Longitudinal Data to Assess Relationships among Plasma Folate, Vitamin B12, Non-esterified Fatty Acid, and β-Hydroxybutyrate Concentrations of Holstein Cows during the Transition Period
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Data Collection and Analyses
2.3. Calculations and Statistical Analyses
3. Results
3.1. Descriptive Statistics
3.2. Relationships among Plasma Folates, Vitamin B12, NEFA, and BHB
Item | Plasma Folate AUC | Plasma Vitamin B12 AUC | Vitamin B12:Folate Ratio AUC | NEFA AUC | BHB AUC |
---|---|---|---|---|---|
Plasma folate AUC | 1.00 | 0.17 (0.29) | −0.66 (<0.0001) | −0.60 (<0.0001) | −0.35 (0.02) |
Plasma vitamin B12 AUC | 1.00 | 0.54 (0.0002) | 0.10 (0.52) | 0.15 (0.35) | |
Vitamin B12:folate ratio AUC | 1.00 | 0.66 (<0.0001) | 0.45 (0.003) | ||
NEFA AUC | 1.00 | 0.38 (0.01) | |||
BHB AUC | 1.00 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Drackley, J.K. Biology of dairy cows during the transition period: The final frontier? J. Dairy Sci. 1999, 82, 2259–2273. [Google Scholar] [CrossRef]
- McArt, J.A.A.; Nydam, D.V.; Oetzel, G.R.; Overton, T.R.; Ospina, P.A. Elevated non-esterified fatty acids and β-hydroxybutyrate and their association with transition dairy cow performance. Vet. J. 2013, 198, 560–570. [Google Scholar] [CrossRef]
- Ospina, P.A.; McArt, J.A.; Overton, T.R.; Stokol, T.; Nydam, D.V. Using nonesterified fatty acids and β-hydroxybutyrate concentrations during the transition period for herd-level monitoring of increased risk of disease and decreased reproductive and milking performance. Vet. Clin. North Am. Food Anim. Pract. 2013, 29, 387–412. [Google Scholar] [CrossRef] [PubMed]
- Duplessis, M.; Ritz, K.E.; Socha, M.T.; Girard, C.L. Cross-sectional study of the effect of diet composition on plasma folate and vitamin B12 concentrations in holstein cows in the united states and canada. J. Dairy Sci. 2020, 103, 2883–2895. [Google Scholar] [CrossRef]
- Girard, C.L.; Matte, J.J.; Tremblay, G.F. Serum folates in gestating and lactating dairy cows. J. Dairy Sci. 1989, 72, 3240–3246. [Google Scholar] [CrossRef]
- Girard, C.L.; Matte, J.J. Changes in serum concentrations of folates, pyridoxal, pyridoxal-5-phosphate and vitamin B12 during lactation of dairy cows fed dietary supplements of folic acid. Can. J. Anim. Sci. 1999, 79, 107–113. [Google Scholar] [CrossRef]
- Combs, G.F.J.; McClung, J.P. The vitamins. In Fundamental Aspects in Nutrition and Health, 5th ed.; Academic Press: Oxford, UK, 2017. [Google Scholar]
- Reynolds, C.K. Production and metabolic effects of site of starch digestion in dairy cattle. Anim. Feed Sci. Technol. 2006, 130, 78–94. [Google Scholar] [CrossRef]
- Duplessis, M.; Lapierre, H.; Pellerin, D.; Laforest, J.P.; Girard, C.L. Effects of intramuscular injections of folic acid, vitamin B12, or both, on lactational performance and energy status of multiparous dairy cows. J. Dairy Sci. 2017, 100, 4051–4064. [Google Scholar] [CrossRef] [PubMed]
- Preynat, A.; Lapierre, H.; Thivierge, M.C.; Palin, M.F.; Matte, J.J.; Desrochers, A.; Girard, C.L. Influence of methionine supply on the response of lactational performance of dairy cows to supplementary folic acid and vitamin B12. J. Dairy Sci. 2009, 92, 1685–1695. [Google Scholar] [CrossRef]
- Graulet, B.; Matte, J.J.; Desrochers, A.; Doepel, L.; Palin, M.-F.; Girard, C.L. Effects of dietary supplements of folic acid and vitamin B12 on metabolism of dairy cows in early lactation. J. Dairy Sci. 2007, 90, 3442–3455. [Google Scholar] [CrossRef]
- Duplessis, M.; Lapierre, H.; Sauerwein, H.; Girard, C.L. Combined biotin, folic acid, and vitamin B12 supplementation given during the transition period to dairy cows: Part i. The impact on lactation performance, energy and protein metabolism, and hormones. J. Dairy Sci. 2022, 105, 7079–7096. [Google Scholar] [CrossRef]
- Brisson, V.; Girard, C.L.; Metcalf, J.A.; Castagnino, D.S.; Dijkstra, J.; Ellis, J.L. Meta-analysis of apparent ruminal synthesis and postruminal flow of B vitamins in dairy cows. J. Dairy Sci. 2022, 105, 7399–7415. [Google Scholar] [CrossRef]
- Overton, T.R.; McArt, J.A.A.; Nydam, D.V. A 100-year review: Metabolic health indicators and management of dairy cattle. J. Dairy Sci. 2017, 100, 10398–10417. [Google Scholar] [CrossRef]
- Strickland, J.M.; Wisnieski, L.; Herdt, T.H.; Sordillo, L.M. Serum retinol, β-carotene, and α-tocopherol as biomarkers for disease risk and milk production in periparturient dairy cows. J. Dairy Sci. 2021, 104, 915–927. [Google Scholar] [CrossRef] [PubMed]
- Duplessis, M.; Cue, R.I.; Santschi, D.E.; Lefebvre, D.M.; Girard, C.L. Short communication: Relationships among plasma and milk vitamin B12, plasma free fatty acids, and blood β-hydroxybutyrate concentrations in early lactation dairy cows. J. Dairy Sci. 2018, 101, 8559–8565. [Google Scholar] [CrossRef]
- Richard, F.J.; Khan, D.R.; Girard, C.L.; Leclerc, H.; Evans, E. Effects of a dietary supplementation of rumen-protected B vitamins on reproduction of dairy cows by measuring nutrigenomic parameters. J. Dairy Sci. 2016, 99 (Suppl. 1), 552. [Google Scholar]
- Gagnon, A.; Khan, D.R.; Sirard, M.A.; Girard, C.L.; Laforest, J.P.; Richard, F.J. Effects of intramuscular administration of folic acid and vitamin B12 on granulosa cells gene expression in postpartum dairy cows. J. Dairy Sci. 2015, 98, 7797–7809. [Google Scholar] [CrossRef]
- Ghaemialehashemi, S. Effet D’injections Hebdomadaires D’un Combiné D’acide Folique et de Vitamine B12 Sur la Reprise de L’activité Cvarienne Postpartum Chez les Vaches Laitières [Effect of Weekly Injections of a Combined Supplement of Folic Acid and Vitamin B12 on Ovarian Activity Resumption in Dairy Cows]. Master’s Thesis, Université Laval, Québec, QC, Canada, 2013. [Google Scholar]
- Canadian Council on Animal Care. Guide to the Care and Use of Experimental Animals, 2nd ed.; Olfert, E.D., Cross, B.M., McWilliam, A.A., Eds.; Canadian Council on Animal Care: Ottawa, ON, Canada, 2009; Volume 1, p. 201.
- SAS Institute. User’s Guide: Statistics. Version 9.4; SAS Institute: Cary, NC, USA, 2012. [Google Scholar]
- Cardoso, F.C.; Sears, W.; LeBlanc, S.J.; Drackley, J.K. Technical note: Comparison of 3 methods for analyzing areas under the curve for glucose and nonesterified fatty acids concentrations following epinephrine challenge in dairy cows. J. Dairy Sci. 2011, 94, 6111–6115. [Google Scholar] [CrossRef]
- Weerathilake, W.A.D.V.; Brassington, A.H.; Williams, S.J.; Kwong, W.Y.; Sinclair, L.A.; Sinclair, K.D. Added dietary cobalt or vitamin B12, or injecting vitamin B12 does not improve performance or indicators of ketosis in pre- and post-partum holstein-friesian dairy cows. Animal 2019, 13, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Akins, M.S.; Bertics, S.J.; Socha, M.T.; Shaver, R.D. Effects of cobalt supplementation and vitamin B12 injections on lactation performance and metabolism of holstein dairy cows. J. Dairy Sci. 2013, 96, 1755–1768. [Google Scholar] [CrossRef]
- Muro, N.; Bujanda, L.; Sarasqueta, C.; Gil, I.; Hijona, E.; Cosme, T.; Arenas, J.J., Jr.; Elosegui, M.E.; Sarasola, M.; Calpasoro, J.; et al. Niveles plasmóticos de la vitamina B12 y ácido fólicoenpacientes con hepatopatía crónica [Plasma levels of folate and vitamin B12 in patients with chronic liver disease]. Gastroenterol. Hepatol. 2010, 33, 280–287. [Google Scholar] [CrossRef]
- Halifeoglu, I.; Gur, B.; Aydin, S.; Ozturk, A. Plasma trace elements, vitamin B12, folate, and homocysteine levels in cirrhotic patients compared to healthy controls. Biokhimiya 2004, 69, 851–855. [Google Scholar] [CrossRef] [PubMed]
- Obitz, K.; Fürll, M. Vitamin b12-konzentration im blutserum von milchkühen in der frühlaktation [Blood serum vitamin B12 concentration in dairy cows during early lactation]. Tierärztl. Prax. Ausg. G Grosstiere Nutztiere 2014, 42, 209–219. [Google Scholar]
- Corse, D.A.; Elliot, J.M. Propionate utilization by pregnant, lactating, and spontaneously ketotic dairy cows. J. Dairy Sci. 1970, 53, 740–746. [Google Scholar] [CrossRef] [PubMed]
- Bobe, G.; Young, J.W.; Beitz, D.C. Invited review: Pathology, etiology, prevention, and treatment of fatty liver in dairy cows. J. Dairy Sci. 2004, 87, 3105–3124. [Google Scholar] [CrossRef] [PubMed]
- Młodzik-Czyżewska, M.A.; Szwengiel, A.; Malinowska, A.M.; Chmurzynska, A. Comparison of associations between one-carbon metabolism, lipid metabolism, and fatty liver markers in normal-weight and overweight people aged 20-40 years. Ann. Nutr. Metab. 2021, 77, 221–230. [Google Scholar] [CrossRef] [PubMed]
- McFadden, J.W.; Girard, C.L.; Tao, S.; Zhou, Z.; Bernard, J.K.; Duplessis, M.; White, H.M. Symposium review: One-carbon metabolism and methyl donor nutrition in the dairy cow. J. Dairy Sci. 2020, 103, 5668–5683. [Google Scholar] [CrossRef] [PubMed]
- Coleman, D.N.; Alharthi, A.S.; Liang, Y.; Lopes, M.G.; Lopreiato, V.; Vailati-Riboni, M.; Loor, J.J. Multifaceted role of one-carbon metabolism on immunometabolic control and growth during pregnancy, lactation and the neonatal period in dairy cattle. J. Anim. Sci. Biotechnol. 2021, 12, 27. [Google Scholar] [CrossRef]
- Girard, C.L.; Duplessis, M. Review—State of knowledge on the importance of folates and cobalamin for dairy cow metabolism. Animal 2023. accepted on 23 January 2023. [Google Scholar]
- McCarthy, M.M.; Mann, S.; Nydam, D.V.; Overton, T.R.; McArt, J.A.A. Short communication: Concentrations of nonesterified fatty acids and β-hydroxybutyrate in dairy cows are not well correlated during the transition period. J. Dairy Sci. 2015, 98, 6284–6290. [Google Scholar] [CrossRef]
Variable | Days Relative to Calving | SEM | p-Value | ||
---|---|---|---|---|---|
Precalving | −14 | −7 | |||
DMI (kg/d) | 13.3 | 12.6 | - | 0.3 | 0.002 |
Plasma folates (ng/mL) | 11.1 | 11.6 | - | 0.7 | 0.21 |
Plasma vitamin B12 (pg/mL) | 238.6 | 268.6 | - | 17.6 | 0.09 |
Plasma vitamin B12:folate ratio | 23.9 | 26.5 | 1.9 | 0.18 | |
Plasma NEFA (mM) | 0.20 | 0.27 | - | 0.02 | 0.003 |
Plasma BHB (mM) | 0.68 | 0.66 | - | 0.03 | 0.61 |
Variable | Days relative to calving | SEM | p-value | ||
Postcalving | 7 | 14 | 21 | ||
Milk yield (kg/d) | 30.5 | 37.2 | 40.8 | 1.2 | <0.0001 |
DMI (kg/d) | 16.3 | 19.7 | 21.3 | 0.6 | <0.0001 |
Plasma folates (ng/mL) | 12.3 | 12.3 | 13.7 | 0.8 | 0.004 |
Plasma vitamin B12 (pg/mL) | 223.0 | 197.9 | 191.7 | 15.1 | 0.09 |
Plasma vitamin B12:folate ratio | 20.3 | 19.0 | 16.9 | 1.8 | 0.05 |
Plasma NEFA (mM) | 0.44 | 0.35 | 0.31 | 0.03 | <0.0001 |
Plasma BHB (mM) | 1.07 | 1.36 | 1.14 | 0.15 | 0.07 |
Variable | Mean | SD | Minimum | Maximum |
---|---|---|---|---|
Plasma folates | ||||
Lowest concentration | ||||
Day relative to calving | 0.8 | 11.0 | −14 | 21 |
Concentration (ng/mL) | 9.73 | 3.96 | 4.75 | 19.13 |
Highest concentration | ||||
Day relative to calving | 10.9 | 9.5 | −12 | 21 |
Concentration (ng/mL) | 15.71 | 4.99 | 7.65 | 30.91 |
Variation 1 (ng/mL) | 5.98 | 2.69 | 1.13 | 12.05 |
Plasma vitamin B12 | ||||
Lowest concentration | ||||
Day relative to calving | 10.5 | 9.4 | −13 | 21 |
Concentration (pg/mL) | 155.9 | 51.4 | 27.4 | 288.4 |
Highest concentration | ||||
Day relative to calving | 0.4 | 8.7 | −14 | 21 |
Concentration (pg/mL) | 313.0 | 131.2 | 153.3 | 791.2 |
Variation 1 (pg/mL) | 157.1 | 119.7 | 42.4 | 627.7 |
Plasma vitamin B12:folate ratio | ||||
Lowest ratio | ||||
Day relative to calving | 11.1 | 8.8 | −13 | 21 |
Ratio | 12.3 | 5.3 | 3.9 | 27.7 |
Highest ratio | ||||
Day relative to calving | −0.6 | 9.2 | −14 | 20 |
Ratio | 32.0 | 14.6 | 14.7 | 64.1 |
Variation 1 | 19.7 | 12.5 | 4.9 | 48.2 |
Variable | Plasma NEFA | Plasma BHB | ||||
---|---|---|---|---|---|---|
Estimate | SE | p-Value | Estimate | SE | p-Value | |
Plasma folate variation 2 | ||||||
Intercept | 0.42 | 0.07 | <0.0001 | 0.64 | 0.08 | <0.0001 |
Plasma folate concentration | 0.02 | 0.01 | 0.11 | 0.002 | 0.012 | 0.90 |
DIM | <0.0001 | 0.28 | ||||
Plasma folates at days −14 before calving | ||||||
Intercept | 0.83 | 0.07 | <0.0001 | 1.54 | 0.22 | <0.0001 |
Plasma folate concentration | −0.03 | 0.006 | <0.0001 | −0.05 | 0.02 | 0.01 |
DIM | <0.0001 | 0.41 | ||||
Plasma folates at days −7 before calving | ||||||
Intercept | 0.72 | 0.08 | <0.0001 | 1.55 | 0.21 | <0.0001 |
Plasma folate concentration | −0.02 | 0.006 | 0.004 | −0.05 | 0.02 | 0.003 |
DIM | <0.0001 | 0.41 |
Variable | Plasma NEFA | Plasma BHB | ||||
---|---|---|---|---|---|---|
Estimate | SE | p-Value | Estimate | SE | p-Value | |
Plasma vitamin B12 variation 2 | ||||||
Intercept | 0.52 | 0.05 | <0.0001 | 1.04 | 0.13 | <0.0001 |
Plasma vitamin B12 concentration | −0.00004 | 0.0002 | 0.85 | −0.0004 | 0.0006 | 0.58 |
DIM | <0.0001 | 0.28 | ||||
Plasma vitamin B12 at days −14 before calving | ||||||
Intercept | 0.57 | 0.08 | <0.0001 | 1.13 | 0.21 | <0.0001 |
Plasma vitamin B12 concentration | −0.0001 | 0.0003 | 0.69 | −0.0004 | 0.0008 | 0.58 |
DIM | <0.0001 | 0.42 | ||||
Plasma vitamin B12 at days −7 before calving | ||||||
Intercept | 0.48 | 0.08 | <0.0001 | 0.88 | 0.20 | <0.0001 |
Plasma vitamin B12 concentration | 0.0002 | 0.0002 | 0.52 | 0.0005 | 0.0007 | 0.49 |
DIM | <0.0001 | 0.43 |
Variable | Plasma NEFA | Plasma BHB | ||||
---|---|---|---|---|---|---|
Estimate | SE | p-Value | Estimate | SE | p-Value | |
Plasma vitamin B12:folate ratio variation 2 | ||||||
Intercept | 0.72 | 0.08 | <0.0001 | 1.54 | 0.22 | <0.0001 |
Plasma vitamin B12:folate ratio | −0.02 | 0.006 | 0.004 | −0.05 | 0.02 | 0.01 |
DIM | <0.0001 | 0.41 | ||||
Plasma vitamin B12:folate ratio at days −14 before calving | ||||||
Intercept | 0.35 | 0.07 | <0.0001 | 0.71 | 0.19 | 0.0008 |
Plasma vitamin B12:folate ratio | 0.008 | 0.002 | 0.0008 | 0.01 | 0.007 | 0.06 |
DIM | <0.0001 | 0.41 | ||||
Plasma vitamin B12:folate ratio at days −7 before calving | ||||||
Intercept | 0.35 | 0.06 | <0.0001 | 0.38 | 0.21 | 0.08 |
Plasma vitamin B12:folate ratio | 0.006 | 0.002 | 0.0004 | 0.02 | 0.007 | 0.0009 |
DIM | <0.0001 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© His Majesty the King in Right of Canada, as represented by the Minister of Agriculture and Agri-Food, 2023. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duplessis, M.; Chorfi, Y.; Girard, C.L. Longitudinal Data to Assess Relationships among Plasma Folate, Vitamin B12, Non-esterified Fatty Acid, and β-Hydroxybutyrate Concentrations of Holstein Cows during the Transition Period. Metabolites 2023, 13, 547. https://doi.org/10.3390/metabo13040547
Duplessis M, Chorfi Y, Girard CL. Longitudinal Data to Assess Relationships among Plasma Folate, Vitamin B12, Non-esterified Fatty Acid, and β-Hydroxybutyrate Concentrations of Holstein Cows during the Transition Period. Metabolites. 2023; 13(4):547. https://doi.org/10.3390/metabo13040547
Chicago/Turabian StyleDuplessis, Mélissa, Younes Chorfi, and Christiane L. Girard. 2023. "Longitudinal Data to Assess Relationships among Plasma Folate, Vitamin B12, Non-esterified Fatty Acid, and β-Hydroxybutyrate Concentrations of Holstein Cows during the Transition Period" Metabolites 13, no. 4: 547. https://doi.org/10.3390/metabo13040547
APA StyleDuplessis, M., Chorfi, Y., & Girard, C. L. (2023). Longitudinal Data to Assess Relationships among Plasma Folate, Vitamin B12, Non-esterified Fatty Acid, and β-Hydroxybutyrate Concentrations of Holstein Cows during the Transition Period. Metabolites, 13(4), 547. https://doi.org/10.3390/metabo13040547