Centella asiatica and Its Metabolite Asiatic Acid: Wound Healing Effects and Therapeutic Potential
Abstract
:1. Introduction
1.1. Skin and Wound Healing
1.2. Wound Healing and Phytomedicine
1.3. Centella Asiatica and Asiatic Acid
2. Materials and Methods
3. Centella asiatica and Cutaneous Repair Process
3.1. The Effect of Centella asiatica and Asiatic Acid in the Inflammatory Phase of Wound Healing
3.2. The Effect of Centella asiatica and Asiatic Acid in the Proliferative Phase of Acute Wound Healing
3.3. The Effect of Centella asiatica and Asiatic Acid in Remodelling Phase of Acute Wound Healing
3.4. The Effect of Centella asiatica and Asiatic Acid in Chronic Wound Healing
Inflammatory Phase of Acute Wound Healing | |||
---|---|---|---|
Experimental Model | Wound Healing Effect | Cellular and Molecular Mechanism | Reference |
Excision Wounds | CAE complexed with HP-β-CD healed completely the excising wound in rats after 14 days. | The authors attributed the wound healing effect of CAE to presence of asiaticoside that stimulates keratinization, increases the tensile strength and synthesis of collagen and inhibits the inflammatory phase. | [37] |
Phthalic anhydride (PA)-induced atopic dermatitis | CAE attenuated the development of PA-induced atopic dermatitis. | CAE (1, 2, 5 µg/mL) inhibited mast cells and infiltration of inflammatory cells, expression of iNOS and COX-2, and NF-κB activity as well as the release of TNF-α, IL-1β, IL-6, and IgE. In addition, CAE potently inhibited NF-κB DNA binding activities in RAW264.7macrophage cells. | [47] |
Excision Wounds | CAE reduced the wound area and wound healing period of full-thickness wounds | CAE (100 mg/kg) increase the NOS activity and the levels of TGF-β. | [50] |
Imiquimod-induced psoriasis | Asiatic acid reduced imiquimod-induced inflammation | Asiatic acid (100 mg/kg) inhibited the increase in serum levels of IL-17A and IL-23 induced by imiquimod | [53] |
Incision, Burn and Diabetic wounds | CAE and Aa reduced the inflammation and accelerated the wound healing | CAE and Aa reduced inflammatory cells recruitment and reduced pro-inflammatory (e.g., TNF-α, IL-1β and IL-6) levels. | [48,52] |
Proliferative phase of acute wound healing | |||
Human Fibroblast cells | CAE and Aa promoted granulation tissue formation and increased the tensile strength | CAE and Aa stimulated fibronectin and collagen synthesis | [58,61] |
Excision and Incision Wound | CAE and Aa promoted a decrease in the wound area and faster healing of excision wound in rats | CAE and Aa increased collagen synthesis and fibroblast proliferation | [37,39] |
Incision Wound | CAE accelerated the wound healing of rat incision model | CAE increased cellular proliferation, protein and collagen content of granulation tissues | [54] |
Open wound | The topical formulation of CAE applied 3 times daily for 24 days wounds promoted epithelialized faster and higher the rate of wound contraction to open wounds in rats | CAE increased cellular proliferation and collagen synthesis | [56] |
Dexamethasone-suppressed incision wound | Animals treated with CAE showed faster wound contraction than untreated animals | CAE enhanced wound breaking strength, granulation tissue weights, granulation tissue breaking stretch | [57] |
Remodelling phase of acute wound healing | |||
Human Fibroblast | Aa induced collagen I synthesis | Aa induced human collagen I synthesis through TGFβ receptor I kinase (TβRI kinase)-independent Smad signaling | [43] |
Burn wound | Aa decreased wound area and faster healing | C. asiatica and its bioactive glycoside raised TGF-β 1, TβRII and procollagen type I and type III expression | [39] |
Tongue wounds | CAE increase wound contraction and faster oral tissue regeneration on the healing process | C. asiatica was effective to promote collagen deposition and extracellular matrix accumulation | [66] |
Incision Wound | CAE and Aa accelerated the wound healing process | CAE and Aa stimulated extracellular matrix accumulation, maintenance of granulation tissue, increase of collagen synthesis and tensile strength force | [45,60] |
Chronic wound healing | |||
Streptozotocin-induced diabetes | As facilitated the healing process of diabetic rats | Asiatic acid increased hydroxyproline content, tensile strength, collagen content, maturation and cross linking of collagen and epithelization | [67] |
Type 2 diabetic patients | CAE, was effective in the wound healing promotion and suppress the scar in diabetic wound patients. | _ | [49,67,68] |
4. Centella asiatica Antimicrobial Activity
5. Phytochemistry of Centella asiatica
6. Antimicrobial Activity of Asiatic Acid
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Aa | Asiatic acid |
CAE | Centella asiatica |
ECM | Extracellular matrix |
IL | Interleucin |
IL-1β | Interleukin-1 Beta |
IL-6 | Interleukin-6 |
IL-17A | Interleukin-17A |
IL-23 | Interleukin-23 |
NOS | Nitric Oxide Synthase |
INF-Υ | Interferon gamma |
NF-κB | Nuclear Factor Κb |
PDGF | Platelet-derived Growth Factor |
ROS | Reactive Oxygen Species |
SOD | Superoxide Dismutase |
TGF-β1 | Transforming Growth Factor Beta |
TNF-α | Tumor Necrosis Factor Alpha |
VEGF | Vascular Endothelial Growth Factor |
References
- Fore, J. A review of skin and the effects of aging on skin structure and function. Ostomy Wound Manag. 2006, 52, 24–35. [Google Scholar]
- Richmond, J.M.; Harris, J.E. Immunology and skin in health and disease. Cold Spring Harb. Perspect. Med. 2014, 4, a015339. [Google Scholar] [CrossRef] [PubMed]
- Reinke, J.M.; Sorg, H. Wound repair and regeneration. Eur. Surg. Res. 2012, 49, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Singer, A.J.; Clark, R.A. Cutaneous wound healing. N. Engl. J. Med. 1999, 341, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Sorg, H.; Tilkorn, D.J.; Hager, S.; Hauser, J.; Mirastschijski, U. Skin Wound Healing: An Update on the Current Knowledge and Concepts. Eur. Surg. Res. 2017, 58, 81–94. [Google Scholar] [CrossRef]
- Velnar, T.; Bailey, T.; Smrkolj, V. The wound healing process: An overview of the cellular and molecular mechanisms. J. Int. Med. Res. 2009, 37, 1528–1542. [Google Scholar] [CrossRef]
- Akita, S. Wound Repair and Regeneration: Mechanisms, Signaling. Int. J. Mol. Sci. 2019, 20, 6328. [Google Scholar] [CrossRef]
- Agaiby, A.D.; Dyson, M. Immuno-inflammatory cell dynamics during cutaneous wound healing. J. Anat. 1999, 195, 531–542. [Google Scholar] [CrossRef]
- Rodrigues, M.; Kosaric, N.; Bonham, C.A.; Gurtner, G.C. Wound Healing: A Cellular Perspective. Physiol. Rev. 2019, 99, 665–706. [Google Scholar] [CrossRef]
- Monavarian, M.; Kader, S.; Moeinzadeh, S.; Jabbari, E. Regenerative Scar-Free Skin Wound Healing. Tissue Eng. Part B Rev. 2019, 25, 294–311. [Google Scholar] [CrossRef]
- Grandi, V.; Corsi, A.; Pimpinelli, N.; Bacci, S. Cellular Mechanisms in Acute and Chronic Wounds after PDT Therapy: An Update. Biomedicines 2022, 10, 1624. [Google Scholar] [CrossRef] [PubMed]
- Las Heras, K.; Igartua, M.; Santos-Vizcaino, E.; Hernandez, R.M. Chronic wounds: Current status, available strategies and emerging therapeutic solutions. J. Control. Release 2020, 328, 532–550. [Google Scholar] [CrossRef] [PubMed]
- Harding, K.G. Chronic wounds: A clinical problem requiring ownership and coordination. Br. J. Dermatol. 2022, 187, 133–134. [Google Scholar] [CrossRef] [PubMed]
- Graves, N.; Phillips, C.J.; Harding, K. A narrative review of the epidemiology and economics of chronic wounds. Br. J. Dermatol. 2022, 187, 141–148. [Google Scholar] [CrossRef]
- Grieb, G.; Steffens, G.; Pallua, N.; Bernhagen, J.; Bucala, R. Circulating fibrocytes--biology and mechanisms in wound healing and scar formation. Int. Rev. Cell Mol. Biol. 2011, 291, 1–19. [Google Scholar] [CrossRef]
- Adib, Y.; Bensussan, A.; Michel, L. Cutaneous Wound Healing: A Review about Innate Immune Response and Current Therapeutic Applications. Mediat. Inflamm. 2022, 2022, 5344085. [Google Scholar] [CrossRef]
- Kumar, B.; Vijayakumar, M.; Govindarajan, R.; Pushpangadan, P. Ethnopharmacological approaches to wound healing--exploring medicinal plants of India. J. Ethnopharmacol. 2007, 114, 103–113. [Google Scholar] [CrossRef]
- Pazyar, N.; Yaghoobi, R.; Rafiee, E.; Mehrabian, A.; Feily, A. Skin wound healing and phytomedicine: A review. Ski. Pharmacol. Physiol. 2014, 27, 303–310. [Google Scholar] [CrossRef]
- Abu-Al-Basal, M.A. Healing potential of Rosmarinus officinalis L. on full-thickness excision cutaneous wounds in alloxan-induced-diabetic BALB/c mice. J. Ethnopharmacol. 2010, 131, 443–450. [Google Scholar] [CrossRef]
- Atiba, A.; Ueno, H.; Uzuka, Y. The effect of aloe vera oral administration on cutaneous wound healing in type 2 diabetic rats. J. Vet. Med. Sci. 2011, 73, 583–589. [Google Scholar] [CrossRef]
- Cavalcanti, J.M.; Leal-Cardoso, J.H.; Diniz, L.R.; Portella, V.G.; Costa, C.O.; Linard, C.F.; Alves, K.; Rocha, M.V.; Lima, C.C.; Cecatto, V.M.; et al. The essential oil of Croton zehntneri and trans-anethole improves cutaneous wound healing. J. Ethnopharmacol. 2012, 144, 240–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parente, L.M.; Lino Júnior Rde, S.; Tresvenzol, L.M.; Vinaud, M.C.; de Paula, J.R.; Paulo, N.M. Wound Healing and Anti-Inflammatory Effect in Animal Models of Calendula officinalis L. Growing in Brazil. Evid. Based Complement. Altern. Med. 2012, 2012, 375671. [Google Scholar] [CrossRef] [PubMed]
- Preethi, K.C.; Kuttan, R. Wound healing activity of flower extract of Calendula officinalis. J. Basic. Clin. Physiol. Pharmacol. 2009, 20, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Leach, M.J. Calendula officinalis and Wound Healing: A Systematic Review. Wounds 2008, 20, 236–243. [Google Scholar] [PubMed]
- Biswas, D.; Mandal, S.; Chatterjee Saha, S.; Tudu, C.K.; Nandy, S.; Batiha, G.E.; Shekhawat, M.S.; Pandey, D.K.; Dey, A. Ethnobotany, phytochemistry, pharmacology, and toxicity of Centella asiatica (L.) Urban: A comprehensive review. Phytother. Res. 2021, 35, 6624–6654. [Google Scholar] [CrossRef] [PubMed]
- Torbati, F.A.; Ramezani, M.; Dehghan, R.; Amiri, M.S.; Moghadam, A.T.; Shakour, N.; Elyasi, S.; Sahebkar, A.; Emami, S.A. Ethnobotany, Phytochemistry and Pharmacological Features of Centella asiatica: A Comprehensive Review. Adv. Exp. Med. Biol. 2021, 1308, 451–499. [Google Scholar] [CrossRef]
- Fincato, M. On the treatment of cutaneous lesions with extract of “Centella asiatica”. Minerva Chir. 1960, 15, 1235–1238. [Google Scholar]
- Brinkhaus, B.; Lindner, M.; Schuppan, D.; Hahn, E.G. Chemical, pharmacological and clinical profile of the East Asian medical plant Centella asiatica. Phytomedicine 2000, 7, 427–448. [Google Scholar] [CrossRef]
- Anggraeni, S.; Umborowati, M.A.; Damayanti, D.; Endaryanto, A.; Prakoeswa, C.R.S. Role of Centella asiatica and ceramide in skin barrier improvement: A double blind clinical trial of Indonesian batik workers. J. Basic Clin. Physiol. Pharmacol. 2021, 32, 589–593. [Google Scholar] [CrossRef]
- Bylka, W.; Znajdek-Awiżeń, P.; Studzińska-Sroka, E.; Dańczak-Pazdrowska, A.; Brzezińska, M. Centella asiatica in dermatology: An overview. Phytother. Res. 2014, 28, 1117–1124. [Google Scholar] [CrossRef]
- Arribas-López, E.; Zand, N.; Ojo, O.; Snowden, M.J.; Kochhar, T. A Systematic Review of the Effect of Centella asiatica on Wound Healing. Int. J. Environ. Res. Public Health 2022, 19, 3266. [Google Scholar] [CrossRef] [PubMed]
- Park, K.S. Pharmacological Effects of Centella asiatica on Skin Diseases: Evidence and Possible Mechanisms. Evid. Based Complement. Altern. Med. 2021, 2021, 5462633. [Google Scholar] [CrossRef]
- Bonfill, M.; Mangas, S.; Cusidó, R.M.; Osuna, L.; Piñol, M.T.; Palazón, J. Identification of triterpenoid compounds of Centella asiatica by thin-layer chromatography and mass spectrometry. Biomed. Chromatogr. 2006, 20, 151–153. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Hu, Y.; Niu, Z.; Zhong, K.; Liu, T.; Yang, M.; Ji, L.; Hu, W. A review of pharmacokinetic and pharmacological properties of asiaticoside, a major active constituent of Centella asiatica (L.) Urb. J. Ethnopharmacol. 2023, 302, 115865. [Google Scholar] [CrossRef] [PubMed]
- Sh Ahmed, A.; Taher, M.; Mandal, U.K.; Jaffri, J.M.; Susanti, D.; Mahmood, S.; Zakaria, Z.A. Pharmacological properties of Centella asiatica hydrogel in accelerating wound healing in rabbits. BMC Complement. Altern. Med. 2019, 19, 213. [Google Scholar] [CrossRef]
- Songvut, P.; Chariyavilaskul, P.; Khemawoot, P.; Tansawat, R. Pharmacokinetics and metabolomics investigation of an orally modified formula of standardized Centella asiatica extract in healthy volunteers. Sci. Rep. 2021, 11, 6850. [Google Scholar] [CrossRef]
- Sawatdee, S.; Choochuay, K.; Chanthorn, W.; Srichana, T. Evaluation of the topical spray containing Centella asiatica extract and its efficacy on excision wounds in rats. Acta Pharm. 2016, 66, 233–244. [Google Scholar] [CrossRef]
- Jeong, B.S. Structure-activity relationship study of asiatic acid derivatives for new wound healing agent. Arch. Pharm. Res. 2006, 29, 556–562. [Google Scholar] [CrossRef]
- Wu, F.; Bian, D.; Xia, Y.; Gong, Z.; Tan, Q.; Chen, J.; Dai, Y. Identification of Major Active Ingredients Responsible for Burn Wound Healing of Centella asiatica Herbs. Evid. Based Complement. Altern. Med. 2012, 2012, 848093. [Google Scholar] [CrossRef]
- Shukla, A.; Rasik, A.M.; Jain, G.K.; Shankar, R.; Kulshrestha, D.K.; Dhawan, B.N. In vitro and in vivo wound healing activity of asiaticoside isolated from Centella asiatica. J. Ethnopharmacol. 1999, 65, 1–11. [Google Scholar] [CrossRef]
- Boiteau, P.; Ratsimamanga, A.R. Asiaticoside extracted from Centella asiatica and its therapeutic uses in cicatrization of experimental and refractory wounds (leprosy, cutaneous tuberculosis and lupus). Therapies 1956, 11, 125–149. [Google Scholar]
- Coldren, C.D.; Hashim, P.; Ali, J.M.; Oh, S.K.; Sinskey, A.J.; Rha, C. Gene expression changes in the human fibroblast induced by Centella asiatica triterpenoids. Planta Med. 2003, 69, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Jung, E.; Kim, Y.; Park, J.; Park, J.; Hong, S.; Kim, J.; Hyun, C.; Kim, Y.S.; Park, D. Asiaticoside induces human collagen I synthesis through TGFβ receptor I kinase (TβRI kinase)-independent Smad signaling. Planta Med. 2006, 72, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Bonte, F.; Dumas, M.; Chaudagne, C.; Meybeck, A. Influence of asiatic acid, madecassic acid, and asiaticoside on human collagen I synthesis. Planta Med. 1994, 60, 133–135. [Google Scholar] [CrossRef]
- Maquart, F.X.; Chastang, F.; Simeon, A.; Birembaut, P.; Gillery, P.; Wegrowski, Y. Triterpenes from Centella asiatica stimulate extracellular matrix accumulation in rat experimental wounds. Eur. J. Dermatol. 1999, 9, 289–296. [Google Scholar]
- Ruszymah, B.H.; Chowdhury, S.R.; Manan, N.A.; Fong, O.S.; Adenan, M.I.; Saim, A.B. Aqueous extract of Centella asiatica promotes corneal epithelium wound healing in vitro. J. Ethnopharmacol. 2012, 140, 333–338. [Google Scholar] [CrossRef]
- Park, J.H.; Choi, J.Y.; Son, D.J.; Park, E.K.; Song, M.J.; Hellström, M.; Hong, J.T. Anti-Inflammatory Effect of Titrated Extract of Centella asiatica in Phthalic Anhydride-Induced Allergic Dermatitis Animal Model. Int. J. Mol. Sci. 2017, 18, 738. [Google Scholar] [CrossRef]
- Nurdin, M.; Yulianty, R.; Latief, S.; Prihantono; Abu, J.; Usman, A.N. Effects of Centella asiatica (L.) Urban extract in TNF-α levels. Gac. Sanit. 2021, 35, S281–S283. [Google Scholar] [CrossRef]
- Paocharoen, V. The efficacy and side effects of oral Centella asiatica extract for wound healing promotion in diabetic wound patients. J. Med. Assoc. Thai. 2010, 93, S166–S170. [Google Scholar]
- Ermertcan, A.T.; Inan, S.; Ozturkcan, S.; Bilac, C.; Cilaker, S. Comparison of the effects of collagenase and extract of Centella asiatica in an experimental model of wound healing: An immunohistochemical and histopathological study. Wound Repair Regen. 2008, 16, 674–681. [Google Scholar] [CrossRef]
- Camacho-Alonso, F.; Torralba-Ruiz, M.R.; García-Carrillo, N.; Lacal-Luján, J.; Martínez-Díaz, F.; Sánchez-Siles, M. Effects of topical applications of porcine acellular urinary bladder matrix and Centella asiatica extract on oral wound healing in a rat model. Clin. Oral Investig. 2019, 23, 2083–2095. [Google Scholar] [CrossRef]
- Somboonwong, J.; Kankaisre, M.; Tantisira, B.; Tantisira, M.H. Wound healing activities of different extracts of Centella asiatica in incision and burn wound models: An experimental animal study. BMC Complement. Altern. Med. 2012, 12, 103. [Google Scholar] [CrossRef] [PubMed]
- Kukula, O.; Kırmızıkan, S.; Tiryaki, E.S.; Çiçekli, M.N.; Günaydın, C. Asiatic acid exerts an anti-psoriatic effect in the imiquimod-induced psoriasis model in mice. Immunopharmacol. Immunotoxicol. 2022, 44, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Suguna, L.; Sivakumar, P.; Chandrakasan, G. Effects of Centella asiatica extract on dermal wound healing in rats. Indian J. Exp. Biol. 1996, 34, 1208–1211. [Google Scholar] [PubMed]
- Lawrence, J.C. The effect of asiaticoside on guinea pig skin. J. Investig. Dermatol. 1967, 49, 95–96. [Google Scholar] [CrossRef] [Green Version]
- Sunilkumar; Parameshwaraiah, S.; Shivakumar, H.G. Evaluation of topical formulations of aqueous extract of Centella asiatica on open wounds in rats. Indian J. Exp. Biol. 1998, 36, 569–572. [Google Scholar]
- Shetty, B.S.; Udupa, S.L.; Udupa, A.L.; Somayaji, S.N. Effect of Centella asiatica L (Umbelliferae) on normal and dexamethasone-suppressed wound healing in Wistar Albino rats. Int. J. Low. Extrem. Wounds 2006, 5, 137–143. [Google Scholar] [CrossRef]
- Tenni, R.; Zanaboni, G.; De Agostini, M.P.; Rossi, A.; Bendotti, C.; Cetta, G. Effect of the triterpenoid fraction of Centella asiatica on macromolecules of the connective matrix in human skin fibroblast cultures. Ital. J. Biochem. 1988, 37, 69–77. [Google Scholar]
- Bian, D.; Zhang, J.; Wu, X.; Dou, Y.; Yang, Y.; Tan, Q.; Xia, Y.; Gong, Z.; Dai, Y. Asiatic acid isolated from Centella asiatica inhibits TGF-β1-induced collagen expression in human keloid fibroblasts via PPAR-γ activation. Int. J. Biol. Sci. 2013, 9, 1032–1042. [Google Scholar] [CrossRef]
- Adtani, P.N.; Narasimhan, M.; Punnoose, A.M.; Kambalachenu, H.R. Antifibrotic effect of Centella asiatica Linn and asiatic acid on arecoline-induced fibrosis in human buccal fibroblasts. J. Investig. Clin. Dent. 2017, 8, e12208. [Google Scholar] [CrossRef]
- Hashim, P. The effect of Centella asiatica, vitamins, glycolic acid and their mixtures preparations in stimulating collagen and fibronectin synthesis in cultured human skin fibroblast. Pak. J. Pharm. Sci. 2014, 27, 233–237. [Google Scholar]
- Huang, J.; Tu, T.; Wang, W.; Zhou, G.; Zhang, W.; Wu, X.; Liu, W. Asiatic Acid Glucosamine Salt Alleviates Ultraviolet B-induced Photoaging of Human Dermal Fibroblasts and Nude Mouse Skin. Photochem. Photobiol. 2020, 96, 124–138. [Google Scholar] [CrossRef]
- Damkerngsuntorn, W.; Rerknimitr, P.; Panchaprateep, R.; Tangkijngamvong, N.; Kumtornrut, C.; Kerr, S.J.; Asawanonda, P.; Tantisira, M.H.; Khemawoot, P. The Effects of a Standardized Extract of Centella asiatica on Postlaser Resurfacing Wound Healing on the Face: A Split-Face, Double-Blind, Randomized, Placebo-Controlled Trial. J. Altern. Complement. Med. 2020, 26, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.G.; Kim, K.S.; Yousaf, A.M.; Kim, D.W.; Jang, S.W.; Son, M.W.; Kim, Y.H.; Yong, C.S.; Kim, J.O.; Choi, H.G. Mechanical properties and in vivo healing evaluation of a novel Centella asiatica-loaded hydrocolloid wound dressing. Int. J. Pharm. 2015, 490, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Cotellese, R.; Hu, S.; Belcaro, G.; Ledda, A.; Feragalli, B.; Dugall, M.; Hosoi, M.; Ippolito, E. Centella asiatica (Centellicum®) facilitates the regular healing of surgical scars in subjects at high risk of keloids. Minerva Chir. 2018, 73, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.H.; Yeh, J.Y.; Chen, Y.S.; Li, M.H.; Huang, C.H. Wound-healing effect of electrospun gelatin nanofibres containing Centella asiatica extract in a rat model. J. Tissue Eng. Regen. Med. 2017, 11, 905–915. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Zhang, D.; Deng, J.; Liu, Y.; Li, W.; Nie, X. Preparation and Safety Evaluation of Centella asiatica Total Glycosides Nitric Oxide Gel and Its Therapeutic Effect on Diabetic Cutaneous Ulcers. Evid. Based Complement. Altern. Med. 2022, 2022, 1419146. [Google Scholar] [CrossRef]
- Legiawati, L.; Bramono, K.; Indriatmi, W.; Yunir, E.; Setiati, S.; Jusman, S.W.A.; Purwaningsih, E.H.; Wibowo, H.; Danarti, R. Oral and Topical Centella asiatica in Type 2 Diabetes Mellitus Patients with Dry Skin: A Three-Arm Prospective Randomized Double-Blind Controlled Trial. Evid. Based Complement. Altern. Med. 2020, 2020, 7253560. [Google Scholar] [CrossRef]
- Kuo, Y.S.; Chien, H.F.; Lu, W. Plectranthus amboinicus and Centella asiatica Cream for the Treatment of Diabetic Foot Ulcers. Evid. Based Complement. Altern. Med. 2012, 2012, 418679. [Google Scholar] [CrossRef]
- Jenwitheesuk, K.; Rojsanga, P.; Chowchuen, B.; Surakunprapha, P. A Prospective Randomized, Controlled, Double-Blind Trial of the Efficacy Using Centella Cream for Scar Improvement. Evid. Based Complement. Altern. Med. 2018, 2018, 9525624. [Google Scholar] [CrossRef]
- Vaddadi, S.; Agrawal, P.; Das, A.; Kotagiri, D.; Kolluru, V.C. Antimicrobial and antioxidant activities in the root, stem and leaf extracts of Centella asiatica. Adv. Biotechnol. Microbiol. 2017, 3, 555618. [Google Scholar] [CrossRef]
- Jayaprakash, S.B.; Nagarajan, N. Studies on the bioactive compounds and antimicrobial activities of medicinal plant Centella asiatica (Linn). J. Med. Plants Stud. 2016, 4, 181–185. [Google Scholar]
- Soyingbe, O.S.; Mongalo, N.I.; Makhafola, T.J. In vitro antibacterial and cytotoxic activity of leaf extracts of Centella asiatica (L.) Urb, Warburgia salutaris (Bertol. F.) Chiov and Curtisia dentata (Burm. F.) C.A.Sm—Medicinal plants used in South Africa. BMC Complement. Altern. Med. 2018, 18, 315. [Google Scholar] [CrossRef] [PubMed]
- Zaidan, M.R.; Noor Rain, A.; Badrul, A.R.; Adlin, A.; Norazah, A.; Zakiah, I. In vitro screening of five local medicinal plants for antibacterial activity using disc diffusion method. Trop. Biomed. 2005, 22, 165–170. [Google Scholar] [PubMed]
- Jose, D.; Lekshmi, N.; Goel, A.K.; Kumar, R.A.; Thomas, S. Development of a Novel Herbal Formulation To Inhibit Biofilm Formation in Toxigenic Vibrio cholerae. J. Food Prot. 2017, 80, 1933–1940. [Google Scholar] [CrossRef] [PubMed]
- Sieberi, B.M.; Omwenga, G.I.; Wambua, R.K.; Samoei, J.C.; Ngugi, M.P. Screening of the Dichloromethane: Methanolic Extract of Centella asiatica for Antibacterial Activities against Salmonella typhi, Escherichia coli, Shigella sonnei, Bacillus subtilis, and Staphylococcus aureus. Sci. World J. 2020, 2020, 6378712. [Google Scholar] [CrossRef]
- Dhiman, R.; Aggarwal, N.; Aneja, K.R.; Kaur, M. In Vitro Antimicrobial Activity of Spices and Medicinal Herbs against Selected Microbes Associated with Juices. Int. J. Microbiol. 2016, 2016, 9015802. [Google Scholar] [CrossRef]
- Aftab, A.; Khan, Z.D.; Yousaf, Z.; Javad, S.; Shamsheer, B.; Zahoor, M.; Ramzan, H. Exploration of Ethnopharmacological Potential of Antimicrobial, Antioxidant, Anthelmintic and Phytochemical Analysis of Medicinally Important Plant Centella asiatica (L.) Urban in Mart. and Eichl. Am. J. Plant. Sci. 2017, 8, 201. [Google Scholar] [CrossRef]
- Mudaliana, S. Antimicrobial activity of Centella asiatica and Gigantochloa apus. J. Basic Clin. Physiol. Pharmacol. 2021, 32, 755–759. [Google Scholar] [CrossRef]
- Sultan, R.A.; Mahmood, S.B.Z.; Azhar, I.; Ahmed, S.W.; Mahmood, Z.A. Biological activities assessment of Centella asiatica (Linn.). J. Herbs Spices Med. Plants 2014, 20, 319–327. [Google Scholar] [CrossRef]
- Idris, F.N.; Mohd Nadzir, M. Comparative Studies on Different Extraction Methods of Centella asiatica and Extracts Bioactive Compounds Effects on Antimicrobial Activities. Antibiotics 2021, 10, 457. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.X.; Ramli, S. Antimicrobial activity of different types of Centella asiatica extracts against foodborne pathogens and food spoilage microorganisms. LWT 2021, 142, 111026. [Google Scholar] [CrossRef]
- Nasution, M.Y.; Restuati, M.; Pulungan, A.S.S.; Pratiwi, N.; Diningrat, D.S. Antimicrobial activities of Centella asiatica leaf and root extracts on selected pathogenic micro-organisms. J. Med. Sci. 2018, 18, 198–204. [Google Scholar] [CrossRef]
- Oyedeji, O.A.; Afolayan, A.J. Chemical composition and antibacterial activity of the essential oil of Centella asiatica. Growing in South Africa. Pharm. Biol. 2005, 43, 249–252. [Google Scholar] [CrossRef]
- Paudel, P.; Satyal, P.; Dosoky, N.S.; Setzer, W.N. Chemical composition and biological activity of Centella asiatica essential oil from Nepal. Am. J. Essent. Oil. Nat. Prod. 2017, 5, 05–08. [Google Scholar]
- Khan, M.A.; Khan, H.M.; Ganie, I.B.; Kumar, S.; Shahzad, A.; Celik, I.; Shahid, M. Anti-quorum sensing, antibiofilm, and antibacterial activities of extracts of Centella asiatica L. leaves, and in vitro derived leaves-calli through tissue culture: A potential for biofouling-prevention. Biofouling 2022, 38, 715–728. [Google Scholar] [CrossRef] [PubMed]
- Polash, S.A.; Saha, T.; Hossain, M.S.; Sarker, S.R. Phytochemical contents, antioxidant and antibacterial activity of the ethanolic extracts of Centella asiatica (L.) Urb. leaf and stem. Jahangirnagar Univ. J. Biol. Sci. 2017, 6, 51–57. [Google Scholar] [CrossRef]
- Ogunka-Nnoka, C.U.; Igwe, F.U.; Agwu, J.; Peter, O.J.; Wolugbom, P.H. Nutrient and phytochemical composition of Centella asiatica leaves. Med. Aromat. Plants 2020, 9, 2167-0412. [Google Scholar] [CrossRef]
- Ren, B.; Luo, W.; Xie, M.J.; Zhang, M. Two new triterpenoid saponins from Centella asiatica. Phytochem. Lett. 2021, 44, 102–105. [Google Scholar] [CrossRef]
- Shen, X.; Guo, M.; Yu, H.; Liu, D.; Lu, Z.; Lu, Y. Propionibacterium acnes related anti-inflammation and skin hydration activities of madecassoside, a pentacyclic triterpene saponin from Centella asiatica. Biosci. Biotechnol. Biochem. 2019, 83, 561–568. [Google Scholar] [CrossRef]
- Masi, F.; Chianese, G.; Peterlongo, F.; Riva, A.; Taglialatela-Scafati, O. Phytochemical profile of Centevita®, a Centella asiatica leaves extract, and isolation of a new oleanane-type saponin. Fitoterapia 2022, 158, 105163. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, R.D.; Parmar, K.M.; Itankar, P.R.; Prasad, S.K. Phytochemical and pharmacological evaluation of organic and non-organic cultivated nutritional Centella asiatica collected after different time intervals of harvesting. S. Afr. J. Bot. 2017, 112, 237–245. [Google Scholar] [CrossRef]
- Alqahtani, A.; Tongkao-on, W.; Li, K.M. Razmovski-Naumovski, V.; Chan, K.; Li, G.Q. Seasonal Variation of Triterpenes and Phenolic Compounds in Australian Centella asiatica (L.) Urb. Phytochem. Anal. 2015, 26, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Dewi, R.T.; Maryani, F. Antioxidant and α-glucosidase inhibitory compounds of Centella asiatica. Procedia Chem. 2015, 17, 147–152. [Google Scholar] [CrossRef]
- Pan, J.; Kai, G.; Yuan, C.; Zhou, B.; Jin, R.; Yuan, Y. Separation and determination of madecassic acid in triterpenic genins of Centella asiatica by high performance liquid chromatography using beta-cyclodextrin as mobile phase additive. Chin. J. Chromatogr. 2007, 25, 316–318. [Google Scholar] [CrossRef]
- Ghosh, K.; Indra, N. Phytochemistry, in vitro free radical scavenging, chelating and toxicity of Centela asiatica L. (Apiaceae) ethanolic leaf extract. Int. J. Pharm. Sci. Rev. Res. 2014, 29, 328–334. [Google Scholar]
- Subaraja, M.; Vanisree, A.J. The novel phytocomponent asiaticoside-D isolated from Centella asiatica exhibits monoamine oxidase-B inhibiting potential in the rotenone degenerated cerebral ganglions of Lumbricus terrestris. Phytomedicine 2019, 58, 152833. [Google Scholar] [CrossRef]
- Ondeko, D.A.; Juma, B.F.; Baraza, L.D.; Nyongesa, P.K. LC-ESI/MS and GC-MS methanol extract analysis, phytochemical and antimicrobial activity studies of Centella asiatica. Asian J. Chem. Sci. 2020, 8, 32–51. [Google Scholar] [CrossRef]
- Rumalla, C.S.; Ali, Z.; Weerasooriya, A.D.; Smillie, T.J.; Khan, I.A. Two new triterpene glycosides from Centella asiatica. Planta Med. 2010, 76, 1018–1021. [Google Scholar] [CrossRef]
- Bhuyar, P.; Maniam, G.P.; Govindan, N. Isolation and characterization of bioactive compounds in medicinal plant Centella asiatica and study the effects on fungal activities. J. Microbiol. Biotechnol. Food Sci. 2021, 10, 631–635. [Google Scholar] [CrossRef]
- Viswanathan, G.; Dan, V.M.; Radhakrishnan, N.; Nair, A.S.; Rajendran Nair, A.P.; Baby, S. Protection of mouse brain from paracetamol-induced stress by Centella asiatica methanol extract. J. Ethnopharmacol. 2019, 236, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Harnvoravongchai, P.; Chankhamhaengdecha, S.; Ounjai, P.; Singhakaew, S.; Boonthaworn, K.; Janvilisri, T. Antimicrobial Effect of Asiatic Acid Against Clostridium difficile Is Associated With Disruption of Membrane Permeability. Front. Microbiol. 2018, 9, 2125. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lu, C.; Zhao, X.; Wang, D.; Liu, Y.; Sun, S. Antifungal activity and potential mechanism of Asiatic acid alone and in combination with fluconazole against Candida albicans. Biomed Pharmacother. 2021, 139, 111568. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Huang, S.; Shi, Y.; Shao, Y.; Qiu, J.; Sedjoah, R.A.; Yan, Z.; Ding, L.; Zou, D.; Xin, Z. Extraction, isolation, characterization and antimicrobial activities of non-extractable polyphenols from pomegranate peel. Food Chem. 2021, 351, 129232. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Sharma, A.; Upadhyay, T.K.; Hayat-Ul-Islam, M.; Khan, M.K.A.; Dwivedi, U.N.; Sharma, R. Structure-based in silico and in vitro Analysis Reveals Asiatic Acid as Novel Potential Inhibitor of Mycobacterium tuberculosis Maltosyl Transferase. Curr. Comput. Aided Drug Des. 2022, 18, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Sycz, Z.; Tichaczek-Goska, D.; Jezierska-Domaradzka, A.; Wojnicz, D. Are Uropathogenic Bacteria Living in Multispecies Biofilm Susceptible to Active Plant Ingredient-Asiatic Acid? Biomolecules 2021, 11, 1754. [Google Scholar] [CrossRef]
- Garo, E.; Eldridge, G.R.; Goering, M.G.; DeLancey Pulcini, E.; Hamilton, M.A.; Costerton, J.W.; James, G.A. Asiatic acid and corosolic acid enhance the susceptibility of Pseudomonas aeruginosa biofilms to tobramycin. Antimicrob. Agents Chemother. 2007, 51, 1813–1817. [Google Scholar] [CrossRef]
- Liu, W.H.; Liu, T.C.; Mong, M.C. Antibacterial effects and action modes of asiatic acid. Biomedicine 2015, 5, 16. [Google Scholar] [CrossRef]
- Wojnicz, D.; Tichaczek-Goska, D.; Kicia, M. Pentacyclic triterpenes combined with ciprofloxacin help to eradicate the biofilm formed in vitro by Escherichia coli. Indian J. Med. Res. 2015, 141, 343–353. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diniz, L.R.L.; Calado, L.L.; Duarte, A.B.S.; de Sousa, D.P. Centella asiatica and Its Metabolite Asiatic Acid: Wound Healing Effects and Therapeutic Potential. Metabolites 2023, 13, 276. https://doi.org/10.3390/metabo13020276
Diniz LRL, Calado LL, Duarte ABS, de Sousa DP. Centella asiatica and Its Metabolite Asiatic Acid: Wound Healing Effects and Therapeutic Potential. Metabolites. 2023; 13(2):276. https://doi.org/10.3390/metabo13020276
Chicago/Turabian StyleDiniz, Lúcio Ricardo Leite, Leonardo Luiz Calado, Allana Brunna Sucupira Duarte, and Damião Pergentino de Sousa. 2023. "Centella asiatica and Its Metabolite Asiatic Acid: Wound Healing Effects and Therapeutic Potential" Metabolites 13, no. 2: 276. https://doi.org/10.3390/metabo13020276
APA StyleDiniz, L. R. L., Calado, L. L., Duarte, A. B. S., & de Sousa, D. P. (2023). Centella asiatica and Its Metabolite Asiatic Acid: Wound Healing Effects and Therapeutic Potential. Metabolites, 13(2), 276. https://doi.org/10.3390/metabo13020276