Optimization of the Fermentation Conditions of Huaniu Apple Cider and Quantification of Volatile Compounds Using HS-SPME-GC/MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cider Production
2.2. Total Soluble Solid Content and pH Measurement
2.3. Fermentation Rate
2.4. Analysis of Cider Aroma Composition
2.5. Experimental Design and Data Analysis
3. Results and Discussion
3.1. Validation of the Experimental Design
3.2. Analysis of Response Surface
3.3. TSS and pH
3.4. Volatile Compounds
3.4.1. Esters
3.4.2. Alcohols
3.4.3. Acids
3.4.4. Others
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, B.; Zhou, X.; Guan, H.; Pang, X.; Zhang, Z. Purification and characterization of a dark red skin related dimeric polyphenol oxidase from Huaniu Apples. Foods 2022, 11, 1790. [Google Scholar] [CrossRef]
- Zou, X.; Zhao, J. Comparative analyses of apple aroma by a tin-oxide gas sensor array device and GC/MS. Food Chem. 2008, 107, 120–128. [Google Scholar]
- Wang, B.; Xie, M.; Wang, X.; Wu, X.; Chen, B.; Zhang, X.; Niu, J. Effects of 1-MCP treatment on fruit quality and aroma components of Huaniu apples during cold storage. Sci. Technol. Food Ind. 2017, 38, 331–339. [Google Scholar]
- Wu, X.; Xie, M.; Zhao, B.; Wang, X.; Chen, B. Control and mechanism of superficial scald on ‘Huaniu’ apples with 1-methylcyclopropene treatment. Sci. Technol. Food Ind. 2015, 36, 316–320. [Google Scholar]
- Cozzolino, R.; Palumbo, M.; Cefola, M.; Capotorto, I.; Linsalata, V.; Forte, G.; Petriccione, M.; De Giulio, B.; Pace, B. Biochemical characterization of apple slices dried using low temperature and stored in modified atmosphere packaging. J. Food Compos. Anal. 2022, 112, 104694. [Google Scholar] [CrossRef]
- Coldea, T.E.; Socaciu, C.; Mudura, E.; Socaci, S.A.; Ranga, F.; Pop, C.R.; Vriesekoop, F.; Pasqualone, A. Volatile and phenolic profiles of traditional Romanian apple brandy after rapid ageing with different wood chips. Food Chem. 2020, 320, 126643. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lin, M.; Hu, L.; Xu, T.; Xiong, D.; Li, L.; Zhao, Z. Research on the effect of simultaneous and sequential fermentation with Saccharomyces cerevisiae and Lactobacillus plantarum on antioxidant activity and flavor of apple cider. Fermentation 2023, 9, 102. [Google Scholar] [CrossRef]
- Li, Y.-N.; Luo, Y.; Lu, Z.-M.; Dong, Y.-L.; Chai, L.-J.; Shi, J.-S.; Zhang, X.-J.; Xu, Z.-H. Metabolomic analysis of the effects of a mixed culture of Saccharomyces cerevisiae and Lactiplantibacillus plantarum on the physicochemical and quality characteristics of apple cider vinegar. Front. Nutr. 2023, 10, 1142517. [Google Scholar] [CrossRef]
- Jensen, K.L.; DeLong, K.L.; Gill, M.B.; Hughes, D.W. Consumer willingness to pay for locally produced hard cider in the USA. Int. J. Wine Bus. Res. 2021, 33, 411–431. [Google Scholar] [CrossRef]
- Rosend, J.; Kuldjarv, R.; Rosenvald, S.; Paalme, T. The effects of apple variety, ripening stage, and yeast strain on the volatile composition of apple cider. Heliyon 2019, 5, e01953. [Google Scholar] [CrossRef]
- Way, M.L.; Jones, J.E.; Nichols, D.S.; Dambergs, R.G.; Swarts, N.D. A comparison of laboratory analysis methods for total phenolic content of cider. Beverages 2020, 6, 55. [Google Scholar] [CrossRef]
- Zuriarrain-Ocio, A.; Zuriarrain, J.; Vidal, M.; Teresa Duenas, M.; Berregi, I. Antioxidant activity and phenolic profiles of ciders from the Basque Country. Food Biosci. 2021, 41, 100887. [Google Scholar] [CrossRef]
- Wang, M.; Bai, Z.; Zhu, H.; Zheng, T.; Chen, X.; Li, P.; Zhang, J.; Ma, F. A new strategy based on LC-Q TRAP-MS for determining the distribution of polyphenols in different apple varieties. Foods 2022, 11, 3390. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Yue, T.; Yuan, Y. Impact of polyphenols on the headspace concentration of aroma compounds in apple cider. J. Sci. Food Agric. 2019, 99, 1635–1642. [Google Scholar] [CrossRef] [PubMed]
- Sherman, E.; Greenwood, D.R.; Villas-Boas, S.G.; Heymann, H.; Harbertson, J.F. Impact of grape maturity and ethanol concentration on sensory properties of Washington State merlot wines. Am. J. Enol. Vitic. 2017, 68, 344–356. [Google Scholar] [CrossRef]
- Gutierrez-Gamboa, G.; Zheng, W.; Martinez de Toda, F. Current viticultural techniques to mitigate the effects of global warming on grape and wine quality: A comprehensive review. Food Res. Int. 2021, 139, 109946. [Google Scholar] [CrossRef] [PubMed]
- Anuna, M.I.; Akpapunam, M.A. Effects of temperature and time on the qualities of pineapple wines obtained from must fermented with raffia-wine and up-wine yeast strains. Discov. Innov. 1995, 7, 143–149. [Google Scholar]
- Peng, B.; Li, F.; Cui, L.; Guo, Y. Effects of fermentation temperature on key aroma compounds and sensory properties of apple wine. J. Food Sci. 2015, 80, S2937–S2943. [Google Scholar] [CrossRef]
- Deed, R.C.; Fedrizzi, B.; Gardner, R.C. Influence of fermentation temperature, yeast strain, and grape juice on the aroma chemistry and sensory profile of sauvignon blanc wines. J. Agric. Food Chem. 2017, 65, 8902–8912. [Google Scholar] [CrossRef]
- Forino, M.; Picariello, L.; Rinaldi, A.; Moio, L.; Gambuti, A. How must pH affects the level of red wine phenols. LWT-Food Sci. Technol. 2020, 129, 109546. [Google Scholar] [CrossRef]
- Gawel, R.; Van Sluyter, S.C.; Smith, P.A.; Waters, E.J. Effect of pH and alcohol on perception of phenolic character in white wine. Am. J. Enol. Vitic. 2013, 64, 425–429. [Google Scholar] [CrossRef]
- Tanguler, H.; Erten, H. The influence of two yeast strains on fermentation and flavour composition of cider. Flavour Frag. J. 2022, 37, 144–153. [Google Scholar] [CrossRef]
- Symoneaux, R.; Guichard, H.; Le Quere, J.-M.; Baron, A.; Chollet, S. Could cider aroma modify cider mouthfeel properties? Flavour Frag. J. 2015, 45, 11–17. [Google Scholar] [CrossRef]
- Weiss, D.; Goessinger, M. Influence of sugar and acid contents on the refraction of cider during the fermentation. Mitt. Klosterneubg. 2014, 64, 129–136. [Google Scholar]
- Reuss, R.M.; Stratton, J.E.; Smith, D.A.; Read, P.E.; Cuppett, S.L.; Parkhurst, A.M. Malolactic fermentation as a technique for the deacidification of hard apple cider. J. Food Sci. 2010, 75, C74–C78. [Google Scholar] [CrossRef] [PubMed]
- Bozoglu, M.D.; Ertunc, S.; Akay, B.; Bursali, N.; Vural, N.; Hapoglu, H.; Demirci, Y. The effect of temperature, pH and SO2 on ethanol concentration and sugar consumption rate (SCR) in apple wine process. J. Chem. Soc. Pak. 2015, 37, 431–439. [Google Scholar]
- Seward, R.; Willets, J.C.; Dinsdale, M.G.; Lloyd, D. The effects of ethanol, hexan-1-ol, and 2-phenylethanol on cider yeast growth, viability, and energy status; Synergistic inhibition. J. Inst. Brew. 1996, 102, 439–443. [Google Scholar] [CrossRef]
- Medina, S.; Perestrelo, R.; Pereira, R.; Camara, J.S. Evaluation of Volatilomic Fingerprint from Apple Fruits to Ciders: A Useful Tool to Find Putative Biomarkers for Each Apple Variety. Foods 2020, 9, 1830. [Google Scholar] [CrossRef]
- Eleuterio dos Santos, C.M.; Alberti, A.; Moura Pietrowski, G.d.A.; Ferreira Zielinski, A.A.; Wosiacki, G.; Nogueira, A.; Matos Jorge, R.M. Supplementation of amino acids in apple must for the standardization of volatile compounds in ciders. J. Inst. Brew. 2016, 122, 334–341. [Google Scholar] [CrossRef]
- Hinkley, J.L.; Bingman, M.T.; Lee, J.S.; Bradley, C.P., II; Cole, C.A. Volatile Profile Survey of Five Apple Varieties Grown in Southwest Colorado from Juice to Finished, Dry-Hopped Cider. J. Am. Soc. Brew. Chem. 2023, 81, 131–140. [Google Scholar] [CrossRef]
- Vidrih, R.; Hribar, J. Synthesis of higher alcohols during cider processing. Food Chem. 1999, 67, 287–294. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, K.; Cai, R.; Yue, T.; Yuan, Y.; Gao, Z. Construction of recombinant fusant yeasts for the production of cider with low alcohol and enhanced aroma. Eur. Food Res. Technol. 2020, 246, 745–757. [Google Scholar] [CrossRef]
- Jose Anton, M.; Suarez Valles, B.; Garcia Hevia, A.; Picinelli Lobo, A. Aromatic Profile of Ciders by Chemical Quantitative, Gas Chromatography-Olfactometry, and Sensory Analysis. J. Food Sci. 2014, 79, S92–S99. [Google Scholar] [CrossRef] [PubMed]
- Polychroniadou, E.; Kanellaki, M.; Iconomopoulou, M.; Koutinas, A.A.; Marchant, R.; Banat, I.M. Grape and apple wines volatile fermentation products and possible relation to spoilage. Bioresour. Technol. 2003, 87, 337–339. [Google Scholar] [CrossRef]
- Mangas, J.J.; Gonzalez, M.P.; Rodriguez, R.; Blanco, D. Solid-phase extraction and determination of trace aroma and flavour components in cider by GC-MS. Chromatographia 1996, 42, 101–105. [Google Scholar] [CrossRef]
- Xu, J.; Guo, L.; Wang, T.; Ma, M.; Wang, B.; Wei, X.; Fan, M. Effect of inorganic and organic nitrogen supplementation on volatile components and aroma profile of cider. Food Res. Int. 2022, 161, 111765. [Google Scholar] [CrossRef]
- He, W.; Laaksonen, O.; Tian, Y.; Heinonen, M.; Bitz, L.; Yang, B. Phenolic compound profiles in Finnish apple (Malus × domestica Borkh.) juices and ciders fermented with Saccharomyces cerevisiae and Schizosaccharomyces pombe strains. Food Chem. 2022, 373, 131437. [Google Scholar] [CrossRef]
- Picinelli Lobo, A.; Dineiro Garcia, Y.; Mangas Sanchez, J.; Rodriguez Madrera, R.; Suarez Valles, B. Phenolic and antioxidant composition of cider. J. Food Compos. Anal. 2009, 22, 644–648. [Google Scholar] [CrossRef]
- Ceci, A.T.; Bassi, M.; Guerra, W.; Oberhuber, M.; Robatscher, P.; Mattivi, F.; Franceschi, P. Metabolomic Characterization of Commercial, Old, and Red-Fleshed Apple Varieties. Metabolites 2021, 11, 378. [Google Scholar] [CrossRef]
- Li, W.; Zhao, Y.; Liu, C.; Li, S.; Yue, T.; Yuan, Y. Effects of secondary fermentation of four in-bottle Saccharomyces cerevisiae strains on sparkling cider sensory quality. Food Biosci. 2022, 48, 101731. [Google Scholar] [CrossRef]
- Ye, M.; Yue, T.; Yuan, Y. Changes in the profile of volatile compounds and amino acids during cider fermentation using dessert variety of apples. Eur. Food Res. Technol. 2014, 239, 67–77. [Google Scholar] [CrossRef]
- Yu, W.; Zhu, Y.; Zhu, R.; Bai, J.; Qiu, J.; Wu, Y.; Zhong, K.; Gao, H. Insight into the characteristics of cider fermented by single and co-culture with Saccharomyces cerevisiae and Schizosaccharomyces pombe based on metabolomic and transcriptomic approaches. LWT-Food Sci. Technol. 2022, 163, 113538. [Google Scholar] [CrossRef]
Symbol | Independents | Coded Level | ||
---|---|---|---|---|
−α(−1) | 0 | +α(+1) | ||
X1 | temperature/°C | 25 | 28 | 31 |
X2 | initial soluble solids/°Brix | 13 | 16 | 19 |
X3 | inoculum amount/% | 8 | 10 | 12 |
X4 | initial pH | 3.1 | 3.6 | 4.1 |
Run | X1 | X2 | X3 | X4 | R (Predicted): Fermentation Rate | R (Actual): Fermentation Rate |
---|---|---|---|---|---|---|
1 | 25 | 13 | 10 | 3.6 | 2.53 | 2.62 |
2 | 31 | 13 | 10 | 3.6 | 2.60 | 2.51 |
3 | 25 | 19 | 10 | 3.6 | 2.89 | 2.93 |
4 | 31 | 19 | 10 | 3.6 | 2.80 | 2.67 |
5 | 28 | 16 | 8 | 3.1 | 2.36 | 2.29 |
6 | 28 | 16 | 12 | 3.1 | 2.44 | 2.41 |
7 | 28 | 16 | 8 | 4.1 | 2.56 | 2.54 |
8 | 28 | 16 | 12 | 4.1 | 2.57 | 2.60 |
9 | 25 | 16 | 10 | 3.1 | 2.42 | 2.41 |
10 | 31 | 16 | 10 | 3.1 | 2.46 | 2.50 |
11 | 25 | 16 | 10 | 4.1 | 2.63 | 2.60 |
12 | 31 | 16 | 10 | 4.1 | 2.57 | 2.59 |
13 | 28 | 13 | 8 | 3.6 | 2.45 | 2.46 |
14 | 28 | 19 | 8 | 3.6 | 2.84 | 2.94 |
15 | 28 | 13 | 12 | 3.6 | 2.61 | 2.53 |
16 | 28 | 19 | 12 | 3.6 | 2.78 | 2.79 |
17 | 25 | 16 | 8 | 3.6 | 2.67 | 2.60 |
18 | 31 | 16 | 8 | 3.6 | 2.65 | 2.70 |
19 | 25 | 16 | 12 | 3.6 | 2.70 | 2.68 |
20 | 31 | 16 | 12 | 3.6 | 2.71 | 2.81 |
21 | 28 | 13 | 10 | 3.1 | 2.39 | 2.45 |
22 | 28 | 19 | 10 | 3.1 | 2.46 | 2.47 |
23 | 28 | 13 | 10 | 4.1 | 2.34 | 2.36 |
24 | 28 | 19 | 10 | 4.1 | 2.84 | 2.81 |
25 | 28 | 16 | 10 | 3.6 | 2.54 | 2.61 |
26 | 28 | 16 | 10 | 3.6 | 2.54 | 2.51 |
27 | 28 | 16 | 10 | 3.6 | 2.54 | 2.51 |
28 | 28 | 16 | 10 | 3.6 | 2.54 | 2.55 |
29 | 28 | 16 | 10 | 3.6 | 2.54 | 2.53 |
Source | F Value | p-Value |
---|---|---|
Model | 6.65 | 0.0005 *** |
X1 | 0.046 | 0.8334 |
X2 | 36 | 0.0001 *** |
X3 | 1.07 | 0.3179 |
X4 | 12 | 0.0038 ** |
X12 | 0.86 | 0.3692 |
X13 | 0.034 | 0.8554 |
X14 | 0.38 | 0.5461 |
X23 | 1.85 | 0.1951 |
X24 | 7.07 | 0.0187 * |
X34 | 0.14 | 0.7161 |
X11 | 7.5 | 0.0160 * |
X22 | 5.87 | 0.0295 * |
X33 | 2.81 | 0.1161 |
X44 | 12.42 | 0.0034 ** |
Lack of fit | 0.0692 | |
R2 | 0.8693 | |
C.V./% | 3.13 |
Compound | Content (μg/L) | Compound | Content (μg/L) |
---|---|---|---|
Esters | 2-Ethylhexyl acetate | 0.86 ± 0.01 | |
Ethyl Acetate | 4198.21 ± 43.56 | Ethyl 3-nonenoate | 0.72 ± 0.02 |
Ethyl octanoate | 991.21 ± 18.27 | Ethyl 4-decenoate | 0.63 ± 0.01 |
Ethyl decanoate | 695.52 ± 12.33 | Alcohols | |
Ethyl caproate | 131.65 ± 8.71 | Ethanol | 3023.72 ± 28.90 |
Isoamyl acetate | 114.67 ± 8.33 | 3-Methyl-1-butanol | 1156.91 ± 19.86 |
Acetic acid—2-phenyl ethyl ester | 94.66 ± 5.15 | Phenethyl ethanol | 390.82 ± 15.21 |
Ethyl 9-decenoate | 71.20 ± 5.28 | 2-Methyl-1-propanol | 233.78 ± 9.98 |
Ethyl nonanoate | 61.47 ± 4.94 | 1-Hexanol | 208.89 ± 10.37 |
Ethyl lactate | 45.27 ± 1.08 | 3,4,5-Trimethyl-4-heptanol | 61.46 ± 3.11 |
Isobutyl acetate | 44.99 ± 2.96 | 2-Ethyl-1-hexanol | 51.28 ± 3.96 |
Ethyl dodecanoate | 42.01 ± 1.54 | 1-Butanol | 15.56 ± 0.91 |
Ethyl phenylacetate | 29.05 ± 0.26 | 1-Propanol | 11.62 ± 0.52 |
n-propyl acetate | 25.29 ± 0.78 | 1-Decanol | 8.38 ± 0.33 |
Isobutyl noctanoate | 15.19 ± 0.33 | (R)-3,7-Dimethyl-6-octen-1-ol | 5.61 ± 0.29 |
Hexyl acetate | 11.76 ± 0.12 | 2-Heptanol | 5.22 ± 0.14 |
2-Methylhexyl butyrate | 11.65 ± 0.23 | (Z)-3-Hexen-1-ol | 3.12 ± 0.09 |
2-Hydroxy-4-methyl-ethyl valerate | 11.37 ± 0.15 | 2-Pentanol | 2.27 ± 0.07 |
Isoamyl octanoate | 10.95 ± 0.18 | Pentyl alcohol | 1.97 ± 0.09 |
Ethyl butyrate | 7.59 ± 0.24 | 2-Methyl-4-penten-1-ol | 0.74 ± 0.06 |
2-Methylbutyl phenylacetate | 5.55 ± 0.15 | Acid | |
3-Methylbutyl methoxyacetate | 5.04 ± 0.20 | Acetic acid | 515.86 ± 11.67 |
Butyl acetate | 4.57 ± 0.36 | Caproic acid | 124.21 ± 6.88 |
Ethyl acetate | 4.49 ± 0.06 | Octanoic acid | 52.73 ± 2.49 |
Ethyl propionate | 4.22 ± 0.19 | 2-Hydroxy-tetradecanoic acid | 17.48 ± 0.32 |
2-Hydroxy-4-methyl-ethyl valerate | 4.15 ± 0.11 | Isobutyric acid | 14.68 ± 0.13 |
Ethyl dodecanoate | 4.09 ± 0.21 | Orthodecanoic acid | 4.44 ± 0.23 |
2-Methylpropyl phenylacetate | 3.91 ± 0.07 | Others | |
Ethyl heptanoate | 3.87 ± 0.04 | Eugenol | 8.26 ± 0.16 |
Ethyl 3-hydroxy-4-(benzyloxy)butyrate | 3.25 ± 0.05 | à-Farnesene | 7.82 ± 0.25 |
2-Methylpropyl caproate | 2.96 ± 0.03 | Acetoin | 3.98 ± 0.11 |
Methyl acetate | 2.45 ± 0.04 | 2-Methyldecane | 2.87 ± 0.03 |
Ethyl (Z)-4-decenoate | 2.43 ± 0.02 | 3-(Methoxymethoxy)-1-octene | 2.85 ± 0.08 |
Propyl octanoate | 2.28 ± 0.03 | Hexadecane | 2.82 ± 0.13 |
4-Chloro-3-hydroxy-3-methylbutyl ester | 2.22 ± 0.01 | 6-Methyl-hexadecane | 1.12 ± 0.09 |
Ethyl 3-hydroxyoctanoate | 2.15 ± 0.11 | 3-Octanone | 0.85 ± 0.02 |
Methyl (E)-10-octadecan-8-methacrylate | 2.06 ± 0.09 | (Z)-3-Methyl-2-decene, | 0.69 ± 0.02 |
3-Methylbutyl methoxyacetate | 1.94 ± 0.01 | ||
2,6-Octadienoic acid, 3,7-dimethylmethyl ester | 1.26 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, Y.; Zeng, C.; Qiu, R.; Yang, J.; Zhang, H.; Song, J.; Yuan, J.; Sun, J.; Kang, S. Optimization of the Fermentation Conditions of Huaniu Apple Cider and Quantification of Volatile Compounds Using HS-SPME-GC/MS. Metabolites 2023, 13, 998. https://doi.org/10.3390/metabo13090998
Mu Y, Zeng C, Qiu R, Yang J, Zhang H, Song J, Yuan J, Sun J, Kang S. Optimization of the Fermentation Conditions of Huaniu Apple Cider and Quantification of Volatile Compounds Using HS-SPME-GC/MS. Metabolites. 2023; 13(9):998. https://doi.org/10.3390/metabo13090998
Chicago/Turabian StyleMu, Yuwen, Chaozhen Zeng, Ran Qiu, Jianbin Yang, Haiyan Zhang, Juan Song, Jing Yuan, Jing Sun, and Sanjiang Kang. 2023. "Optimization of the Fermentation Conditions of Huaniu Apple Cider and Quantification of Volatile Compounds Using HS-SPME-GC/MS" Metabolites 13, no. 9: 998. https://doi.org/10.3390/metabo13090998
APA StyleMu, Y., Zeng, C., Qiu, R., Yang, J., Zhang, H., Song, J., Yuan, J., Sun, J., & Kang, S. (2023). Optimization of the Fermentation Conditions of Huaniu Apple Cider and Quantification of Volatile Compounds Using HS-SPME-GC/MS. Metabolites, 13(9), 998. https://doi.org/10.3390/metabo13090998