Metabolites That Confirm Induction and Release of Dormancy Phases in Sweet Cherry Buds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Sampling of Sweet Cherry Buds
2.3. Targeted Metabolite Profiling
2.4. Statistical Analysis
3. Results and Discussion
3.1. Chrysin and the Water Content in Sweet Cherry Buds
3.2. Arabonic Acid in Sweet Cherry Buds
3.3. Pentose Acid in Sweet Cherry Buds
3.4. Sucrose in Sweet Cherry Buds
3.5. Abscisic Acid Content in Sweet Cherry Buds
3.6. Abscisic Acid Glucose Ester (ABA-GE) Content in Sweet Cherry Buds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chmielewski, F.M.; Götz, K.P. Metabolites in cherry buds to detect winter dormancy. Metabolites 2022, 12, 247. [Google Scholar] [CrossRef]
- Chmielewski, F.-M.; Götz, K.-P. ABA and not chilling reduces heat requirement to force cherry blossom after endodormancy release. Plants 2022, 11, 2044. [Google Scholar]
- Chmielewski, F.M.; Götz, K.P. Identification and timing of dormant and ontogenetic phase for sweet cherries in northeast Germany for modelling purposes. J. Hortic. 2017, 4, 205. [Google Scholar]
- Woo, K.J.; Yong-Jin Jeong, Y.J.; Inouec, H.; Parka, J.-W.; Kwona, T.K. Chrysin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression through the inhibition of nuclear factor for IL-6 (NF-IL6) DNA-binding activity. FEBS Lett. 2005, 579, 705. [Google Scholar] [CrossRef]
- Kim, D.-C.; Rho, S.-H.; Shin, J.-C.; Hyun, H.H.; Kim, D. Inhibition of melanogenesis by 5,7-dihydroxyflavone (chrysin) via blocking adenylyl cyclase activity. Biochem. Biophys. Res. Commun. 2011, 411, 121. [Google Scholar]
- Zheng, H.; Li, S.; Pu, Y.; Lai, Y.; He, B.; Gu, Z. Nanoparticles generated by PEG-Chrysin conjugates for efficient anticancer drug delivery. Eur. J. Pharm. Biopharm. 2014, 87, 454. [Google Scholar] [CrossRef]
- Pai, S.A.; Martis, E.A.; Munshi, R.P.; Malvika, S.; Gursahani, M.S.; Snehal, N.; Mestry, S.N.; Juvekar, A.R. Chrysin mitigated obesity by regulating energy intake and expenditure in rats. J. Tradit. Complement. Med. 2020, 10, 577. [Google Scholar] [CrossRef]
- Balam, F.H.; Ahmadi, Z.S.; Ghorbani, A. Inhibitory effect of chrysin on estrogen biosynthesis by suppression of enzyme aromatase (CYP19): A systematic review. Heliyon 2020, 6, e03557. [Google Scholar] [CrossRef]
- Talebi, M.; Talebi, M.; Farkhondeh, T.; Kopustinskiene, D.M.; Simal-Gandara, J.; Bernatoniene, J.; Samarghandian, S. An updated review on the versatile role of chrysin in neurological diseases: Chemistry, pharmacology, and drug delivery approaches. Biomed. Pharmacother. 2021, 141, 111906. [Google Scholar]
- Zeevaart, J.A.D. Metabolism and physiology of abscisic acid. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1988, 39, 439. [Google Scholar]
- Baron, K.N.; Schroeder, D.F.; Stasolla, C. Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana. Plant Sci. 2012, 188–189, 48. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Li, G.J.; Ray, A.; Bressan, R.A.; Song, C.P.; Zhuand, J.K.; Zhao, Y. Abscisic acid dynamics, signaling, and functions in plants. J. Integr. Plant Biol. 2020, 62, 25. [Google Scholar] [CrossRef] [PubMed]
- Woitania, A.; Markiewicz, M.; Walígorski, P. Regulation of the bud dormancy development and release in micropropagated rhubarb ‘Malinowy’. Int. J. Mol. Sci. 2022, 23, 1480. [Google Scholar] [CrossRef] [PubMed]
- Burla, B.; Pfrunder, S.; Nagy, R.; Maria Francisco, R.; Lee, Y.; Martinoia, E. Vacuolar transport of abscisic acid glucosyl ester is mediated by ATP-binding cassette and proton-antiport mechanisms in Arabidopsis. Plant Physiol. 2013, 163, 1446. [Google Scholar] [CrossRef]
- Vimont, N.; Schwarzenberg, A.; Domijan, M.; Donkpegan, A.S.L.; Beauvieux, R.; Le Dantec, L.; Arkoun, M.; Jamois, F.; Yvin, J.C.; Wigge, P.A.; et al. Fine tuning of hormonal signaling is linked to dormancy status in sweet cherry flower buds. Tree Physiol. 2020, 41, 544. [Google Scholar] [CrossRef]
- Xin, Z.; Browse, J. Cold comfort farm: The acclimation of plants to freezing temperatures. Plant Cell Environ. 2000, 23, 893–902. [Google Scholar] [CrossRef]
- Hoermiller, I.I.; Naegele, T.; Augustin, H.; Stutz, S.; Weckwerth, W.; Heyer, A.G. Subcellular reprogramming of metabolism during cold acclimation in Arabidopsis thaliana. Plant Cell Environ. 2017, 40, 602. [Google Scholar] [CrossRef]
- Chmielewski, F.M.; Baldermann, S.; Götz, K.P.; Homann, T.; Gödeke, K.; Schumacher, F.; Huschek, G.; Rawel, H.M. Abscisic acid related metabolites in sweet cherry buds (Prunus avium L.). J. Hortic. 2018, 5, 221. [Google Scholar]
- Wessler, I.; Kilbinger, H.; Bittinger, F.; Kirkpatrick, C.J. The non-neuronal cholinergic system. The biological role of non-neuronal acetylcholine in plants and humans. Jpn. J. Pharmacol. 2001, 85, 2. [Google Scholar] [CrossRef]
- Tretyn, A.; Kendrick, R. Acetylcholine in plants: Presence, metabolism and mechanism of action. Bot. Rev. 1991, 57, 33. [Google Scholar] [CrossRef]
- Sagane, Y.; Nakagawa, T.; Yamamoto, K.; Michikawa, S.; Oguri, S.; Yoshie, S.; Momonoki, Y. Molecular characterization of maize acetylcholinesterase. A novel enzyme family in the plant kingdom. Plant Physiol. 2005, 138, 1359. [Google Scholar] [CrossRef]
- Hage, S.; Morlock, G.E. Bioprofiling of Saliaceae bud extracts through high-performance thin-layer chromatography hyphenated to biochemical, microbiological and chemical detections. J. Chromatogr. A 2017, 1490, 201. [Google Scholar] [CrossRef]
- Available online: www.merriam-webster.com (accessed on 20 January 2023).
- Mariettes, A.; Kang, H.S.; Heazlewood, J.L.; Persson, S.; Ebert, B.; Lampugnani, E.R. Not just a simple sugar: Arabinose metabolism and function in plants. Plant Cell Physiol. 2021, 62, 1791. [Google Scholar] [CrossRef]
- Bhalla, P.L.; Singh, M.B.; Malik, C.P. Characterization of pentose phosphate pathway in embryo suspensor of Tropaeolum majus. Biochem. Physiol. Pflanz. 1981, 76, 789. [Google Scholar] [CrossRef]
- Becskei, A.; Rahaman, S. The life and death of RNA across temperatures. Comput. Struct. Biotechnol. J. 2022, 20, 4325. [Google Scholar] [CrossRef]
- Chmielewski, F.-M.; Götz, K.-P.; Homann, T.; Huschek, G.; Rawel, H.M. Identification of endodormancy release for cherries (Prunus avium L.) by abscisic acid and sugars. J. Hortic. 2017, 4, 210. [Google Scholar]
- Götz, K.P.; Chmielewski, F.M. Response of sweet cherry buds and twigs to temperature changes—Evaluated by the determination of the degradation and synthesis of sucrose. Hortic. Sci. 2021, 48, 149. [Google Scholar] [CrossRef]
- Stitt, M.; Hurry, V. A plant for all seasons: Alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Curr. Opin. Plant Biol. 2002, 5, 199. [Google Scholar] [CrossRef]
- Seo, M.; Aoki, H.; Koiwai, H.; Kamiya, Y.; Nambara, E.; Koshiba, T. Comparative studies on the Arabidopsis aldehyde oxidase (AAO) gene family revealed a major role of AAO3 in ABA biosynthesis in seeds. Plant Cell Physiol. 2004, 45, 1694. [Google Scholar] [CrossRef]
- Del Carmen Rodríguez-Gacio, M.; Matilla-Vázquez, M.A.; Matilla, A.J. Seed dormancy and ABA signaling. Plant Signal. Behav. 2009, 4, 1035. [Google Scholar] [CrossRef]
- Smith, S.M.; Li, C.; Li, J. Hormone function in plants. In Hormone Metabolism and Signaling in Plants; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Sano, N.; Marion-Poll, A. ABA metabolism and homeostasis in seed dormancy and germination. Int. J. Mol. Sci. 2021, 22, 5069. [Google Scholar] [CrossRef]
- Ali, F.; Qanmber, G.; Li, F.; Wang, Z. Updated role of ABA in seed maturation, dormancy, and germination. J. Adv. Res. 2022, 35, 199. [Google Scholar] [CrossRef]
- Tylewicz, S.; Petterle, A.; Marttila, S.; Miskolczi, P.; Azeez, A.; Singh, R.K.; Immanen, J.; Mähler, N.; Hvidsten, T.R.; Eklund, D.M.; et al. Photoperiodic control of seasonal growth is mediated by ABA acting on cell–cell communication. Science 2018, 360, 212–215. [Google Scholar] [CrossRef]
- Yang, Q.; Gao, Y.; Wu, X.; Bai, T.M.S.; Teng, Y. Bud endodormancy in deciduous fruit trees: Advances and prospects. Hortic. Res. 2021, 8, 139. [Google Scholar] [CrossRef]
- Liu, J.; Sherif, S.M. Hormonal orchestration of bud dormancy cycle in deciduous woody perennials. Front. Plant Sci. 2019, 10, 1136. [Google Scholar] [CrossRef]
- Nambara, E.; Marion-Poll, A. Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol. 2005, 56, 165. [Google Scholar] [CrossRef] [Green Version]
Metabolite | LF | t1 | t1* | SB | OC | LF–t1 | t1–t1* | t1*–SB | SB–OC |
---|---|---|---|---|---|---|---|---|---|
Chrysin | 186.4 b ± 45.97 | 194.5 b ± 39.90 | 196.0 b ± 38.62 | 185.7 b ± 38.69 | 76.2 a ± 37.93 | 194.0 b ± 41.88 | 194.1 b ± 40.66 | 192.3 b ± 34.68 | 110.1 a ± 50.59 |
Arabonic acid | 53.0 ab ± 9.33 | 45.5 a ± 7.82 | 60.6 ab ± 14.30 | 66.9 bc ± 10.02 | 86.1 c ± 24.26 | 49.5 a ± 8.55 | 50.4 a ± 10.72 | 59.5 a ± 11.59 | 80.9 b ± 19.55 |
Pentose acid | 0.090 a ± 0.027 | 0.059 a ± 0.015 | 0.071 a ± 0.022 | 0.092 a ± 0.023 | 0.282 b ± 0.048 | 0.066 a ± 0.023 | 0.065 a ± 0.018 | 0.080 a ± 0.021 | 0.218 b ± 0.073 |
Sucrose | 14,476.2 a ± 4874.0 | 26,552.8 b ± 8839.2 | 24,691.8 ab ± 8361.5 | 18,184.3 ab ± 5544.1 | 22,555.1 ab ± 9530.5 | 20,260.5 a ± 8348.3 | 27,688.8 b ± 7730.1 | 21,249.5 a ± 5856.5 | 19,438.3 a ± 7919.0 |
Abscisic acid | 6.73 c ± 1.49 | 6.73 c ± 1.27 | 3.41 b ± 0.80 | 3.06 b ± 0.98 | 1.43 a ± 1.06 | 6.98 a ± 1.20 | 4.67 b ± 1.41 | 3.24 c ± 0.76 | 1.95 d ± 1.23 |
Abscisic acid glucose ester | 31.6 b ± 2.27 | 34.9 bc ± 2.86 | 40.3 d ± 2.85 | 38.3 cd ± 3.91 | 16.2 a ± 2.43 | 33.4 b ± 3.40 | 39.0 c ± 3.84 | 38.9 c ± 3.96 | 24.6 a ± 8.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Götz, K.-P.; Chmielewski, F.-M. Metabolites That Confirm Induction and Release of Dormancy Phases in Sweet Cherry Buds. Metabolites 2023, 13, 231. https://doi.org/10.3390/metabo13020231
Götz K-P, Chmielewski F-M. Metabolites That Confirm Induction and Release of Dormancy Phases in Sweet Cherry Buds. Metabolites. 2023; 13(2):231. https://doi.org/10.3390/metabo13020231
Chicago/Turabian StyleGötz, Klaus-P., and Frank-M. Chmielewski. 2023. "Metabolites That Confirm Induction and Release of Dormancy Phases in Sweet Cherry Buds" Metabolites 13, no. 2: 231. https://doi.org/10.3390/metabo13020231
APA StyleGötz, K.-P., & Chmielewski, F.-M. (2023). Metabolites That Confirm Induction and Release of Dormancy Phases in Sweet Cherry Buds. Metabolites, 13(2), 231. https://doi.org/10.3390/metabo13020231