Human Archaeological Dentin as Source of Polar and Less Polar Metabolites for Untargeted Metabolomic Research: The Case of Yersinia pestis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Archaeological Site
2.2. Dentin Sampling
2.3. Extraction of Polar and Less Polar/Apolar Metabolites from Dentin Samples
2.4. Untargeted Metabolic by High-Flow-UPLC-IM-TOF-HRMS
2.5. Metabolomic Analysis
2.5.1. Quality Assurance (QA)
2.5.2. Data Treatment
2.5.3. Statistical Analysis
2.5.4. Metabolite Putative Annotation
3. Results
3.1. Less Polar/Apolar Untargeted Metabolomic Profile
3.2. Polar Untargeted Metabolomic Profile
3.3. Putative Annotation
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Wadsworth, C.; Procopio, N.; Anderung, C.; Carretero, J.-M.; Iriarte, E.; Valdiosera, C.; Elburg, R.; Penkman, K.; Buckley, M. Comparing Ancient DNA Survival and Proteome Content in 69 Archaeological Cattle Tooth and Bone Samples from Multiple European Sites. J. Proteomics 2017, 158, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hendy, J. Ancient Protein Analysis in Archaeology. Sci. Adv. 2021, 7, eabb9314. [Google Scholar] [CrossRef] [PubMed]
- Evershed, R.P. Biomolecular Archaeology and Lipids. World Archaeol. 1993, 25, 74–93. [Google Scholar] [CrossRef] [PubMed]
- Warinner, C.; Hendy, J.; Speller, C.; Cappellini, E.; Fischer, R.; Trachsel, C.; Arneborg, J.; Lynnerup, N.; Craig, O.E.; Swallow, D.M.; et al. Direct Evidence of Milk Consumption from Ancient Human Dental Calculus. Sci. Rep. 2014, 4, 7104. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.; Power, R.C.; Altmann-Wendling, V.; Artzy, M.; Martin, M.A.S.; Eisenmann, S.; Hagan, R.; Salazar-García, D.C.; Salmon, Y.; Yegorov, D.; et al. Exotic Foods Reveal Contact between South Asia and the Near East during the Second Millennium BCE. Proc. Natl. Acad. Sci. USA 2021, 118, e2014956117. [Google Scholar] [CrossRef]
- Spyrou, M.A.; Bos, K.I.; Herbig, A.; Krause, J. Ancient Pathogen Genomics as an Emerging Tool for Infectious Disease Research. Nat. Rev. Genet. 2019, 20, 323–340. [Google Scholar] [CrossRef]
- Slatkin, M.; Racimo, F. Ancient DNA and Human History. Proc. Natl. Acad. Sci. USA 2016, 113, 6380–6387. [Google Scholar] [CrossRef]
- Racimo, F.; Sikora, M.; Vander Linden, M.; Schroeder, H.; Lalueza-Fox, C. Beyond Broad Strokes: Sociocultural Insights from the Study of Ancient Genomes. Nat. Rev. Genet. 2020, 21, 355–366. [Google Scholar] [CrossRef]
- Fiddyment, S.; Holsinger, B.; Ruzzier, C.; Devine, A.; Binois, A.; Albarella, U.; Fischer, R.; Nichols, E.; Curtis, A.; Cheese, E.; et al. Animal Origin of 13th-Century Uterine Vellum Revealed Using Noninvasive Peptide Fingerprinting. Proc. Natl. Acad. Sci. USA 2015, 112, 15066–15071. [Google Scholar] [CrossRef]
- Tanasi, D.; Cucina, A.; Cunsolo, V.; Saletti, R.; Di Francesco, A.; Greco, E.; Foti, S. Paleoproteomic Profiling of Organic Residues on Prehistoric Pottery from Malta. Amino Acids 2021, 53, 295–312. [Google Scholar] [CrossRef]
- Hendy, J.; Colonese, A.C.; Franz, I.; Fernandes, R.; Fischer, R.; Orton, D.; Lucquin, A.; Spindler, L.; Anvari, J.; Stroud, E.; et al. Ancient Proteins from Ceramic Vessels at Çatalhöyük West Reveal the Hidden Cuisine of Early Farmers. Nat. Commun. 2018, 9, 4064. [Google Scholar] [CrossRef]
- Demarchi, B.; Hall, S.; Roncal-Herrero, T.; Freeman, C.L.; Woolley, J.; Crisp, M.K.; Wilson, J.; Fotakis, A.; Fischer, R.; Kessler, B.M.; et al. Protein Sequences Bound to Mineral Surfaces Persist into Deep Time. Elife 2016, 5, e17092. [Google Scholar] [CrossRef]
- Solazzo, C.; Fitzhugh, W.; Kaplan, S.; Potter, C.; Dyer, J.M. Molecular Markers in Keratins from Mysticeti Whales for Species Identification of Baleen in Museum and Archaeological Collections. PLoS ONE 2017, 12, e0183053. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Z.; Zeng, J.; Zhao, Y.; Zhang, C.; Yu, M.; Wang, W.; Chen, X.; Chen, L.; Wang, J.; et al. Untargeted Metabolomics of Pulmonary Tuberculosis Patient Serum Reveals Potential Prognostic Markers of Both Latent Infection and Outcome. Front. Public Health 2022, 10, 962510. [Google Scholar] [CrossRef]
- Rosting, C.; Tran, E.V.; Gjelstad, A.; Halvorsen, T.G. Determination of the Low-Abundant Protein Biomarker hCG from Dried Matrix Spots Using Immunocapture and Nano Liquid Chromatography Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018, 1077–1078, 44–51. [Google Scholar] [CrossRef]
- Sulek, K.; Han, T.-L.; Villas-Boas, S.G.; Wishart, D.S.; Soh, S.-E.; Kwek, K.; Gluckman, P.D.; Chong, Y.-S.; Kenny, L.C.; Baker, P.N. Hair Metabolomics: Identification of Fetal Compromise Provides Proof of Concept for Biomarker Discovery. Theranostics 2014, 4, 953–959. [Google Scholar] [CrossRef]
- Aderemi, A.V.; Ayeleso, A.O.; Oyedapo, O.O.; Mukwevho, E. Metabolomics: A Scoping Review of Its Role as a Tool for Disease Biomarker Discovery in Selected Non-Communicable Diseases. Metabolites 2021, 11, 418. [Google Scholar] [CrossRef]
- Lu, Y.; Zou, L.; Su, J.; Tai, E.S.; Whitton, C.; van Dam, R.M.; Ong, C.N. Meat and Seafood Consumption in Relation to Plasma Metabolic Profiles in a Chinese Population: A Combined Untargeted and Targeted Metabolomics Study. Nutrients 2017, 9, 683. [Google Scholar] [CrossRef]
- Langenau, J.; Oluwagbemigun, K.; Brachem, C.; Lieb, W.; Giuseppe, R.D.; Artati, A.; Kastenmüller, G.; Weinhold, L.; Schmid, M.; Nöthlings, U. Blood Metabolomic Profiling Confirms and Identifies Biomarkers of Food Intake. Metabolites 2020, 10, 468. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.H.; Patterson, A.D.; Idle, J.R.; Gonzalez, F.J. Xenobiotic Metabolomics: Major Impact on the Metabolome. Annu. Rev. Pharmacol. Toxicol. 2012, 52, 37–56. [Google Scholar] [CrossRef]
- Alldritt, I.; Whitham-Agut, B.; Sipin, M.; Studholme, J.; Trentacoste, A.; Tripp, J.A.; Cappai, M.G.; Ditchfield, P.; Devièse, T.; Hedges, R.E.M.; et al. Metabolomics Reveals Diet-Derived Plant Polyphenols Accumulate in Physiological Bone. Sci. Rep. 2019, 9, 8047. [Google Scholar] [CrossRef] [PubMed]
- Tushingham, S.; Ardura, D.; Eerkens, J.W.; Palazoglu, M.; Shahbaz, S.; Fiehn, O. Hunter-Gatherer Tobacco Smoking: Earliest Evidence from the Pacific Northwest Coast of North America. J. Archaeol. Sci. 2013, 40, 1397–1407. [Google Scholar] [CrossRef]
- Zimmermann, M.; Brownstein, K.J.; Pantoja Díaz, L.; Ancona Aragón, I.; Hutson, S.; Kidder, B.; Tushingham, S.; Gang, D.R. Metabolomics-Based Analysis of Miniature Flask Contents Identifies Tobacco Mixture Use among the Ancient Maya. Sci. Rep. 2021, 11, 1590. [Google Scholar] [CrossRef]
- Cartmell, L.W.; Aufderhide, A.; Weems, C. Cocaine Metabolites in Pre-Columbian Mummy Hair. J. Okla. State Med. Assoc. 1991, 84, 11–12. [Google Scholar]
- Musshoff, F.; Rosendahl, W.; Madea, B. Determination of Nicotine in Hair Samples of Pre-Columbian Mummies. Forensic Sci. Int. 2009, 185, 84–88. [Google Scholar] [CrossRef]
- Springfield, A.C.; Cartmell, L.W.; Aufderheide, A.C.; Buikstra, J.; Ho, J. Cocaine and Metabolites in the Hair of Ancient Peruvian Coca Leaf Chewers. Forensic Sci. Int. 1993, 63, 269–275. [Google Scholar] [CrossRef]
- Santiago-Rodriguez, T.M.; Fornaciari, G.; Luciani, S.; Dowd, S.E.; Toranzos, G.A.; Marota, I.; Cano, R.J. Taxonomic and Predicted Metabolic Profiles of the Human Gut Microbiome in Pre-Columbian Mummies. FEMS Microbiol. Ecol. 2016, 92, fiw182. [Google Scholar] [CrossRef]
- Vandenbeusch, M.; Stacey, R.; Antoine, D. Rediscovering Nestawedjat: Embalming Residue Analyses Reunite the Mummified Remains of an Ancient Egyptian Woman with Her Coffins. J. Archaeol. Sci. Rep. 2021, 40, 103186. [Google Scholar] [CrossRef]
- Righetti, L.; Rubert, J.; Galaverna, G.; Folloni, S.; Ranieri, R.; Stranska-Zachariasova, M.; Hajslova, J.; Dall’Asta, C. Characterization and Discrimination of Ancient Grains: A Metabolomics Approach. Int. J. Mol. Sci. 2016, 17, 1217. [Google Scholar] [CrossRef]
- Velsko, I.; Overmyer, K.; Speller, C.F.; Collins, M.J.; Loe, L.; Frantz, L.; Rodriguez Martinez, J.B.; Chavez, E.; Klaus, L.; Sankaranarayanan, K.; et al. The Dental Calculus Metabolome in Modern and Historic Samples. Metabolomics 2017, 13, 134. [Google Scholar] [CrossRef]
- Gismondi, A.; Baldoni, M.; Gnes, M.; Scorrano, G.; D’Agostino, A.; Di Marco, G.; Calabria, G.; Petrucci, M.; Müldner, G.; Von Tersch, M.; et al. A Multidisciplinary Approach for Investigating Dietary and Medicinal Habits of the Medieval Population of Santa Severa (7th–15th Centuries, Rome, Italy). PLoS ONE 2020, 15, e0227433. [Google Scholar] [CrossRef]
- Badillo-Sanchez, D.; Ruber, M.S.; Davies-Barrett, A.M.; Sandhu, J.K.; Jones, D.J.L.; Hansen, M.; Inskip, S.A. Examination of Human Osteoarchaeological Remains as a Feasible Source of Polar and Apolar Metabolites to Study Past Conditions. Sci. Rep. 2023, 13, 696. [Google Scholar] [CrossRef] [PubMed]
- Altaie, A.M.; Venkatachalam, T.; Samaranayake, L.P.; Soliman, S.S.M.; Hamoudi, R. Comparative Metabolomics Reveals the Microenvironment of Common T-Helper Cells and Differential Immune Cells Linked to Unique Periapical Lesions. Front. Immunol. 2021, 12, 707267. [Google Scholar] [CrossRef]
- Yu, M.; Tu, P.; Dolios, G.; Dassanayake, P.S.; Volk, H.; Newschaffer, C.; Fallin, M.D.; Croen, L.; Lyall, K.; Schmidt, R.; et al. Tooth Biomarkers to Characterize the Temporal Dynamics of the Fetal and Early-Life Exposome. Environ. Int. 2021, 157, 106849. [Google Scholar] [CrossRef]
- Parker, C.; Rohrlach, A.B.; Friederich, S.; Nagel, S.; Meyer, M.; Krause, J.; Bos, K.I.; Haak, W. A Systematic Investigation of Human DNA Preservation in Medieval Skeletons. Sci. Rep. 2020, 10, 18225. [Google Scholar] [CrossRef]
- Rascovan, N.; Huynh, H.; Chouin, G.; Adekola, K.; Georges-Zimmermann, P.; Signoli, M.; Desfosses, Y.; Aboudharam, G.; Drancourt, M.; Desnues, C. Tracing Back Ancient Oral Microbiomes and Oral Pathogens Using Dental Pulps from Ancient Teeth. NPJ Biofilms Microbiomes 2016, 2, 6. [Google Scholar] [CrossRef]
- Andrades Valtueña, A.; Mittnik, A.; Key, F.M.; Haak, W.; Allmäe, R.; Belinskij, A.; Daubaras, M.; Feldman, M.; Jankauskas, R.; Janković, I.; et al. The Stone Age Plague and Its Persistence in Eurasia. Curr. Biol. 2017, 27, 3683–3691.e8. [Google Scholar] [CrossRef]
- Ratsitorahina, M.; Chanteau, S.; Rahalison, L.; Ratsifasoamanana, L.; Boisier, P. Epidemiological and Diagnostic Aspects of the Outbreak of Pneumonic Plague in Madagascar. Lancet 2000, 355, 111–113. [Google Scholar] [CrossRef]
- CDC Frequently Asked Questions. Available online: https://www.cdc.gov/plague/faq/index.html (accessed on 3 March 2023).
- Curtis, D.R.; Roosen, J. The Sex-Selective Impact of the Black Death and Recurring Plagues in the Southern Netherlands, 1349-1450. Am. J. Phys. Anthropol. 2017, 164, 246–259. [Google Scholar] [CrossRef]
- Zedda, N.; Rinaldo, N.; Gualdi-Russo, E.; Bramanti, B. Overall Frailty Gauged in Victims of the Italian Plague (Imola, 1630–1632): Was Plague an Indiscriminate Killer? Archaeol. Anthropol. Sci. 2022, 14, 199. [Google Scholar] [CrossRef]
- Malim, T.; Hines, J. The Anglo Saxon Cemetery at Edix Hill (Barrington A). CBA Research Report 112; Council for British Archaeology: York, UK, 1998. [Google Scholar]
- Guellil, M.; Keller, M.; Dittmar, J.M.; Inskip, S.A.; Cessford, C.; Solnik, A.; Kivisild, T.; Metspalu, M.; Robb, J.E.; Scheib, C.L. An Invasive Haemophilus Influenzae Serotype B Infection in an Anglo-Saxon Plague Victim. Genome Biol. 2022, 23, 22. [Google Scholar] [CrossRef] [PubMed]
- Manifold, B.M. Skeletal Preservation of Children’s Remains in the Archaeological Record. Homo 2015, 66, 520–548. [Google Scholar] [CrossRef] [PubMed]
- Guellil, M.; van Dorp, L.; Inskip, S.A.; Dittmar, J.M.; Saag, L.; Tambets, K.; Hui, R.; Rose, A.; D’Atanasio, E.; Kriiska, A.; et al. Ancient Herpes Simplex 1 Genomes Reveal Recent Viral Structure in Eurasia. Sci. Adv. 2022, 8, eabo4435. [Google Scholar] [CrossRef]
- Keller, M.; Spyrou, M.A.; Scheib, C.L.; Neumann, G.U.; Kröpelin, A.; Haas-Gebhard, B.; Päffgen, B.; Haberstroh, J.; Ribera I Lacomba, A.; Raynaud, C.; et al. Ancient Yersinia Pestis Genomes from across Western Europe Reveal Early Diversification during the First Pandemic (541–750). Proc. Natl. Acad. Sci. USA 2019, 116, 12363–12372. [Google Scholar] [CrossRef]
- Dudzik, D.; Barbas-Bernardos, C.; García, A.; Barbas, C. Quality Assurance Procedures for Mass Spectrometry Untargeted Metabolomics—A Review. J. Pharm. Biomed. Anal. 2018, 147, 149–173. [Google Scholar] [CrossRef]
- Pang, Z.; Zhou, G.; Ewald, J.; Chang, L.; Hacariz, O.; Basu, N.; Xia, J. Using MetaboAnalyst 5.0 for LC–HRMS Spectra Processing, Multi-Omics Integration and Covariate Adjustment of Global Metabolomics Data. Nat. Protoc. 2022, 17, 1735–1761. [Google Scholar] [CrossRef]
- Gautam, A.; Muhie, S.; Chakraborty, N.; Hoke, A.; Donohue, D.; Miller, S.A.; Hammamieh, R.; Jett, M. Metabolomic Analyses Reveal Lipid Abnormalities and Hepatic Dysfunction in Non-Human Primate Model for Yersinia Pestis. Metabolomics 2018, 15, 2. [Google Scholar] [CrossRef]
- Haug, K.; Cochrane, K.; Nainala, V.C.; Williams, M.; Chang, J.; Jayaseelan, K.V.; O’Donovan, C. MetaboLights: A Resource Evolving in Response to the Needs of Its Scientific Community. Nucleic Acids Res. 2019, 48, D440–D444. [Google Scholar] [CrossRef]
Lab ID | Grave | Sk ID | Sample | Age from Site Report | Y. pestis DNA | Genetic Sex | Extraction ID |
---|---|---|---|---|---|---|---|
547 | 55 | 171 | LRM3 | Adult | Negative | XX | 26 |
554 | 76 | 405 | URI1 | Young Adult | POSITIVE | XY | 7 |
558 | 84 | 440A | LRI2 | Young Adult | Negative | XX | 35 |
575 | 78 | 424 | LRI2 | Juvenile | POSITIVE | XX | 15 |
576 | 77 | 423 | URPM1 | Young Adult | Negative | XY | 3, 18, 21 |
582 | 96 | 547B | ULC | Late child | POSITIVE | XX | 36 |
583 | 97 | 551 | LRI1 | Young Adult | Negative | XY | 19 |
587 | 102 | 586 | LLI2 | Child | Negative | XX | 24 |
589 | 106 | 626A | LRI2 | Young Adult | POSITIVE | XX | 40 |
590 | 106 | 626B | URI2 | Young Adult | POSITIVE | XY | 8, 34, 38 |
598 | 2 | 3C | URI1 | Young Adult | Negative | XY | 13, 16, 23 |
603 | 73 | 372 | LLM3 | Young Adult | POSITIVE | XY | 6, 10, 33 |
604 | 85 | 447B | dULC | Child | POSITIVE | XY | 5 |
607 | 94 | 529 | LRM1 | Child | POSITIVE | XY | 2, 17, 22 |
609 | 112 | 719A | LRM3 | Adult | Negative | XY | 4, 11, 25 |
618 | 114 | 726 | URM3 | Young Adult | POSITIVE | XX | 20, 37, 39 |
623 | 18 | 42A2 | dU?LC | Child | Negative | XY | 1, 32, 42 |
625 | 85 | 447A | ULI1 | Young Adult | POSITIVE | XY | 29, 30, 31 |
633 | 36 | 125 | LLC | Young Adult | Negative | XY | 9, 12, 41 |
652 | 10 | 16B | ULI2 | Young Adult | Negative | XX | 14, 27, 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badillo-Sanchez, D.A.; Jones, D.J.L.; Inskip, S.A.; Scheib, C.L. Human Archaeological Dentin as Source of Polar and Less Polar Metabolites for Untargeted Metabolomic Research: The Case of Yersinia pestis. Metabolites 2023, 13, 588. https://doi.org/10.3390/metabo13050588
Badillo-Sanchez DA, Jones DJL, Inskip SA, Scheib CL. Human Archaeological Dentin as Source of Polar and Less Polar Metabolites for Untargeted Metabolomic Research: The Case of Yersinia pestis. Metabolites. 2023; 13(5):588. https://doi.org/10.3390/metabo13050588
Chicago/Turabian StyleBadillo-Sanchez, Diego Armando, Donald J. L. Jones, Sarah A. Inskip, and Christiana L. Scheib. 2023. "Human Archaeological Dentin as Source of Polar and Less Polar Metabolites for Untargeted Metabolomic Research: The Case of Yersinia pestis" Metabolites 13, no. 5: 588. https://doi.org/10.3390/metabo13050588
APA StyleBadillo-Sanchez, D. A., Jones, D. J. L., Inskip, S. A., & Scheib, C. L. (2023). Human Archaeological Dentin as Source of Polar and Less Polar Metabolites for Untargeted Metabolomic Research: The Case of Yersinia pestis. Metabolites, 13(5), 588. https://doi.org/10.3390/metabo13050588