Phytochemicals Identification and Bioactive Compounds Estimation of Artemisia Species Grown in Saudia Arabia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materia Collection
2.2. Extracts Preparation
2.3. GC-MS Analysis of Leaf Extract
2.4. Estimation of Total Phenolic Content
2.5. Determination of Total Flavonoid Content
2.6. Determination of Total Tannin Content
2.7. Estimation of Total Terpenoid
2.8. DPPH Radical Scavenging Assay
2.9. H2O2 Scavenging Assay
2.10. Determination of Total Antioxidant Activity
2.11. HPLC Instrument
2.12. Quantification of Gallic Acid
2.13. Artemisinin Quantification
2.14. Quercetin Quantification
2.15. Tannic acid Quantification
2.16. Statistical Analysis
3. Results and Discussion
3.1. GC-MS Analysis of Leaf Extract
3.2. Phenolic Compounds Estimation
3.3. Antioxidant Activity Assay
DPPH and H2O2 Estimation
3.4. Qualitative Cluster Analysis and Relationship
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Das, S. Artemisia annua (Qinghao): A pharmacological review. Int. J. Pharm. Sci. Res. 2012, 3, 4573–4577. [Google Scholar]
- Bilia, A.R.; Santomauro, F.; Sacco, C.; Bergonzi, M.C.; Donato, R. Essential oil of Artemisia annua L.: An extraordinary component with numerous antimicrobial properties. Evid.-Based Complement. Altern. Med. 2014, 2014, 159819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nigam, M.; Atanassova, M.; Mishra, A.P.; Pezzani, R.; Devkota, H.P.; Plygun, S.; Salehi, B.; Setzer, W.N.; Sharifi-Rad, J. Bioactive compounds and health benefits of Artemisia species. Nat. Prod. Commun. 2019, 14, 1934578X19850354. [Google Scholar]
- Bora, K.S.; Sharma, A. The genus Artemisia: A comprehensive review. Pharm. Biol. 2011, 49, 101–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petretto, G.L.; Chessa, M.; Piana, A.; Masia, M.D.; Foddai, M.; Mangano, G.; Culeddu, N.; Afifi, F.U.; Pintore, G. Chemical and biological study on the essential oil of Artemisia caerulescens L. ssp. densiflora (Viv.). Nat. Prod. Res. 2013, 27, 1709–1715. [Google Scholar] [CrossRef]
- Ekiert, H.; Klimek-Szczykutowicz, M.; Rzepiela, A.; Klin, P.; Szopa, A. Artemisia species with high biological values as a potential source of medicinal and cosmetic raw materials. Molecules 2022, 27, 6427. [Google Scholar] [CrossRef]
- Zargari, A. Medicinal Plants; Tehran University of Medical Sciences: Tehran, Iran, 1997. [Google Scholar]
- White, N.J. Qinghaosu (artemisinin): The price of success. Science 2008, 320, 330–334. [Google Scholar] [CrossRef]
- Mahboubi, M. Artemisia sieberi Besser essential oil and treatment of fungal infections. Biomed. Pharmacother. 2017, 89, 1422–1430. [Google Scholar] [CrossRef]
- Negahban, M.; Moharramipour, S.; Sefidkon, F. Insecticidal activity and chemical composition of Artemisia sieben besser essential oil from Karaj, Iran. J. Asia-Pac. Entomol. 2006, 9, 61–66. [Google Scholar] [CrossRef]
- Taleghani, A.; Emami, S.A.; Tayarani-Najaran, Z. Artemisia: A promising plant for the treatment of cancer. Bioorg. Med. Chem. 2020, 28, 115180. [Google Scholar] [CrossRef]
- Irshaid, F.; Mansi, K.; Aburjai, T. Antidiabetic effect of essential oil from Artemisia sieberi growing in Jordan in normal and alloxan induced diabetic rats. Pak. J. Biol. Sci. 2010, 13, 423–430. [Google Scholar] [CrossRef] [Green Version]
- Nahrevanian, H.; Sheykhkanlooye Milan, B.; Kazemi, M.; Hajhosseini, R.; Soleymani Mashhadi, S.; Nahrevanian, S. Antimalarial effects of Iranian flora Artemisia sieberi on Plasmodium berghei in vivo in mice and phytochemistry analysis of its herbal extracts. Malar. Res. Treat. 2012, 2012, 727032. [Google Scholar] [CrossRef] [Green Version]
- Abdolmaleki, Z.; Arab, H.-A.; Amanpour, S.; Tirgari, F.; Mansouri, K.; Muhammadnejad, S. Assessment of Anticancer properties of Artemisia sieberi and its active substance: An in vitro study. Basic Clin. Cancer Res. 2015, 7, 16–23. [Google Scholar]
- De Ridder, S.; Van der Kooy, F.; Verpoorte, R. Artemisia annua as a self-reliant treatment for malaria in developing countries. J. Ethnopharmacol. 2008, 120, 302–314. [Google Scholar] [CrossRef]
- Ro, D.-K.; Ouellet, M.; Paradise, E.M.; Burd, H.; Eng, D.; Paddon, C.J.; Newman, J.D.; Keasling, J.D. Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid. BMC Biotechnol. 2008, 8, 83. [Google Scholar] [CrossRef] [Green Version]
- Ma, N.; Zhang, Z.; Liao, F.; Jiang, T.; Tu, Y. The birth of artemisinin. Pharmacol. Ther. 2020, 216, 107658. [Google Scholar] [CrossRef]
- Dellicour, S.; Sevene, E.; McGready, R.; Tinto, H.; Mosha, D.; Manyando, C.; Rulisa, S.; Desai, M.; Ouma, P.; Oneko, M. First-trimester artemisinin derivatives and quinine treatments and the risk of adverse pregnancy outcomes in Africa and Asia: A meta-analysis of observational studies. PLoS Med. 2017, 14, e1002290. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Hickman, M. Toxicokinetic and toxicodynamic (TK/TD) evaluation to determine and predict the neurotoxicity of artemisinins. Toxicology 2011, 279, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Tsao, A.S.; Kim, E.S.; Hong, W.K. Chemoprevention of cancer. CA A Cancer J. Clin. 2004, 54, 150–180. [Google Scholar] [CrossRef] [Green Version]
- Nasr, F.A.; Noman, O.M.; Mothana, R.A.; Alqahtani, A.S.; Al-Mishari, A.A. Cytotoxic, antimicrobial and antioxidant activities and phytochemical analysis of Artemisia judaica and A. sieberi in Saudi Arabia. Afr. J. Pharm. Pharmacol. 2020, 14, 278–284. [Google Scholar]
- Guetat, A.; Al-Ghamdi, F.A.; Osman, A.K. The genus Artemisia L. in the northern region of Saudi Arabia: Essential oil variability and antibacterial activities. Nat. Prod. Res. 2017, 31, 598–603. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, M.A.; BaAbbad, R.; Balash, A.; Al-Hemdan, N.A.; Softah, A. The potential anti Helicobacter pylori and antioxidant effects of Artemisia judaica. Funct. Foods Health Dis. 2013, 3, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Moharram, F.A.; Nagy, M.M.; El Dib, R.A.; El-Tantawy, M.M.; El Hossary, G.G.; El-Hosari, D.G. Pharmacological activity and flavonoids constituents of Artemisia judaica L aerial parts. J. Ethnopharmacol. 2021, 270, 113777. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef]
- Ordonez, A.; Gomez, J.; Vattuone, M. Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chem. 2006, 97, 452–458. [Google Scholar] [CrossRef]
- Rodrigues, C.I.; Marta, L.; Maia, R.; Miranda, M.; Ribeirinho, M.; Máguas, C. Application of solid-phase extraction to brewed coffee caffeine and organic acid determination by UV/HPLC. J. Food Compos. Anal. 2007, 20, 440–448. [Google Scholar] [CrossRef]
- Batool, R.; Khan, M.R.; Sajid, M.; Ali, S.; Zahra, Z. Estimation of phytochemical constituents and in vitro antioxidant potencies of Brachychiton populneus (Schott & Endl.) R. Br. BMC Chem. 2019, 13, 32. [Google Scholar]
- Oyedemi, S.; Bradley, G.; Afolayan, A. In-vitro and-vivo antioxidant activities of aqueous extract of Strychnos henningsii Gilg. Afr. J. Pharm. Pharmacol. 2010, 4, 070–078. [Google Scholar]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Benyagoub, E.; Nabbou, N.; Dine, A. Antimicrobial Effect of Quercus robur L. Leaves Selective Extracts from the Mezi Mountain of Djeniene Bourezg (West of Algeria). Curr. Bioact. Compd. 2020, 16, 1181–1190. [Google Scholar] [CrossRef]
- Elsayed, E.A.; El Enshasy, H.; Wadaan, M.A.; Aziz, R. Mushrooms: A potential natural source of anti-inflammatory compounds for medical applications. Mediat. Inflamm. 2014, 2014, 805841. [Google Scholar] [CrossRef] [Green Version]
- Pagare, S.; Bhatia, M.; Tripathi, N.; Pagare, S.; Bansal, Y. Secondary metabolites of plants and their role: Overview. Curr. Trends Biotechnol. Pharm. 2015, 9, 293–304. [Google Scholar]
- Yang, L.; Wen, K.-S.; Ruan, X.; Zhao, Y.-X.; Wei, F.; Wang, Q. Response of plant secondary metabolites to environmental factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef] [Green Version]
- Škrovánková, S.; Mišurcová, L.; Machů, L. Antioxidant activity and protecting health effects of common medicinal plants. Adv. Food Nutr. Res. 2012, 67, 75–139. [Google Scholar]
- Choi, D.; Kang, W.; Park, T. Anti-Allergic and Anti-Inflammatory Effects of Undecane on Mast Cells and Keratinocytes. Molecules 2020, 25, 1554. [Google Scholar] [CrossRef] [Green Version]
- Ziaei, A.; Ramezani, M.; Wright, L.; Paetz, C.; Schneider, B.; Amirghofran, Z. Identification of spathulenol in Salvia mirzayanii and the immunomodulatory effects. Phytother. Res. 2011, 25, 557–562. [Google Scholar] [CrossRef]
- Mulyaningsih, S.; Sporer, F.; Reichling, J.; Wink, M. Antibacterial activity of essential oils from Eucalyptus and of selected components against multidrug-resistant bacterial pathogens. Pharm. Biol. 2011, 49, 893–899. [Google Scholar] [CrossRef]
- Hema, R.; Kumaravel, S.; Alagusundaram, K. GC/MS determination of bioactive components of Murraya koenigii. J. Am. Sci. 2011, 7, 80–83. [Google Scholar]
- Imtair, A.-G.a.N.; Abu-Serag, N.A.; Alee Shaheed, K.A.; Bahadly, Z.K.A. Analysis of bioactive phytochemical compound of (Cyperus alternifolius L.) By using gas chromatography –mass spectrometry. IOP Conf. Ser. Mater. Sci. Eng. 2019, 571, 012047. [Google Scholar] [CrossRef]
- El-Azab, A.S.; ElTahir, K.E.H. Synthesis and anticonvulsant evaluation of some new 2,3,8-trisubstituted-4(3H)-quinazoline derivatives. Bioorg. Med. Chem. Lett. 2012, 22, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Ismail, G.A.; Gheda, S.F.; Abo-shady, A.M.; Abdel-karim, O.H. In vitro potential activity of some seaweeds as antioxidants and inhibitors of diabetic enzymes. Food Sci. Technol. 2019, 40, 681–691. [Google Scholar] [CrossRef] [Green Version]
- Policegoudra, R.S.; Chattopadhyay, P.; Aradhya, S.M.; Shivaswamy, R.; Singh, L.; Veer, V. Inhibitory effect of Tridax procumbens against human skin pathogens. J. Herb. Med. 2014, 4, 83–88. [Google Scholar] [CrossRef]
- Maher, T.; Kabbashi, N.A.; Mirghani, M.E.S.; Alam, M.Z.; Daddiouaissa, D.; Abdulhafiz, F.; Reduan, M.F.; Omran, J.I.; Abdul Razab, M.K.; Mohammed, A. Optimization of Ultrasound-Assisted Extraction of Bioactive Compounds from Acacia Seyal Gum Using Response Surface Methodology and Their Chemical Content Identification by Raman, FTIR, and GC-TOFMS. Antioxidants 2021, 10, 1612. [Google Scholar] [CrossRef]
- Hajji, M.; Jarraya, R.; Lassoued, I.; Masmoudi, O.; Damak, M.; Nasri, M. GC/MS and LC/MS analysis, and antioxidant and antimicrobial activities of various solvent extracts from Mirabilis jalapa tubers. Process Biochem. 2010, 45, 1486–1493. [Google Scholar] [CrossRef]
- Padma, M.; Ganesan, S.; Jayaseelan, T.; Azhagumadhavan, S.; Sasikala, P.; Senthilkumar, S.; Mani, P. Phytochemical screening and GC–MS analysis of bioactive compounds present in ethanolic leaves extract of Silybum marianum (L). J. Drug Deliv. Ther. 2019, 9, 85–89. [Google Scholar] [CrossRef] [Green Version]
- Faridha Begum, I.; Mohankumar, R.; Jeevan, M.; Ramani, K. GC–MS Analysis of Bio-active Molecules Derived from Paracoccus pantotrophus FMR19 and the Antimicrobial Activity Against Bacterial Pathogens and MDROs. Indian J. Microbiol. 2016, 56, 426–432. [Google Scholar] [CrossRef] [Green Version]
- Maghraoui, N.B.; Mederbal, K.; Ibri, K.; Beladid, L.; Samira, N. Chemical composition and antimicrobial activity of the essential oil from Artemisia herbaalba Asso growing in the north west of Algeria. J. Chem. Pharm. Res. 2015, 7, 458–462. [Google Scholar]
- Peng, W.; Li, D.; Zhang, M.; Ge, S.; Mo, B.; Li, S.; Ohkoshi, M. Characteristics of antibacterial molecular activities in poplar wood extractives. Saudi J. Biol. Sci. 2017, 24, 399–404. [Google Scholar] [CrossRef] [Green Version]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef]
- Singh, S.K.; Patra, A. Evaluation of phenolic composition, antioxidant, anti-inflammatory and anticancer activities of Polygonatum verticillatum (L.). J. Integr. Med. 2018, 16, 273–282. [Google Scholar] [CrossRef]
- Wang, L.; Tian, X.; Wei, W.; Chen, G.; Wu, Z. Fingerprint analysis and quality consistency evaluation of flavonoid compounds for fermented Guava leaf by combining high-performance liquid chromatography time-of-flight electrospray ionization mass spectrometry and chemometric methods. J. Sep. Sci. 2016, 39, 3906–3916. [Google Scholar] [CrossRef]
- Azimian, F.; Roshandel, P. Magnetic field effects on total phenolic content and antioxidant activity in Artemisia sieberi under salinity. Indian J. Plant Physiol. 2015, 20, 264–270. [Google Scholar] [CrossRef]
- Ranjbar, M.; Naghavi, M.R.; Alizadeh, H. Chemical composition of the essential oils of Artemisia species from Iran: A comparative study using multivariate statistical analysis. J. Essent. Oil Res. 2020, 32, 361–371. [Google Scholar] [CrossRef]
- Allam, H.; Benamar, H.; Ben Mansour, R.; Ksouri, R.; Bennaceur, M. Phenolic composition, antioxidant, and antibacterial activities of Artemisia judaica subsp. sahariensis. J. Herbs Spices Med. Plants 2019, 25, 347–362. [Google Scholar] [CrossRef]
- Abbas, Z.K.; Saggu, S.; Rehman, H.; Al Thbiani, A.; Ansari, A.A. Ecological variations and role of heat shock protein in Artemisia judaica L. in response to temperature regimes of Tabuk, Saudi Arabia. Saudi J. Biol. Sci. 2017, 24, 1268–1273. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, I.S.; Cavaco, T.; Brodelius, M. Phenolic composition and antioxidant capacity of six Artemisia species. Ind. Crops Prod. 2011, 33, 382–388. [Google Scholar] [CrossRef]
- Kumar, R.; Vijayalakshmi, S.; Nadanasabapathi, S. Health benefits of quercetin. Def. Life Sci. J. 2017, 2, 142–151. [Google Scholar] [CrossRef] [Green Version]
- Kahkeshani, N.; Farzaei, F.; Fotouhi, M.; Alavi, S.S.; Bahramsoltani, R.; Naseri, R.; Momtaz, S.; Abbasabadi, Z.; Rahimi, R.; Farzaei, M.H. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran. J. Basic Med. Sci. 2019, 22, 225. [Google Scholar]
- Chen, C.; Yang, H.; Yang, X.; Ma, Q. Tannic acid: A crosslinker leading to versatile functional polymeric networks: A review. RSC Adv. 2022, 12, 7689–7711. [Google Scholar] [CrossRef]
- Ranjbar, M.; Naghavi, M.R.; Alizadeh, H.; Soltanloo, H. Expression of artemisinin biosynthesis genes in eight Artemisia species at three developmental stages. Ind. Crops Prod. 2015, 76, 836–843. [Google Scholar] [CrossRef]
- Arab, H.; Rahbari, S.; Rassouli, A.; Moslemi, M.; Khosravirad, F. Determination of artemisinin in Artemisia sieberi and anticoccidial effects of the plant extract in broiler chickens. Trop. Anim. Health Prod. 2006, 38, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Irshaid, F.I.; Tarawneh, K.A.; Jacob, J.H.; Alshdefat, A.M. Phenol content, antioxidant capacity and antibacterial activity of methanolic extracts derived from four Jordanian medicinal plants. Pak. J. Biol. Sci. 2014, 17, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.A.; Moon, S.-S. Antioxidant polyphenol glycosides from the plant Draba nemorosa. Bull. Korean Chem. Soc. 2007, 28, 827–831. [Google Scholar] [CrossRef]
- Surai, P. Polyphenol compounds in the chicken/animal diet: From the past to the future. J. Anim. Physiol. Anim. Nutr. 2014, 98, 19–31. [Google Scholar] [CrossRef]
- Shabbir, U.; Tyagi, A.; Ham, H.J.; Oh, D.-H. Comprehensive profiling of bioactive compounds in germinated black soybeans via UHPLC-ESI-QTOF-MS/MS and their anti-Alzheimer’s activity. PLoS ONE 2022, 17, e0263274. [Google Scholar] [CrossRef]
S. No. | RT (min) | Name of Compound | Area % | Molecular Weight (g/mol) | Structural Formula | Biological Activity | ||
---|---|---|---|---|---|---|---|---|
A. monosperma | A. judaica | A. sieberi | ||||||
1 | 9.65 | Undecane | 16.196 | 1.232 | 9.235 | 156.31 | C11H24 | Anti-allergic and anti-inflammatory [37] |
2 | 20.102 | 6-Octen-1-ol, 3,7-dimethyl-, propanoate | 10.949 | - | - | 212.3285 | C13H24O2 | |
3 | 20.248 | (-)-Spathulenol | 24.751 | - | - | 220.356 | C15H24O | Anti-inflammatory and immunomodulatory [38] |
4 | 20.377 | Aromadendrene | 11.297 | - | - | 204.3511 | C15H24 | Antibacterial [39] |
5 | 20.798 | Allylidenecyclohexane | 16.392 | - | - | 122.21 | C9H14 | |
6 | 26.312 | Hexadecanoic acid, methyl ester | 9.352 | - | - | 270.4507 | C17H34O2 | Anti-inflammatory, antioxidant, decrease blood cholesterol [40] |
7 | 29.091 | 9,12,15-Octadecatrienoic acid, (Z, Z, Z)- | 11.062 | - | - | 292.5 | C19H32O2 | Antimicrobial [41] |
8 | 22.845 | Lilac alcohol C | - | 1.897 | - | 170.25 | C10H18O2 | |
9 | 29.624 | 2-Methylphenanthro[3,4-d] [1,3] oxazol-10-ol | - | 12.230 | - | 249.26 | C16H11NO2 | |
10 | 29.779 | Etaqualone | - | 4.500 | - | 264.322 | C17H16N2O | Anticonvulsant [42] |
11 | 38.664 | 1,2-Bis(trimethylsilyl)benzene | - | 0.366 | - | 222.47 | C12H22Si2 | |
12 | 40.092 | Cyclotrisiloxane, hexamethyl- | - | 1.241 | - | 222.462 | C6H18O3Si3 | Antimicrobial and antioxidant activities [43] |
13 | 43.095 | Tetrasiloxane, decamethyl- | - | 34.026 | - | 310.685 | C10H30O3Si4 | Antifungal activity [44] |
14 | 43.344 | Benzo[h]quinoline, 2,4-dimethyl- | - | 6.185 | - | 207.27 | C15H13N | |
15 | 43.903 | 4-Methyl-2-trimethylsilyloxy-acetophenone | - | 20.838 | - | 222.35 | C12H18O2Si | |
16 | 46.165 | Silicic acid, diethyl bis(trimethylsilyl) ester | - | 17.484 | - | 296.58 | C10H28O4Si3 | Antibacterial, antioxidant activity [45] |
17 | 4.472 | 1-Propanol, 3-bromo- | - | - | 6.173 | 138.991 | C3H7BrO | |
18 | 7.302 | Cyclotetrasiloxane, octamethyl- | - | - | 4.952 | 296.6158 | C8H24O4Si4 | Antimicrobial activities [46] |
19 | 9.659 | Dodecane | - | - | 34.461 | 170.33 | C12H26 | Antibacterial activity [47] and antioxidant [48] |
20 | 14.648 | 1,3-Cyclopentadiene, 1,2,5,5-tetramethyl- | - | - | 5.344 | 122.2075 | C9H14 | Antimicrobial activity [49] |
21 | 14.871 | 1,3-Cyclopentadiene, 5,5-dimethyl-1-ethyl- | - | - | 24.011 | 122.2075 | C9H14 | Antimicrobial activity [49] |
22 | 22.854 | Cyclopropane, 1-(1-hydroxy-1-heptyl)-2-methylene-3-pentyl- | - | - | 10.903 | 238.41 | C16H30O | |
23 | 37.271 | Benzene, 2-[(tert-butyldimethylsilyl) oxy]-1-isopropyl-4-methyl- | - | - | 4.922 | 264.48 | C16H28OSi | Antibacterial activity [50] |
Artemisia Species | Phenol (mg GAE/g DW) | Flavonoid (mg QE/g DW) | Tannin (mg TAE/g DW) | Terpenoids (%) | TAC (AAE/g DW) |
---|---|---|---|---|---|
A. judaica | 175.25 ± 0.88 b | 24.67 ± 0.07 a | 69.24 ± 0.55 b | 11.62 ± 0.71 ab | 175.91 ± 1.04 a |
A. monosperma | 120.33 ± 1.53 c | 20.39 ± 0.07 b | 53.08 ± 0.28 c | 10.55 ± 0.72 b | 107.33 ± 2.27 c |
A. sieberi | 194.30 ± 0.84 a | 18.22 ± 0.14 c | 78.98 ± 0.11 a | 13.28 ± 0.41 a | 262.08 ± 2.08 b |
Artemisia Species | Artemisinin | Quercetin | Gallic Acid | Tannin Acid |
---|---|---|---|---|
A. judaica | 2496.25 ± 0.88 b | 15.31 ± 1.17 b | 64.29 ± 1.43 b | 162.70 ± 1.43 b |
A. monosperma | 1920.32 ± 1.38 c | 10.33 ± 1.19 c | 22.144 ± 0.62 c | 26.31 ± 1.84 c |
A. sieberi | 3005.33 ± 1.76 a | 58.38 ± 1.67 a | 96.79 ± 3.28 a | 262.09 ±1.42 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salih, A.M.; Qahtan, A.A.; Al-Qurainy, F. Phytochemicals Identification and Bioactive Compounds Estimation of Artemisia Species Grown in Saudia Arabia. Metabolites 2023, 13, 443. https://doi.org/10.3390/metabo13030443
Salih AM, Qahtan AA, Al-Qurainy F. Phytochemicals Identification and Bioactive Compounds Estimation of Artemisia Species Grown in Saudia Arabia. Metabolites. 2023; 13(3):443. https://doi.org/10.3390/metabo13030443
Chicago/Turabian StyleSalih, Abdalrhaman M., Ahmed A. Qahtan, and Fahad Al-Qurainy. 2023. "Phytochemicals Identification and Bioactive Compounds Estimation of Artemisia Species Grown in Saudia Arabia" Metabolites 13, no. 3: 443. https://doi.org/10.3390/metabo13030443
APA StyleSalih, A. M., Qahtan, A. A., & Al-Qurainy, F. (2023). Phytochemicals Identification and Bioactive Compounds Estimation of Artemisia Species Grown in Saudia Arabia. Metabolites, 13(3), 443. https://doi.org/10.3390/metabo13030443