Broderick, G.A.; Faciola, A.P.; Armentano, L.E. Replacing dietary soybean meal with canola meal improves production and efficiency of lactating dairy cows. J. Dairy Sci. 2015, 98, 5672–5687. [Google Scholar] [CrossRef]
- Pan, F.; Li, P.; Hao, G.; Liu, Y.; Wang, T.; Liu, B. Enhancing Milk Production by Nutrient Supplements: Strategies and Regulatory Pathways. Animals 2023, 13, 419. [Google Scholar] [CrossRef]
- Qi, H.; Wang, L.; Zhang, M.; Wang, Z.; Gao, X.; Li, M. Methionine and leucine induce ARID1A degradation to promote mTOR expression and milk synthesis in mammary epithelial cells. J. Nutr. Biochem. 2022, 101, 108924. [Google Scholar] [CrossRef]
- Wang, F.; Shi, H.; Wang, S.; Wang, Y.; Cao, Z.; Li, S. Amino acid metabolism in dairy cows and their regulation in milk synthesis. Curr. Drug Metab. 2019, 20, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Zhang, M. The regulatory mechanism of amino acids on milk protein and fat synthesis in mammary epithelial cells: A mini review. Anim. Biotechnol. 2023, 34, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhou, C.; Li, X.; Yu, M.; Li, M.; Gao, X. CRTC2 is a key mediator of amino acid-induced milk fat synthesis in mammary epithelial cells. J. Agric. Food Chem. 2019, 67, 10513–10520. [Google Scholar] [CrossRef]
- Huo, N.; Yu, M.; Li, X.; Zhou, C.; Jin, X.; Gao, X. PURB is a positive regulator of amino acid-induced milk synthesis in bovine mammary epithelial cells. J. Cell Physiol. 2019, 234, 6992–7003. [Google Scholar] [CrossRef] [PubMed]
- Nan, X.; Bu, D.; Li, X.; Wang, J.; Wei, H.; Hu, H.; Zhou, L.; Loor, J.J. Ratio of lysine to methionine alters expression of genes involved in milk protein transcription and translation and mTOR phosphorylation in bovine mammary cells. Physiol. Genom. 2014, 46, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Van Amburgh, M.E.; VanCollao-Saenz, E.A.; Higgs, R.J.; Ross, D.A.; Recktenwald, E.B.; Raffrenato, E.; Chase, L.E.; Overton, T.R.; Mills, J.K.; Foskolos, A. The Cornell Net Carbohydrate and Protein System: Updates to the model and evaluation of version 6.5. J. Dairy Sci. 2015, 98, 6361–6380. [Google Scholar] [CrossRef]
- Elsaadawy, S.A.; Wu, Z.; Wang, H.; Hanigan, M.D.; Bu, D. Supplementing ruminally protected lysine, methionine, or combination improved milk production in transition dairy cows. Front. Vet. Sci. 2022, 9, 780637. [Google Scholar] [CrossRef]
- Elsaadawy, S.A.; Wu, Z.; Bu, D. Feasibility of Supplying Ruminally Protected Lysine and Methionine to Periparturient Dairy Cows on the Efficiency of Subsequent Lactation. Front. Vet. Sci. 2022, 9, 892709. [Google Scholar] [CrossRef]
- Chen, Z.H.; Broderick, G.A.; Luchini, N.D.; Sloan, B.K.; Devillard, E. Effect of feeding different sources of rumen-protected methionine on milk production and N-utilization in lactating dairy cows. J. Dairy Sci. 2011, 94, 1978–1988. [Google Scholar] [CrossRef]
- Osorio, J.S.; Ji, P.; Drackley, J.K.; Luchini, D.; Loor, J.J. Supplemental Smartamine M or MetaSmart during the transition period benefits postpartal cow performance and blood neutrophil function. J. Dairy Sci. 2013, 96, 6248–6263. [Google Scholar] [CrossRef] [PubMed]
- Brosnan, J.T.; Brosnan, M.E. The sulfur-containing amino acids: An overview. J. Nutr. 2006, 136, 1636S–1640S. [Google Scholar] [CrossRef]
- Bin, P.; Huang, R.; Zhou, X. Oxidation resistance of the sulfur amino acids: Methionine and Cysteine. Biomed Res. Int. 2017, 2017, 9584932. [Google Scholar] [CrossRef] [PubMed]
- Humer, E.; Bruggeman, G.; Zebeli, Q. A meta-analysis on the impact of the supplementation of rumen-protected choline on the metabolic health and performance of dairy cattle. Animals 2019, 9, 566. [Google Scholar] [CrossRef] [PubMed]
- Arshad, U.; Zenobi, M.G.; Staples, C.R.; Santos, J.E. Meta-analysis of the effects of supplemental rumen-protected choline during the transition period on performance and health of parous dairy cows. J. Dairy Sci. 2020, 103, 282–300. [Google Scholar] [CrossRef] [PubMed]
- Lopreiato, V.; Alharthi, A.S.; Liang, Y.; Elolimy, A.A.; Bucktrout, R.; Socha, M.T.; Trevisi, E.; Loor, J.J. Influence of Cobalt Source, Folic Acid, and Rumen-Protected Methionine on Performance, Metabolism, and Liver Tissue One-Carbon Metabolism Biomarkers in Peripartal Holstein Cows. Animals 2023, 13, 2107. [Google Scholar] [CrossRef]
- Aboragah, A.A.; Alharthi, A.S.; Wichasit, N.; Loor, J.J. Body condition prepartum and its association with term placentome nutrient transporters, one carbon metabolism pathway activity, and intermediate metabolites in Holstein cows. Res. Vet. Sci. 2023, 162, 104956. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Sherlock, D.N.; Zhang, H.; Guyader, J.; Pan, Y.X.; Loor, J.J. One-carbon metabolism and related pathways in ruminal and small intestinal epithelium of lactating dairy cows. J. Anim. Sci. 2023, 101, skad062. [Google Scholar] [CrossRef]
- Palombo, V.; Alharthi, A.; Batistel, F.; Parys, C.; Guyader, J.; Trevisi, E.; D’Andrea, M.; Loor, J.J. Unique Adaptations in Neonatal Hepatic Transcriptome, Nutrient Signaling, and One-Carbon Metabolism in Response to Feeding Ethyl Cellulose Rumen-Protected Methionine during Late-Gestation in Holstein Cows. BMC Genom. 2021, 22, 280. [Google Scholar] [CrossRef]
- McFadden, J.W.; Girard, C.L.; Tao, S.; Zhou, Z.; Bernard, J.K.; Duplessis, M.; White, H.M. Symposium Review: One-Carbon Metabolism and Methyl Donor Nutrition in the Dairy Cow. J. Dairy Sci. 2020, 103, 5668–5683. [Google Scholar] [CrossRef]
- Zhou, Z.; Vailati-Riboni, M.; Luchini, D.N.; Loor, J.J. Methionine and Choline Supply during the Periparturient Period Alter Plasma Amino Acid and One-Carbon Metabolism Profiles to Various Extents: Potential Role in Hepatic Metabolism and Antioxidant Status. Nutrients 2016, 9, 10. [Google Scholar] [CrossRef]
- Clare, C.E.; Brassington, A.H.; Kwong, W.Y.; Sinclair, K.D. One-Carbon Metabolism: Linking Nutritional Biochemistry to Epigenetic Programming of Long-Term Development. Annu. Rev. Anim. Biosci. 2019, 7, 263–287. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N. Role of Methionine on Epigenetic Modification of DNA Methylation and Gene Expression in Animals. Anim. Nutr. 2018, 4, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Obeid, R.; Herrmann, W. Hcy and Lipids: S-Adenosyl Methionine as a Key Intermediate. FEBS Lett. 2009, 583, 1215–1225. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Trevisi, E.; Luchini, D.N.; Loor, J.J. Differences in liver functionality indexes in peripartal dairy cows fed rumen-protected methionine or choline are associated with performance, oxidative stress status, and plasma amino acid profiles. J. Dairy Sci. 2017, 100, 6720–6732. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.F.; Zhou, Z.; Batistel, F.; Martinez-Cortés, I.; Pate, R.T.; Luchini, D.L.; Loor, J.J. Methionine and choline supply alter transmethylation, transsulfuration, and cytidine 5′-diphosphocholine pathways to different extents in isolated primary liver cells from dairy cows. J. Dairy Sci. 2018, 101, 11384–11395. [Google Scholar] [CrossRef]
- Ardalan, M.; Rezayazdi, K.; Dehghan-Banadaky, M. Effect of rumen-protected choline and methionine on physiological and metabolic disorders and reproductive indices of dairy cows. J. Anim. Physiol. Anim. Nutr. 2010, 94, e259–e265. [Google Scholar] [CrossRef] [PubMed]
- Obeid, R. The metabolic burden of methyl donor deficiency with focus on the betaine Hcy methyltransferase pathway. Nutrients 2013, 5, 3481–3495. [Google Scholar] [CrossRef]
- Potts, S.B.; Brady, K.M.; Scholte, C.M.; Moyes, K.M.; Sunny, N.E.; Erdman, R.A. Rumen-protected choline and methionine during the periparturient period affect choline metabolites, amino acids, and hepatic expression of genes associated with one-carbon and lipid metabolism. J. Dairy Sci. 2023, 7, 4559–4579. [Google Scholar] [CrossRef]
- Hirabayashi, T.; Kawaguchi, M.; Harada, S.; Mouri, M.; Takamiya, R.; Miki, Y.; Sato, H.; Taketomi, Y.; Yokoyama, K.; Kobayashi, T.; et al. Hepatic phosphatidylcholine catabolism driven by PNPLA7 and PNPLA8 supplies endogenous choline to replenish the methionine cycle with methyl groups. Cell Rep. 2023, 42, 2. [Google Scholar] [CrossRef]
- Martínez, Y.; Li, X.; Liu, G.; Bin, P.; Yan, W.; Más, D.; Valdivié, M.; Hu, C.A.; Ren, W.; Yin, Y. The role of methionine on metabolism, oxidative stress, and diseases. Amino Acids 2017, 49, 2091–2098. [Google Scholar] [CrossRef] [PubMed]
- Crouse, M.S.; Freetly, H.C.; Lindholm-Perry, A.K.; Neville, B.W.; Oliver, W.T.; Lee, R.T.; Syring, J.G.; King, L.E.; Reynolds, L.P.; Dahlen, C.R.; et al. One-carbon metabolite supplementation to heifers for the first 14 d of the estrous cycle alters the plasma and hepatic one-carbon metabolite pool and methionine-folate cycle enzyme transcript abundance in a dose-dependent manner. J. Anim. Sci. 2023, 13, skac419. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Wang, C.; Liu, C.; Zhang, J.; Liu, Q. Effects of coated folic acid and coated methionine on growth performance, nutrient digestibility and rumen fermentation in Simmental bulls. Anim. Feed Sci. Technol. 2023, 298, 115596. [Google Scholar] [CrossRef]
- Seymour, W.M. Role of methionine and methionine precursors in transition cow nutrition with emphasis on liver function. In Proceedings of the 2016 Florida Ruminant Nutrition Symposium, Gainesville, FL, USA, 15–17 February 2016; pp. 11–16. [Google Scholar]
- Mackay, D.S.; Brophy, J.D.; McBreairty, L.E.; McGowan, R.A.; Bertolo, R.F. Intrauterine growth restriction leads to changes in sulfur amino acid metabolism, but not global DNA methylation. Yucatan miniature piglets. J. Nutr. Biochem. 2012, 23, 1121–1127. [Google Scholar] [CrossRef] [PubMed]
- Troen, A.M.; Lutgens, E.; Smith, D.E.; Rosenberg, I.H.; Selhub, J. The atherogenic effect of excess methionine intake. Proc. Natl. Acad. Sci. USA 2003, 100, 15089–15094. [Google Scholar] [CrossRef]
- Rezzi, S.; Ramadan, Z.; Fay, L.B.; Kochhar, S. Nutritional metabonomics: Applications and perspectives. J. Proteome Res. 2007, 6, 513–525. [Google Scholar] [CrossRef]
- Nicholson, J.K.; Lindon, J.C.; Holmes, E. ‘Metabonomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 2008, 29, 1181–1189. [Google Scholar] [CrossRef]
- Bauchart-Thevret, C.; Stoll, B.; Chacko, S.; Burrin, D.G. Sulfur amino acid deficiency upregulates intestinal methionine cycle activity and suppresses epithelial growth in neonatal pigs. Am. J. Physiol.-Endocrinol. Metab. 2009, 296, E1239–E1250. [Google Scholar] [CrossRef]
- Riedijk, M.A.; Stoll, B.; Chacko, S.; Schierbeek, H.; Sunehag, A.L.; van Goudoever, J.B.; Burrin, D.G. Methionine transmethylation and transsulfuration in the piglet gastrointestinal tract. Proc. Natl. Acad. Sci. USA 2007, 104, 3408–3413. [Google Scholar] [CrossRef]
- Shoveller, A.K.; Brunton, J.A.; Pencharz, P.B.; Ball, R.O. The methionine requirement is lower in neonatal piglets fed parenterally than in those fed enterally. J. Nutr. 2003, 133, 1390–1397. [Google Scholar] [CrossRef]
- Blachier, F.; Mariotti, F.; Huneau, J.F.; Tomé, D. Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids 2007, 33, 547–562. [Google Scholar] [CrossRef] [PubMed]
- Swain, B.K.; Johri, T.S. Effect of supplemental methionine, choline and their combinations on the performance and immune response of broilers. Br. Poult. Sci. 2000, 41, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Carew, L.B.; McMurtry, J.P.; Alster, F.A. Effect of methionine deficiencies on plasma levels of thyroid hormones insulin-like growth factors-I and -II, liver and body weights, and feed intake in growing chickens. Poult. Sci. 2003, 82, 1932–1938. [Google Scholar] [CrossRef] [PubMed]
- D’Mello, J.P. Responses of growing poultry to amino acids. Amino Acids Anim. Nutr. 2003, 237–263. [Google Scholar] [CrossRef]
- Lee, C.; Hristov, A.N.; Cassidy, T.W.; Heyler, K.S.; Lapierre, H.; Varga, G.A.; De Veth, M.J.; Patton, R.A.; Parys, C. Rumen-protected lysine, methionine, and histidine increase milk protein yield in dairy cows fed a metabolizable protein-deficient diet. J. Dairy Sci. 2012, 95, 6042–6056. [Google Scholar] [CrossRef]
- Van den Bossche, T.; Goossens, K.; Ampe, B.; Haesaert, G.; De Sutter, J.; De Boever, J.L.; Vandaele, L. Effect of supplementing rumen-protected methionine, lysine, and histidine to low-protein diets on the performance and nitrogen balance of dairy cows. J. Dairy Sci. 2023, 13, 1790–1802. [Google Scholar] [CrossRef]
- Wang, W.; Ye, L.; Dou, X.; Liu, H.; Han, D. Effects of Rumen-Protected Methionine Supplementation on Growth Performance, Nutrient Digestion, Nitrogen Utilisation and Plasma Amino Acid Profiles of Liaoning Cashmere Goats. Animals 2023, 13, 2995. [Google Scholar] [CrossRef]
- Zou, S.; Ji, S.; Xu, H.; Wang, M.; Li, B.; Shen, Y.; Li, Y.; Gao, Y.; Li, J.; Cao, Y.; et al. Rumen-Protected Lysine and Methionine Supplementation Reduced Protein Requirement of Holstein Bulls by Altering Nitrogen Metabolism in Liver. Animals 2023, 13, 843. [Google Scholar] [CrossRef]
- Li, Y.; Wei, J.; Dou, M.; Liu, S.; Yan, B.; Li, C.; Khan, M.Z.; Zhang, Y.; Xiao, J. Effects of rumen-protected methionine supplementation on production performance, apparent digestibility, blood parameters, and ruminal fermentation of lactating Holstein dairy cows. Front. Vet. Sci. 2022, 9, 981757. [Google Scholar] [CrossRef]
- Pereira, A.B.; Whitehouse, N.L.; Aragona, K.M.; Schwab, C.S.; Reis, S.F.; Brito, A.F. Production and nitrogen utilization in lactating dairy cows fed ground field peas with or without ruminally protected lysine and methionine. J. Dairy Sci. 2017, 100, 6239–6255. [Google Scholar] [CrossRef]
- Ding, L.; Shen, Y.; Wang, Y.; Zhou, G.; Zhang, X.; Wang, M.; Loor, J.J.; Chen, L.; Zhang, J. Jugular arginine supplementation increases lactation performance and nitrogen utilization efficiency in lactating dairy cows. J. Anim. Sci. Biotechnol. 2019, 10, 3. [Google Scholar] [CrossRef] [PubMed]
- Noftsger, S.; St-Pierre, N.R. Supplementation of methionine and selection of highly digestible rumen undegradable protein to improve nitrogen efficiency for milk production. J. Dairy Sci. 2003, 86, 958–969. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, H.Y.; Wang, Y.M.; Yang, Z.Q.; Liu, J.X.; Wu, Y.M.; Yan, T.; Ye, H.W. Effects of dietary supplementation of methionine and lysine on milk production and nitrogen utilization in dairy cows. J. Dairy Sci. 2010, 93, 3661–3670. [Google Scholar] [CrossRef]
- Sobhanirad, S.; Carlson, D.; Bahari Kashani, R. Effect of zinc methionine or zinc sulfate supplementation on milk production and composition of milk in lactating dairy cows. Biol. Trace Elem. Res. 2010, 136, 48–54. [Google Scholar] [CrossRef]
- Kellogg, D.W.; Tomlinson, D.J.; Socha, M.T.; Johnson, A.B. Effects of zinc methionine complex on milk production and somatic cell count of dairy cows: Twelve-trial summary. Prof. Anim. Sci. 2004, 20, 295–301. [Google Scholar] [CrossRef]
- Drackley, J.K. Biology of dairy cows during the transition period: The final frontier? J. Dairy Sci. 1999, 82, 2259–2273. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.F.; Batistel, F.; Xu, T.L.; Han, L.Q.; Bucktrout, R.; Liang, Y.; Coleman, D.N.; Parys, C.; Loor, J.J. Phosphorylation of AKT serine/threonine kinase and abundance of milk protein synthesis gene networks in mammary tissue in response to the supply of methionine in periparturient Holstein cows. J. Dairy Sci. 2019, 102, 4264–4274. [Google Scholar] [CrossRef] [PubMed]
- Lean, I.J.; Ondarza, M.B.; Sniffen, C.J.; Santos, J.P.; Griswold, K.E. Meta-analysis to predict the effects of metabolizable amino acids on dairy cattle performance. J. Dairy Sci. 2018, 101, 340–364. [Google Scholar] [CrossRef]
- Batistel, F.; Arroyo, J.M.; Bellingeri, A.; Wang, L.; Saremi, B.; Parys, C.; Trevisi, E.; Cardoso, F.C.; Loor, J.J. Ethyl-cellulose rumen-protected methionine enhances performance during the periparturient period and early lactation in Holstein dairy cows. J. Dairy Sci. 2017, 100, 7455–7467. [Google Scholar] [CrossRef]
- Bionaz, M.; Loor, J.J. Gene networks driving bovine mammary protein synthesis during the lactation cycle. Bioinform. Biol. Insights 2011, 5, BBI-S7003. [Google Scholar] [CrossRef]
- Loor, J.J.; Bionaz, M.; Drackley, J.K. Systems physiology in dairy cattle: Nutritional genomics and beyond. Annu. Rev. Anim. Biosci. 2013, 1, 365–392. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Diao, Q.Y.; Xu, X.C.; Tu, Y.; Zhang, N.F.; Yun, Q. The limiting sequence and proper ratio of lysine, methionine, and threonine for calves fed milk replacers containing soy protein. Asian-Australas. J. Anim. Sci. 2012, 25, 224–233. [Google Scholar] [CrossRef]
- Li, Y.; Bi, Y.; Diao, Q.; Piao, M.; Wang, B.; Kong, F.; Hu, F.; Tang, M.; Sun, Y.; Tu, Y. The limiting sequence and appropriate amino acid ratio of lysine, methionine, and threonine for seven-to-nine-month-old Holstein heifers fed corn–soybean meal-based diet. Animals 2019, 9, 750. [Google Scholar] [CrossRef]
- Lee, C.; Hristov, A.N.; Heyler, K.S.; Cassidy, T.W.; Lapierre, H.; Varga, G.A.; Parys, C. Effects of metabolizable protein supply and amino acid supplementation on nitrogen utilization, milk production, and ammonia emissions from manure in dairy cows. J. Dairy Sci. 2012, 95, 5253–5268. [Google Scholar] [CrossRef]
- Park, J.K.; Yeo, J.M.; Bae, G.S.; Kim, E.J.; Kim, C.H. Effects of supplementing limiting amino acids on milk production in dairy cows consuming a corn grain and soybean meal-based diet. J. Anim. Sci. Technol. 2020, 62, 485. [Google Scholar] [CrossRef]
- Carder, E.G.; Weiss, W.P. Short- and longer-term effects of feeding increased metabolizable protein with or without an altered amino acid profile to dairy cows immediately postpartum. J. Dairy Sci. 2017, 100, 4528–4538. [Google Scholar] [CrossRef] [PubMed]
- Socha, M.T.; Putnam, D.E.; Garthwaite, B.D.; Whitehouse, N.L.; Kierstead, N.A.; Schwab, C.G.; Ducharme, G.A.; Robert, J.C. Improving intestinal amino acid supply of pre- and postpartum dairy cows with rumen-protected methionine and lysine. J. Dairy Sci. 2005, 88, 1113–1126. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Harrison, J.H.; Chalupa, W.; Sniffen, C.; Julien, W.; Sato, H.; Fujieda, T.; Watanabe, K.; Ueda, T.; Suzuki, H. The effect of ruminal bypass lysine and methionine on milk yield and composition of lactating cows. J. Dairy Sci. 1998, 81, 1062–1077. [Google Scholar] [CrossRef]
- Zhou, Z.; Vailati-Riboni, M.; Trevisi, E.; Drackley, J.K.; Luchini, D.N.; Loor, J.J. Better postpartal performance in dairy cows supplemented with rumen-protected methionine compared with choline during the peripartal period. J. Dairy Sci. 2016, 99, 8716–8732. [Google Scholar] [CrossRef]
- Lee, C.; Lobos, N.E.; Weiss, W.P. Effects of supplementing rumen-protected lysine and methionine during prepartum and postpartum periods on performance of dairy cows. J. Dairy Sci. 2019, 102, 11026–11039. [Google Scholar] [CrossRef]
- Weiss, W.P. Effects of feeding diets composed of corn silage and a corn milling product with and without supplemental lysine and methionine to dairy cows. J. Dairy Sci. 2019, 102, 2075–2084. [Google Scholar] [CrossRef]
- Yu, Y.; Zhen, Z.; Qi, H.; Yuan, X.; Gao, X.; Zhang, M. U2AF65 enhances milk synthesis and growth of bovine mammary epithelial cells by positively regulating the mTOR-SREBP-1c signaling pathway. Cell Biochem. Funct. 2019, 37, 93–101. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, D.; Zhen, Z.; Ao, J.; Yuan, X.; Gao, X. Annexin A2 positively regulates milk synthesis and proliferation of bovine mammary epithelial cells through the mTOR signaling pathway. J. Cell. Physiol. 2018, 233, 2464–2475. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Zhen, Z.; Yu, Y.; Qiu, Y.; Xiang, W. GRP78 regulates milk biosynthesis and the proliferation of bovine mammary epithelial cells through the mTOR signaling pathway. Cell. Mol. Biol. Lett. 2019, 24, 2. [Google Scholar] [CrossRef]
- Huang, X.; Zang, Y.; Zhang, M.; Yuan, X.; Li, M.; Gao, X. Nuclear factor of κB1 is a key regulator for the transcriptional activation of milk synthesis in bovine mammary epithelial cells. DNA Cell Biol. 2017, 36, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Zhen, Z.; Zhang, M.; Yuan, X.; Qu, B.; Yu, Y.; Gao, X.; Qiu, Y. DEAD-box helicase 6 (DDX6) is a new negative regulator for milk synthesis and proliferation of bovine mammary epithelial cells. In Vitro Cell. Dev. Biol. Anim. 2018, 54, 52–60. [Google Scholar] [CrossRef]
- Li, P.; Yu, M.; Zhou, C.; Qi, H.; Wen, X.; Hou, X.; Li, M.; Gao, X. FABP5 is a critical regulator of methionine-and estrogen-induced SREBP-1c gene expression in bovine mammary epithelial cells. J. Cell. Physiol. 2019, 234, 537–549. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, Z.; Peng, J.; Loor, J.J. Methionine and valine activate the mammalian target of rapamycin complex 1 pathway through heterodimeric amino acid taste receptor (TAS1R1/TAS1R3) and intracellular Ca2+ in bovine mammary epithelial cells. J. Dairy Sci. 2018, 101, 11354–11363. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Bulgari, O.; Vailati-Riboni, M.; Trevisi, E.; Ballou, M.A.; Cardoso, F.C.; Luchini, D.N.; Loor, J.J. Rumen-protected methionine compared with rumen-protected choline improves immunometabolic status in dairy cows during the peripartal period. J. Dairy Sci. 2016, 99, 8956–8969. [Google Scholar] [CrossRef]
- Zanton, G.I.; Bowman, G.R.; Vázquez-Añón, M.; Rode, L.M. Meta-analysis of lactation performance in dairy cows receiving supplemental dietary methionine sources or postruminal infusion of methionine. J. Dairy Sci. 2014, 97, 7085–7101. [Google Scholar] [CrossRef] [PubMed]
- Junior, V.C.; Lopes, F.; Schwab, C.G.; Toledo, M.Z.; Collao-Saenz, E.A. Effects of rumen-protected methionine supplementation on the performance of high production dairy cows in the tropics. PLoS ONE 2021, 16, e0243953. [Google Scholar] [CrossRef]
- Danesh Mesgaran, M.; Kargar, H.; Janssen, R.; Danesh Mesgaran, S.; Ghesmati, A.; Vatankhah, A. Rumen-protected zinc–methionine dietary inclusion alters dairy cow performances, and oxidative and inflammatory status under long-term environmental heat stress. Front. Vet. Sci. 2022, 9, 935939. [Google Scholar] [CrossRef]
- Sun, F.; Cao, Y.; Cai, C.; Li, S.; Yu, C.; Yao, J. Regulation of nutritional metabolism in transition dairy cows: Energy homeostasis and health in response to post-ruminal choline and methionine. PLoS ONE 2016, 11, e0156770. [Google Scholar] [CrossRef]
- Sun, P.; Wang, J.; Liu, W.; Bu, D.P.; Liu, S.J.; Zhang, K.Z. Hydroxy-selenomethionine: A novel organic selenium source that improves antioxidant status and selenium concentrations in milk and plasma of mid-lactation dairy cows. J. Dairy Sci. 2017, 100, 9602–9610. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, J.X.; Xiong, J.L.; Wang, Y.M.; Zhang, W.X.; Wang, D.M. Effect of hydroxyselenomethionine on lactation performance, blood profiles, and transfer efficiency in early-lactating dairy cows. J. Dairy Sci. 2019, 102, 6167–6173. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.L.; Wei, Z.H.; Wu, J.J.; Dong, X.L.; Liu, J.X.; Wang, D.M. Effect of N-acetyl-l-methionine supplementation on lactation performance and plasma variables in mid-lactating dairy cows. J. Dairy Sci. 2019, 102, 5182–5190. [Google Scholar] [CrossRef]
- Amaro, F.X.; Kim, D.; Restelatto, R.; Carvalho, P.; Arriola, K.; Duvalsaint, E.J.; Cervantes, A.P.; Jiang, Y.; Agarussi, M.C.; Silva, V.P.; et al. Lactational performance of dairy cows in response to supplementing N-acetyl-l-methionine as a source of rumen-protected methionine. J. Dairy Sci. 2022, 105, 2301–2314. [Google Scholar] [CrossRef]
- Fagundes, M.A.; Yang, S.Y.; Eun, J.S.; Hall, J.O.; Moon, J.O.; Park, J.S. Influence of supplementing a methionine derivative, N-acetyl-l-methionine, in dairy diets on production and ruminal fermentation by lactating cows during early to mid lactation. J. Dairy Sci. 2018, 101, 7082–7094. [Google Scholar] [CrossRef]
- Räisänen, S.E.; Zhu, X.; Zhou, C.; Lage, C.F.; Fetter, M.; Silvestre, T.; Stefenoni, H.; Wasson, D.E.; Cueva, S.F.; Eun, J.S.; et al. Production effects and bioavailability of N-acetyl-l-methionine in lactating dairy cows. J. Dairy Sci. 2022, 105, 313–328. [Google Scholar] [CrossRef] [PubMed]
- Alharthi, A.S.; Coleman, D.N.; Liang, Y.; Batistel, F.; Elolimy, A.A.; Yambao, R.C.; Abdel-Hamied, E.; Pan, Y.X.; Parys, C.; Alhidary, I.A.; et al. Hepatic 1-carbon metabolism enzyme activity, intermediate metabolites, and growth in neonatal Holstein dairy calves are altered by maternal supply of methionine during late pregnancy. J. Dairy Sci. 2019, 102, 10291–10303. [Google Scholar] [CrossRef] [PubMed]
- Noftsger, S.; St-Pierre, N.R.; Sylvester, J.T. Determination of rumen degradability and ruminal effects of three sources of methionine in lactating cows. J. Dairy Sci. 2005, 88, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Ardalan, M.; Dehghan-Banadaky, M.; Rezayazdi, K.; Hossein-Zadeh, N.G. The effect of rumen-protected methionine and choline on plasma metabolites of Holstein dairy cows. J. Agric. Sci. 2011, 149, 639–646. [Google Scholar] [CrossRef]
- Abedal-Majed, M.A.; Titi, H.H.; Al-Qaisi, M.; Abdelqader, A.; Tabbaa, M.J. The effects of rumen protected methionine supplementation on the performance of primiparous dairy cows using the Presynch-Ovsynch protocol. Anim. Sci. J. 2023, 94, e13835. [Google Scholar] [CrossRef]
- Irawan, A.; Sofyan, A.; Wahyono, T.; Harahap, M.A.; Febrisiantosa, A.; Herdian, H.; Sakti, A.A.; Jayanegara, A. Relationships between dietary rumen-protected lysine and methionine with the lactational performance of dairy cows: A meta-analysis. Anim. Biosci. 2023, 13, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Melendez, P.; Möller, J.; Arevalo, A.; Pinedo, P. The effect of rumen-protected lysine and methionine on milk yield, milk components, and body weight in grazing Holstein cows during spring calving season in the southern hemisphere. Livest. Sci. 2023, 272, 105230. [Google Scholar] [CrossRef]
- Pitkänen, O.; Halmemies-Beauchet-Filleau, A.; Räisänen, S.E.; Jaakkola, S.; Kokkonen, T.; Vanhatalo, A. Processed fava bean as a substitute for rapeseed meal with or without rumen-protected methionine supplement in grass silage-based dairy cow diets. J. Dairy Sci. 2023, 106, 3217–3232. [Google Scholar] [CrossRef]
- Richards, A.T.; Knapp, J.R.; Summer, P.; Ohta, Y.; Boerman, J.P. Bioavailability of a novel rumen protected methionine supplement and its effect on milk production and body composition in dairy cows. Anim. Feed Sci. Technol. 2023, 304, 115750. [Google Scholar] [CrossRef]
- Wei, C.; He, T.; Wan, X.; Liu, S.; Dong, Y.; Qu, Y. Meta-Analysis of Rumen-Protected Methionine in Milk Production and Composition of Dairy Cows. Animals 2022, 12, 1505. [Google Scholar] [CrossRef]
- Li, L.; Liu, L.; Qu, B.; Li, X.; Gao, X.; Zhang, M. Twinfilin 1 enhances milk biosynthesis and proliferation of bovine mammary epithelial cells via the mTOR signaling pathway. Biochem. Biophys. Res. Commun. 2017, 492, 289–294. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, F.; Liu, J.; Liu, H. Dipeptide (methionyl-methionine) transport and its effect on β-casein synthesis in bovine mammary epithelial cells. Cell. Physiol. Biochem. 2018, 49, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.X.; Wang, C.H.; Xu, Q.B.; Zhao, F.Q.; Liu, J.X.; Liu, H.Y. Methionyl-Methionine promotes α-s1 casein synthesis in bovine mammary gland explants by enhancing intracellular substrate availability and activating JAK2-STAT5 and mTOR-mediated signaling pathways. J. Nutr. 2015, 145, 1748–1753. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.N.; Zhao, S.G.; Zheng, N.; Zhang, Y.D.; Wang, S.S.; Zhou, X.Q.; Wang, J.Q. Combination of histidine, lysine, methionine, and leucine promotes β-casein synthesis via the mechanistic target of rapamycin signaling pathway in bovine mammary epithelial cells. J. Dairy Sci. 2017, 100, 7696–7709. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Liu, C.; Gong, X.; Yang, Y.; Jiao, H.; Lin, Y.; Hou, X. mTORC2-AKT-LAT1 Signalling Participates in Methionine-induced β-CASEIN Expression in Mammary Epithelial Cells of Dairy Cows. J. Anim. Physiol. Anim. Nutr. 2023, in press. [Google Scholar] [CrossRef]
- Dong, X.; Zhou, Z.; Saremi, B.; Helmbrecht, A.; Wang, Z.; Loor, J.J. Varying the ratio of Lys: Met while maintaining the ratios of Thr: Phe, Lys: Thr, Lys: His, and Lys: Val alters mammary cellular metabolites, mammalian target of rapamycin signaling, and gene transcription. J. Dairy Sci. 2018, 101, 1708–1718. [Google Scholar] [CrossRef]
- Apelo, S.A.; Singer, L.M.; Lin, X.Y.; McGilliard, M.L.; St-Pierre, N.R.; Hanigan, M.D. Isoleucine, leucine, methionine, and threonine effects on mammalian target of rapamycin signaling in mammary tissue. J. Dairy Sci. 2014, 97, 1047–1056. [Google Scholar] [CrossRef]
- Ruiz-Cortés, Z.T.; Yoder, P.; Hanigan, M.D. Effects of Essential Amino Acid Deficiency on General Control Nonderepressible 2/Eukaryotic Initiation Factor 2 Signaling and Proteomic Changes in Primary Bovine Mammary Epithelial Cells. Curr. Issues Mol. Biol. 2022, 44, 1075–1086. [Google Scholar] [CrossRef]
- Jiang, N.; Wang, Y.; Yu, Z.; Hu, L.; Liu, C.; Gao, X.; Zheng, S. WISP3 (CCN6) regulates milk protein synthesis and cell growth through mTOR signaling in dairy cow mammary epithelial cells. DNA Cell Biol. 2015, 34, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Tayebati, S.K.; Marucci, G.; Santinelli, C.; Buccioni, M.; Amenta, F. Choline-containing phospholipids: Structure-activity relationships versus therapeutic applications. Curr. Med. Chem. 2015, 22, 4328–4340. [Google Scholar] [CrossRef]
- Glier, M.B.G.; Timothy, D.J.; Angela, M. Methyl nutrients, DNA methylation, and cardiovascular disease. Mol. Nutr. Food Res. 2014, 58, 172–182. [Google Scholar] [CrossRef]
- Veth, M.J.D.; Artegoitia, V.M.; Campagna, S.R.; Lapierre, H.; Harte, F.; Girard, C.L. Choline absorption and evaluation of bioavailability markers when supplementing choline to lactating dairy cows. J. Dairy Sci. 2016, 99, 9732–9744. [Google Scholar] [CrossRef]
- Cheng, R.; MacDonald, C.; Williams, C.; Meck, W. Prenatal choline supplementation alters the timing, emotion, and memory performance (TEMP) of adult male and female rats as indexed by differential reinforcement of low-rate schedule behavior. Learn Mem. 2008, 15, 153–162. [Google Scholar] [CrossRef]
- Artegoitia, V.M.; Middleton, J.L.; Harte, F.M.; Campagna, S.R.; Veth, M.J. Choline and choline metabolite patterns and associations in blood and milk during lactation in dairy cows. PLoS ONE 2014, 9, e103412. [Google Scholar] [CrossRef]
- Eklund, M.; Bauer, E.; Wamatu, J.; Mosenthin, R. Potential nutritional and physiological functions of betaine in livestock. Nutr. Res. Rev. 2005, 18, 31–48. [Google Scholar] [CrossRef]
- Koc, H.; Mar, M.H.; Ranasinghe, A.; Swenberg, J.A.; Zeisel, S.H. Quantitation of choline and its metabolites in tissues and foods by liquid chromatography/electrospray ionization-isotope dilution mass spectrometry. Anal. Chem. 2002, 74, 4734–4740. [Google Scholar] [CrossRef]
- Siljander, R.H.; Peuranen, S.; Tiihonen, K.; Virtanen, E.; Kettunen, H.; Alaviuhkola, T.; Simmins, P. Effect of equimolar dietary betaine and choline addition on performance, carcass quality, and physiological parameters of pigs. Anim. Sci. 2003, 76, 55–62. [Google Scholar] [CrossRef]
- Zeisel, S. Choline, other methyl-donors and epigenetics. Nutrients 2017, 9, 445. [Google Scholar] [CrossRef]
- Esposito, G.; Irons, P.C.; Webb, E.C.; Chapwanya, A. Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows. Anim. Reprod. Sci. 2014, 144, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Itle, A.J.; Huzzey, J.M.; Weary, D.M.; VonKeyserlingk, M.A.G. Clinical ketosis and standing behavior in transition cows. J. Dairy Sci. 2015, 98, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Overton, T.R.; Waldron, M.R. Nutritional management of transition dairy cows: Strategies to optimize metabolic health. J. Dairy Sci. 2004, 87 (Suppl. SE), 105–119. [Google Scholar] [CrossRef]
- Pinotti, L.; Baldi, A.; Politis, I.; Rebucci, R.; Sangalli, L.; Dell’Orto, V. Rumen-protected choline administration to transition cows: Effects on milk production and vitamin E status. J. Vet. Med. Ser. A 2003, 50, 18–21. [Google Scholar] [CrossRef]
- Castillo, C.; Hemandez, J.; Bravo, A.; Lopez, A.M.; Pereira, V.; Benedito, J.L. Oxidative status during late pregnancy and early lactation in dairy cows. J. Vet. 2005, 169, 286–292. [Google Scholar] [CrossRef]
- LeBlanc, S.J.; Herdt, T.H.; Seymour, W.M.; Duffield, T.F.; Leslie, K.E. Pripartum serum vitamin E, retinol, and beta-carotene in dairy cattle and their associations with disease. J. Dairy Sci. 2004, 87, 609–619. [Google Scholar] [CrossRef]
- Elek, P.; Gaál, T.; Husvéth, F. Influence of rumen-protected choline on liver composition and blood variables indicating energy balance in periparturient dairy cows. Acta Vet. Hung. 2013, 61, 59–70. [Google Scholar] [CrossRef]
- Zenobi, M.G.; Scheffler, T.L.; Zuniga, J.E.; Poindexter, M.B.; Campagna, S.R.; Gonzalez, H.C.; Farmer, A.T.; Barton, B.A.; Santos, J.E.; Staples, C.R. Feeding increasing amounts of ruminally protected choline decreased fatty liver in nonlactating, pregnant Holstein cows in negative energy status. J. Dairy Sci. 2018, 101, 5902–5923. [Google Scholar] [CrossRef]
- Lyu, Z. Effects of Dietary Rumen-Protected Choline Supplementation on Colostrum Yields, Quality, and Choline Metabolites from Dairy Cattle. Highlights Sci. Eng. Technol. 2022, 14, 266–269. [Google Scholar] [CrossRef]
- Swartz, T.H.; Bradford, B.J.; Malysheva, O.; Caudill, M.A.; Mamedova, L.K.; Estes, K.A. Effects of dietary rumen-protected choline supplementation on colostrum yields, quality, and choline metabolites from dairy cattle. JDS Commun. 2022, 3, 296–300. [Google Scholar] [CrossRef]
- Amrutkar, S.A.; Pawar, S.P.; Thakur, S.S.; Kewalramani, N.J.; Mahesh, M.S. Dietary Supplementation of Rumen-Protected Methionine, Lysine and Choline Improves Lactation Performance and Blood Metabolic Profile of Karan-Fries Cows. Agric. Res. 2015, 4, 396–404. [Google Scholar] [CrossRef]
- White, H. Feeding for a Healthy Liver: The Role of Methionine and Choline in Transition Cows. WCDS Adv. Dairy Technol. 2020, 32, 87–92. [Google Scholar]
- Abbasi, I.H.; Abbasi, F.; Soomro, R.N.; Abd El-Hack, M.E.; Abdel-Latif, M.A.; Li, W.; Hao, R.; Sun, F.; Bodinga, B.M.; Hayat, K.; et al. Considering choline as methionine precursor, lipoproteins transporter, hepatic promoter, and antioxidant agent in dairy cows. AMB Express 2017, 7, 214. [Google Scholar] [CrossRef] [PubMed]
- Imhasly, S.; Bieli, C.; Naegeli, H.; Nyström, L.; Ruetten, M.; Gerspach, C. Blood plasma lipidome profile of dairy cows during the transition period. BMC Vet. Res. 2015, 11, 252. [Google Scholar] [CrossRef] [PubMed]
- Cooke, R.F.; Del Rio, N.S.; Caraviello, D.Z.; Bertics, S.J.; Ramos, M.H.; Grummer, R.R. Supplemental choline for prevention and alleviation of fatty liver in dairy cattle. J. Dairy Sci. 2007, 90, 2413–2418. [Google Scholar] [CrossRef] [PubMed]
- Lima, F.S.; Bisinotto, R.S.; Ribeiro, E.S.; Greco, L.F.; Ayres, H.; Favoreto, M.G.; Carvalho, M.R.; Galvão, K.N.; Santos, J.E. Effects of 1 or 2 treatments with prostaglandin F2α on subclinical endometritis and fertility in lactating dairy cows inseminated by timed artificial insemination. J. Dairy Sci. 2013, 96, 6480–6488. [Google Scholar] [CrossRef] [PubMed]
- Baldi, A.; Pinotti, L. Choline metabolism in high-producing dairy cows: Metabolic and nutritional basis. Can. J. Anim. Sci. 2006, 86, 207–212. [Google Scholar] [CrossRef]
- Zenobi, M.; Gardinal, R.; Zuniga, J.; Dias, A.; Nelson, C.; Driver, J.; Barton, B.; Santos, J.; Staples, C. Effects of supplementation with ruminally protected choline on performance of multiparous Holstein cows did not depend upon prepartum caloric intake. J. Dairy Sci. 2018, 101, 1088–1110. [Google Scholar] [CrossRef]
- Hartwell, J.R.; Cecavqa, M.J.; Donkin, S.S. Impact of dietary rumen undegradable protein and rumen-protected choline on intake, peripartum liver triacylglyceride, plasma metabolites and milk production in transition dairy cows. J. Dairy Sci. 2000, 83, 2907–2917. [Google Scholar] [CrossRef]
- Bakr, M.; Mohamed, S.H. Effect of rumen-protected choline supplementation on productive performance of lactating dairy cows. Egypt. J. Anim. Prod. 2020, 57, 113–120. [Google Scholar]
- Bollatti, J.M.; Zenobi, M.G.; Barton, B.A.; Staples, C.R.; Santos, J.E. Responses to rumen-protected choline in transition cows do not depend on prepartum body condition. J. Dairy Sci. 2020, 103, 2272–2286. [Google Scholar] [CrossRef]
- Elek, P.; Newbold, J.R.; Gaál, T.; Wagner, L.; Husveth, F. Effects of rumen-protected choline supplementation on milk production and choline supply of periparturient dairy cows. Animal 2008, 2, 1595–1601. [Google Scholar] [CrossRef]
- Holdorf, H.T.; Kendall, S.J.; Ruh, K.E.; Caputo, M.J.; Combs, G.J.; Henisz, S.J.; Brown, W.E.; Bresolin, T.; Ferreira, R.E.; Dorea, J.R.; et al. Increasing the prepartum dose of rumen-protected choline: Effects on milk production and metabolism in high-producing Holstein dairy cows. J. Dairy Sci. 2023, 106, 5988–6004. [Google Scholar] [CrossRef]
- Kumar, R.; Nayak, S.; Baghel, R.P.S.; Malapure, C.D.; Roy, B. Consequence of Prill Fat and Rumen Protected Choline supplementation on Milk yield and its makeup in Murrah Buffaloes. Buffalo Bull. 2019, 38, 49–56. [Google Scholar]
- Mecionytė, I.; Palubinskas, G.; Anskienė, L.; Japertienė, R.; Juodžentytė, R.; Žilaitis, V. The effect of Supplementation of Rumen-Protected Choline on Reproductive and Productive Performances of Dairy Cows. Animals 2022, 12, 1807. [Google Scholar] [CrossRef] [PubMed]
- Mohsen, M.K.; Gaafar, H.M.A.; Khalafalla, M.M.; Shitta, A.A.; Yousif, A.M. Effect of rumen protected choline supplementation on digestibility, rumen activity, and milk yield in lactating Friesian cows. Slovak J. Anim. Sci. 2011, 44, 13–20. [Google Scholar]
- Morrison, E.I.; Reinhardt, H.; Leclerc, H.; DeVries, T.J.; LeBlanc, S.J. Effect of rumen-protected B vitamins and choline supplementation on health, production, and reproduction in transition dairy cows. J. Dairy Sci. 2018, 101, 9016–9027. [Google Scholar] [CrossRef]
- Potts, S.; Scholte, C.; Moyes, K.; Erdman, R. Production responses to rumen-protected choline and methionine supplemented during the periparturient period differ for primi- and multiparous cows. J. Dairy Sci. 2020, 103, 6070–6086. [Google Scholar] [CrossRef] [PubMed]
- Shahsavari, A.; D’Occhio, M.; Al Jassim, R. The role of rumen-protected choline in hepatic function and performance of transition dairy cows. Br. J. Nutr. 2016, 116, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Swartz, T.; Bradford, B.; Mamedova, L.; Estes, K. Effects of dietary rumen-protected choline supplementation to periparturient dairy cattle on inflammation, metabolism, and performance during an intramammary lipopolysaccharide challenge. J. Dairy Sci. 2023, in press. [Google Scholar] [CrossRef]
- Zahra, L.C.; Duffield, T.F.; Leslie, K.E.; Overton, T.R.; Putnam, D.; LeBlanc, S.J. Effects of rumen-protected choline and monensin on milk production and metabolism of periparturient cows. J. Dairy Sci. 2006, 89, 4808–4818. [Google Scholar] [CrossRef]
- Zom, R.; van Baal, J.; Goselink, R.; Bakker, J.; de Veth, M.; van Vuuren, A. Effect of rumen-protected choline on performance, blood metabolites, and hepatic triacylglycerols of periparturient dairy cattle. J. Dairy Sci. 2011, 94, 4016–4027. [Google Scholar] [CrossRef]
- Holdorf, H.T.; Brown, W.E.; Combs, G.J.; Henisz, S.J.; Kendall, S.J.; Caputo, M.J.; Ruh, K.E.; White, H.M. Increasing the Prepartum Dose of Rumen-Protected Choline: Effects of Maternal Choline Supplementation on Growth, Feed Efficiency, and Metabolism in Holstein and Holstein × Angus Calves. J. Dairy Sci. 2023, 106, 6005–6027. [Google Scholar] [CrossRef]
- Sherlock, D.N.; Abdel-Hamied, E.; Bucktrout, R.; Liang, Y.; Miura, M.; Loor, J.J. Post-ruminal Choline Supply during Negative Nutrient Balance Alters Components of Hepatic mTOR Signaling and Plasma Amino Acids in Lactating Holstein Cows. J. Dairy Sci. 2023, in press. [Google Scholar] [CrossRef]
- Du, X.E.; Cui, Z.; Zhang, R.; Zhao, K.; Wang, L.; Yao, J.; Liu, S.; Cai, C.; Cao, Y. The Effects of Rumen-Protected Choline and Rumen-Protected Nicotinamide on Liver Transcriptomics in Periparturient Dairy Cows. Metabolites 2023, 13, 594. [Google Scholar] [CrossRef] [PubMed]
Amino Acid Supplementation | Main Outcomes | Species | Author |
---|---|---|---|
RPM and RPC |
| Dairy cattle | [121] |
RPM |
| Dairy cattle | [122] |
RPM |
| Dairy cattle | [123] |
RPM |
| Dairy cattle | [112] |
ZnM |
| Dairy cattle | [98,124] |
RPM and RPC |
| Dairy cattle | [125] |
Hydroxyselenomethionine |
| Dairy cattle | [126,127] |
N-acetyl-l-methionine supplementation (NALM) |
| Dairy cattle | [128,129] |
NALM s |
| Dairy cattle | [130,131] |
RPM |
| Dairy cattle | [132] |
RPM |
| Dairy cattle | [133] |
RPM and RPC |
| Dairy cattle | [134] |
16% CP and 25 g/head/day RPM |
| Dairy cattle | [135] |
RPM and RP Lys |
| Dairy cattle | [136] |
RPM+RP Lys |
| Dairy cattle | [137] |
RPM+fava bean |
| Dairy cattle | [138] |
RPM and RP Lys for 21 days |
| Dairy cattle | [139] |
RPM |
| Dairy cattle | [140] |
RPM and RPC |
| Dairy cattle | [121] |
RPM |
| BMECs | [41] |
RPM |
| BMECs | [46] |
RPM |
| BMECs | [141] |
Methionyl-methionine dipeptide |
| BMECs | [142,143] |
RPM |
| BMECs | [144] |
RPM |
| BMECs | [145] |
RPM |
| BMECs | [120,146,147,148] |
RPM |
| BMECs | [149] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, B.; Khan, M.Z.; Kou, X.; Chen, Y.; Liang, H.; Ullah, Q.; Khan, N.; Khan, A.; Chai, W.; Wang, C. Enhancing Metabolism and Milk Production Performance in Periparturient Dairy Cattle through Rumen-Protected Methionine and Choline Supplementation. Metabolites 2023, 13, 1080. https://doi.org/10.3390/metabo13101080
Huang B, Khan MZ, Kou X, Chen Y, Liang H, Ullah Q, Khan N, Khan A, Chai W, Wang C. Enhancing Metabolism and Milk Production Performance in Periparturient Dairy Cattle through Rumen-Protected Methionine and Choline Supplementation. Metabolites. 2023; 13(10):1080. https://doi.org/10.3390/metabo13101080
Chicago/Turabian StyleHuang, Bingjian, Muhammad Zahoor Khan, Xiyan Kou, Yinghui Chen, Huili Liang, Qudrat Ullah, Nadar Khan, Adnan Khan, Wenqiong Chai, and Changfa Wang. 2023. "Enhancing Metabolism and Milk Production Performance in Periparturient Dairy Cattle through Rumen-Protected Methionine and Choline Supplementation" Metabolites 13, no. 10: 1080. https://doi.org/10.3390/metabo13101080
APA StyleHuang, B., Khan, M. Z., Kou, X., Chen, Y., Liang, H., Ullah, Q., Khan, N., Khan, A., Chai, W., & Wang, C. (2023). Enhancing Metabolism and Milk Production Performance in Periparturient Dairy Cattle through Rumen-Protected Methionine and Choline Supplementation. Metabolites, 13(10), 1080. https://doi.org/10.3390/metabo13101080