Reproductive Enhancement through Phytochemical Characteristics and Biological Activities of Date Palm Pollen: A Comprehensive Review on Potential Mechanism Pathways
Abstract
:1. Introduction
2. Status of Date Palm in the World
3. Exploring Mechanisms: How Date Palm Pollen Composition Influences Reproduction?
3.1. Secondary Metabolites
3.1.1. Phenolic Compounds
Main Phenolic Compounds | Origin of DPP | References |
---|---|---|
Gallic acid, protocatechuic acid, chlorogenic acid, vanillic acid, caffeic acid, ferulic acid, alpha-coumaric acid, ellagic acid, cinnamic acid, salycilic acid, pyrogallol, catechin, catechol, epicatechein, caffeine, coumarin, reversetrol, narengin, hesperidin, rutin, quercetrin, rosmarinic, quercetin, naringenin, hesperitin, kaempferol, rhamnetin, apigenin, acacetin | Aswan governorate, northern Egypt | Ibrahim et al. [38] |
Gallic acid, caffeic acid, ferulic acid, cinnamic acid, catechin, rutin, quercetin | Tata oasis region, south-east of Morocco | Salhi et al. [11] |
Protocatechuic acid, vanillic acid, ellagic acid, rutin, quercetin, fisetin | Kerkennah and Tozeur regions, east and south-east of Tunisia | Daoud et al. [43] |
Gallic acid, vanillic acid, caffeic acid, catechin, epicatechein, coumarin, rutin, quercetin | Biskra, south-east of Algeria | Benouamane et al. [56] |
Chlorogenic acid, caffeic acid, cinnamic acid, catechin, rutin, quercetin, kaempferol, apigenin | Sharkia governorate, northern Egypt | Abdallah et al. [57] |
Gallic acid, protocatechuic acid, chlorogenic acid, vanillic acid, caffeic acid, ferulic acid, alpha-coumaric acid, benzoic acid, ellagic acid, cinnamic acid, salycilic acid, pyrogallol, catechin, catechol, epicatechein, caffeine, coumarin, reversetrol, narengin, hesperidin, rutin, quercetrin, quercetin, hesperitin, kaempferol, rhamnetin, apigenin, acacetin | Riyadh, central Saudi Arabia | Abou Zeid et al. [58] |
Gallic acid, chlorogenic acid, caffeic acid, catechin, rutin, quercetin | Alexandria, Egypt | El-Kholy et al. [9] |
3.1.2. Hormones
3.2. Proteins and Amino Acids
Amino Acids | 3 Letter Code | 1 Letter Code | DPP | DPP | DPP | DPP | DPP |
---|---|---|---|---|---|---|---|
Alanine | ala | A | 2.14–8.36 | 2.61 | 6.48 | 2.71 | 2.43–8.27 |
Arginine | arg | R | 1.18–1.73 | 1.61 | 5.77 | 1.42 | 1.18–1.74 |
Aspartic acid | asp | D | 4.48–3.13 | 3.55 | 10.41 | 1.53 | 3.23–4.70 |
Cysteine | cys | C | N/A | 0.42 | 1.11 | 0.91 | N/A |
Glutamine | gln | Q | 2.58–4.66 | 1.74 | 13.23 | 2.23 | 3.91–4.71 |
Glycine | gly | G | 8.46–7.81 | 2.24 | 5 | 1.81 | 4.40–8.19 |
Histidine | his | H | 1.14–1.64 | 1.61 | 2.53 | 1.89 | 0.82–1.84 |
Isoleucine | ile | I | 2.38–1.54 | 1.49 | 4.37 | 1.51 | 1.39–2.57 |
Leucine | leu | L | 3.65–2.21 | 3.34 | 8.35 | 3.51 | 1.99–3.72 |
Lysine | lys | K | 1.92–3.21 | 2.95 | 7.73 | 2.81 | 2.87–3.77 |
Methionine | met | M | 0.41–6.64 | 0.11 | 2.37 | 0.14 | 0.50–0.80 |
Phenylalaline | phe | F | 1.19–1.87 | 1.63 | 4.25 | 1.73 | 1.15–1.90 |
Proline | pro | P | 1.53–2.04 | 0.28 | N/A | N/A | 1.73–2.28 |
Serine | ser | S | 0–1.88 | 1.89 | 5.74 | 0.45 | 0.72–1.92 |
Threonine | thr | T | 0.55–1.46 | 1.72 | 4.7 | 1.66 | 0.62–1.91 |
Tryptophan | trp | W | N/A | N/A | N/A | N/A | N/A |
Tyrosine | tyr | Y | 0.01–0.16 | 1.55 | 3.46 | 0.82 | 0.37–1.53 |
Valine | val | V | 2.77–1.88 | 1.81 | 5.16 | 1.92 | 1.24–2.80 |
References | Bishr and Desoukey [13] | H. M. Hassan [10] | Sebii et al. [35] | Basuny et al. [36] | Aly [76] |
3.3. Carbohydrates and Fatty Acids
3.4. Minerals and Vitamins
4. Effect of Date Palm Pollen on Human Reproduction
4.1. Traditional Utilization of Date Palm Pollen to Enhance Human Fertility
4.2. Therapeutic Effects of Date Palm Pollen on Male Fertility: In Vivo Assay
4.2.1. Male Sexual Desire Disorders
4.2.2. Sperm Quality and Hormonal Levels
Test Group | Form of DPP | Type of Administration | Doses of DPP | Time | Results | Reference |
---|---|---|---|---|---|---|
Male rats | Aqueous extract | Intraperitoneal injection | 140 and 350 mg/kg BW twice a day | 120 min | ↑ Mount, intromission and ejaculation frequency; ↑ ejaculation latency; ↑ post-ejaculatory interval; ↑ index of libido; ↑ blood levels of testosterone and estradiol; ↑ penile erection; ↓ mount and intromission latency | Abedi et al. (2012) [44] |
140 mg/kg BW/day | 70 min | ↑ Mount and intromission frequency; ↑ ejaculation latency; ↑ release of dopamine levels; ↑ penile erection; ↓ ejaculation frequency; ↓ mount and intromission latency | Abedi et al. (2014) [119] | |||
Aqueous extract | Oral administration | 100 mg/kg BW/day | 4 weeks | ↑ Testicular histological architecture and integrity; ↑ testis weight; ↑ serum testosterone, LH and FSH levels; ↑ sperm count, motility and viability; ↑ sexual desire; ↓ testicular nitric oxide levels; ↓ malondialdehyde levels | Mohamed et al. (2018) [45] | |
Ethanolic extract | 150 mg/kg | 56 days | ↑ Body, epididymis, prostate gland, seminal vesicle and testis weight; ↑ serum LH, testosterone and estradiol levels; ↑ testicular antioxidant status; ↑ sperm count and motility; ↑ DNA integrity; ↓ pro-apoptotic markers expression; ↓ DNA damage | El-Kashlan et al. (2015) [46] | ||
Aqueous extract | 120 mg/kg BW/day | 35 days | ↑ Serum testosterone levels; ↑ body weight; ↑ Johansen score | Iftikhar et al. (2011) [100] | ||
↑ Body and testis weight; ↑ serum and intratesticular testosterone levels | Yasir et al. (2014) [111] | |||||
Aqueous extract | 120, 240 and 360 mg/kg BW/day | 35 days | ↑ Sperm count and motility; ↑ seminiferous tubules diameter; ↑ germinal cell layer thickness; ↑ Leydig and spermatogonia cells; ↑ serum testosterone, LH and estradiol levels; immotile sperm; ↓ sperm abnormality | (Mehraban et al. (2014) [48] | ||
Female mice | Aqueous extract | n.d. | 100, 200, 400 mg/kg BW | n.d. | ↑ Testosterone, estrogen and progesterone levels; ↑ number of antral and secondary follicles | Hosseini et al. (2014) [135] |
Female rats | DPP water suspension | Oral administration | 150 mg/kg BW/day | 6 weeks | ↑ Serum FSH and LH levels | Hammed et al. (2012) [136] |
Ethanolic extract | Oral administration | 100 mg/kg BW/day | 28 days | ↑ GSH, FSH and LH levels | Jiheel and Arrak (2015) [137] |
Test Group | Doses of DPP | Time | Results | Reference |
---|---|---|---|---|
Infertile men | 500 mg twice daily | 3 months | ↑ Sexual desire; ↑ sperm count; ↑ active sperm motility; ↑ serum testosterone, LH and FSH levels | Al-sanafi et al. (2023) [114] |
500 mg twice daily | 3 months | ↑ Sexual desire; ↑ sperm count; ↑ active sperm motility; ↑ serum testosterone, LH and FSH levels; ↑ intercourse rate | Marbeen et al. (2005) [115] | |
400 mg/kg BW | 74 days | ↑ Semen volume, count and morphology. | Falahati et al. (2023) [47] | |
120 mg/kg BW every 2 days | 2 months | ↑ Sperm count, motility and morphology | Rasekh et al. (2015) [123] | |
300 mg per day | 30 days | ↑ Erectile function; ↑ orgasm sexual desire; ↑ intercourse satisfaction | Jahromi et al. (2022) [97] | |
Men | 3g twice a day | 2 months | ↑ Vasodilatation; ↑ IIEF; ↑ HISD | Hooshang et al. (2022) [116] |
3 g every 12 h | 3 months | ↑ Serum testosterone | Karimi et al. (2023) [49] | |
Man: case report | 3 g every 12 h | 3 months | ↑ Sperm morphology, total and progressive motility and concentration | Karimi et al. (2018) [124] |
4.3. Therapeutic Effects of Date Palm Pollen on Female Fertility: In Vivo Assays
4.4. Regulatory Imperatives, Toxicological Effects, and Research Directions for Date Palm Pollen in Fertility Enhancement
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UCLA Health Infertility. Available online: https://www.uclahealth.org/medical-services/obgyn/conditions-treated/infertility (accessed on 26 August 2023).
- Noh, S.; Go, A.; Kim, D.B.; Park, M.; Jeon, H.W.; Kim, B. Role of Antioxidant Natural Products in Management of Infertility: A Review of Their Medicinal Potential. Antioxidants 2020, 9, 957. [Google Scholar] [CrossRef]
- Shehzad, M.; Rasheed, H.; Naqvi, S.A.; Al-Khayri, J.M.; Lorenzo, J.M.; Alaghbari, M.A.; Manzoor, M.F.; Aadil, R.M. Therapeutic Potential of Date Palm against Human Infertility: A Review. Metabolites 2021, 11, 408. [Google Scholar] [CrossRef]
- Moshfegh, F.; Baharara, J.; Namvar, F.; Zafar-Balanezhad, S.; Amini, E.; Jafarzadeh, L. Effects of Date Palm Pollen on Fertility and Development of Reproductive System in Female Balb/C Mice. J. Herbmed Pharmacol. 2015, 5, 23–28. [Google Scholar]
- Tahvilzadeh, M.; Hajimahmoodi, M.; Rahimi, R. The Role of Date Palm (Phoenix dactylifera L.) Pollen in Fertility: A Comprehensive Review of Current Evidence. J. Evid. Based Complement. Altern. Med. 2016, 21, 320–324. [Google Scholar] [CrossRef]
- Abdi, F.; Roozbeh, N.; Mortazavian, A.M. Effects of Date Palm Pollen on Fertility: Research Proposal for a Systematic Review. BMC Res. Notes 2017, 10, 363. [Google Scholar] [CrossRef]
- Chao, C.T.; Krueger, R.R. The Date Palm (Phoenix dactylifera L.): Overview of Biology, Uses, and Cultivation. Horts 2007, 42, 1077–1082. [Google Scholar] [CrossRef]
- Abbas, F.A.; Ateya, A.-M. Estradiol, Esteriol, Estrone and Novel Flavonoids from Date Palm Pollen. Aust. J. Basic Appl. Sci. 2011, 5, 606–614. [Google Scholar]
- El-Kholy, W.M.; Soliman, T.N.; Darwish, A.M.G. Evaluation of Date Palm Pollen (Phoenix dactylifera L.) Encapsulation, Impact on the Nutritional and Functional Properties of Fortified Yoghurt. PLoS ONE 2019, 14, e0222789. [Google Scholar] [CrossRef]
- Hassan, H.M.M. Chemical Composition and Nutritional Value of Palm Pollen Grains. Glob. J. Biotech. Biochem. 2011, 6, 1–7. [Google Scholar]
- Salhi, S.; Chentouf, M.; Harrak, H.; Rahim, A.; Çakir, C.; Çam, D.; Öztürk, M.; Hamidallah, N.; Cabaraux, J.F.; El Amiri, B. Assessment of Physicochemical Parameters, Bioactive Compounds, Biological Activities, and Nutritional Value of the Most Two Commercialized Pollen Types of Date Palm (Phoenix dactylifera L.) in Morocco. Food Sci. Technol. Int. 2023; online ahead of print. [Google Scholar] [CrossRef]
- Salomón-Torres, R.; Krueger, R.; García-Vázquez, J.P.; Villa-Angulo, R.; Villa-Angulo, C.; Ortiz-Uribe, N.; Sol-Uribe, J.A.; Samaniego-Sandoval, L. Date Palm Pollen: Features, Production, Extraction and Pollination Methods. Agronomy 2021, 11, 504. [Google Scholar] [CrossRef]
- Bishr, M.; Desoukey, S.Y. Comparative Study of the Nutritional Value of Four Types of Egyptian Palm Pollens. J. Pharm. Nutr. Sci. 2012, 2, 50–56. [Google Scholar] [CrossRef]
- Ahmed, W.; Feyissa, T.; Tesfaye, K.; Farrakh, S. Genetic Diversity and Population Structure of Date Palms (Phoenix dactylifera L.) in Ethiopia Using Microsatellite Markers. J. Genet. Eng. Biotechnol. 2021, 19, 64. [Google Scholar] [CrossRef] [PubMed]
- Tengberg, M. Beginnings and Early History of Date Palm Garden Cultivation in the Middle East. J. Arid. Environ. 2012, 86, 139–147. [Google Scholar] [CrossRef]
- Ghazzawy, H.S.; Gouda, M.M.; Awad, N.S.; Al-Harbi, N.A.; Alqahtani, M.M.; Abdel-Salam, M.M.; Abdein, M.A.; Al-Sobeai, S.M.; Hamad, A.A.; Alsberi, H.M. Potential Bioactivity of Phoenix dactylifera Fruits, Leaves, and Seeds against Prostate and Pancreatic Cancer Cells. Front. Nutr. 2022, 9, 998929. [Google Scholar] [CrossRef] [PubMed]
- Mehanny, S.; Ibrahim, H.; Darwish, L.; Farag, M.; El-Habbak, A.H.; El-Kashif, E. Effect of Environmental Conditions on Date Palm Fiber Composites. In Date Palm Fiber Composites; Composites Science and Technology; Springer: Berlin/Heidelberg, Germany, 2020; pp. 287–320. ISBN 9789811593383. [Google Scholar]
- INRA Atlas du Palmier Dattier au Maroc; INRA: Paris, France, 2011.
- Eid, N.; Enani, S.; Walton, G.; Corona, G.; Costabile, A.; Gibson, G.; Rowland, I.; Spencer, J.P.E. The Impact of Date Palm Fruits and Their Component Polyphenols, on Gut Microbial Ecology, Bacterial Metabolites and Colon Cancer Cell Proliferation. J. Nutr. Sci. 2014, 3, e46. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.I.; Farooq, M.; Syed, Q.A. Nutritional and Biological Characteristics of the Date Palm Fruit (Phoenix dactylifera L.)—A Review. Food Biosci. 2020, 34, 100509. [Google Scholar] [CrossRef]
- Midani, M.; Elseify, L.A.; Hamouda, T.; Hassanin, A.H. Chapter 15—Comparison of Coconut Coir and Date Palm Coir (Sheath Fiber) and Their Composites. In Coir Fiber and Its Composites; Jawaid, M., Ed.; Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing: Cambridge, UK, 2022; pp. 331–345. ISBN 978-0-443-15186-6. [Google Scholar]
- Ghnimi, S.; Umer, S.; Karim, A.; Kamal-Eldin, A. Date Fruit (Phoenix dactylifera L.): An Underutilized Food Seeking Industrial Valorization. NFS J. 2017, 6, 1–10. [Google Scholar] [CrossRef]
- Sedra, M. Date Palm Status and Perspective in Morocco. In Date Palm Genetic Resources and Utilization: Volume 1: Africa and the Americas; Springer: Dordrecht, The Netherlands, 2015; pp. 257–323. [Google Scholar] [CrossRef]
- Abdel-Shaheed, M.; Abdalla, E.; Khalil, A.; El-Hadidy, E. Effect of Egyptian Date Palm Pollen (Phoenix dactylifera L.) and Its Hydroethanolic Extracts on Serum Glucose and Lipid Profiles in Induced Diabetic Rats. Food Nutr. Sci. 2021, 12, 147–161. [Google Scholar]
- Loripoor, M.; Esmaeili, F.; Vazirinejad, R.; Dan, S. The Effect of Palm Pollen Extract on Sexual Disorders in Postmenopausal Women: A Randomized Clinical Trial. Int. J. Community Based Nurs. Midwifery 2023, 11, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Bahmanpour, S.; Panjeh, S.M.; Talaei, T.; Vojdani, Z.; Poust, P.A.; Zareei, S.; Ghaemian, M. Effect of Phoenix dactylifera Pollen on Sperm Parameters and Reproductive System of Adult Male Rats. Iran. J. Med. Sci. 2006, 31, 208–212. [Google Scholar]
- Metwaly, M.; Dkhil, M.; Al-Quraishy, S. Anti-Coccidial and Anti-Apoptotic Activities of Palm Pollen Grains on Eimeria Papillata-Induced Infection in Mice. Biologia 2014, 69, 254–259. [Google Scholar] [CrossRef]
- Nasser, R.A.; Salem, M.Z.M.; Hiziroglu, S.; Al-Mefarrej, H.A.; Mohareb, A.S.; Alam, M.; Aref, I.M. Chemical Analysis of Different Parts of Date Palm (Phoenix dactylifera L.) Using Ultimate, Proximate and Thermo-Gravimetric Techniques for Energy Production. Energies 2016, 9, 374. [Google Scholar] [CrossRef]
- García-González, C.; Salomón-Torres, R.; Montero-Alpírez, G.; Chávez-Velasco, D.; Ortiz-Uribe, N.; Ruiz-Ortiz, N.S.; Coronado-Ortega, M.A.; Curiel-Alvarez, M.A. Effect of Pollen Sources on Yield Oil Extraction and Fatty Acid Profile of the Date Seed (Phoenix dactylifera L.) Cultivar Medjool from Mexico. Grasas Y Aceites 2019, 70, e315. [Google Scholar] [CrossRef]
- Beroual, M.; Trache, D.; Mehelli, O.; Boumaza, L.; Tarchoun, A.F.; Derradji, M.; Khimeche, K. Effect of the Delignification Process on the Physicochemical Properties and Thermal Stability of Microcrystalline Cellulose Extracted from Date Palm Fronds. Waste Biomass Valorization 2021, 12, 2779–2793. [Google Scholar] [CrossRef]
- Al-Abbasi, H.H.; Mahdi, A.S.; Washam, A.F.; Al-Wazeer, A.A. Role of Date Palm Pollen on Heifer’s Puberty and Maturity in Iraq. Arch. Razi Inst. 2023, 78, 241–247. [Google Scholar] [CrossRef]
- Ramaroson, M.L.; Koutouan, C.; Helesbeux, J.J.; Le Clerc, V.; Hamama, L.; Geoffriau, E.; Briard, M. Role of Phenylpropanoids and Flavonoids in Plant Resistance to Pests and Diseases. Molecules 2022, 27, 8371. [Google Scholar] [CrossRef] [PubMed]
- Ozyigit, I.I.; Dogan, I.; Hocaoglu-Ozyigit, A.; Yalcin, B.; Erdogan, A.; Yalcin, I.E.; Cabi, E.; Kaya, Y. Production of Secondary Metabolites Using Tissue Culture-Based Biotechnological Applications. Front. Plant Sci. 2023, 14, 1132555. [Google Scholar] [CrossRef]
- Echegaray, N.; Pateiro, M.; Gullon, B.; Amarowicz, R.; Misihairabgwi, J.M.; Lorenzo, J.M. Phoenix dactylifera Products in Human Health—A Review. Trends Food Sci. Technol. 2020, 105, 238–250. [Google Scholar] [CrossRef]
- Sebii, H.; Karra, S.; Bchir, B.; Ghribi, A.M.; Danthine, S.M.; Blecker, C.; Attia, H.; Besbes, S. Physico-Chemical, Surface and Thermal Properties of Date Palm Pollen as a Novel Nutritive Ingredient. Adv. Food Technol. Nutr. Sci. Open J. 2019, 5, 84–91. [Google Scholar] [CrossRef]
- Basuny, A.M.M.; Arafat, S.; Soliman, H. Chemical Analysis of Olive and Palm Pollen: Antioxidant and Antimicrobial Activation Properties. Wudpecker J. Food Technol. 2013, 1, 14–21. [Google Scholar]
- Al-Samarai, A.H.; Al-Salihi, F.G.; Al-Samarai, R.R. Phytochemical Constituents and Nutrient Evaluation of Date Palm (Phoenix dactylifera, L.) Pollen Grains. Tikrit J. Pure Sci. 2018, 21, 56–62. [Google Scholar] [CrossRef]
- Ibrahim, F.Y.; Khalil, M.M.; Nezam EL Din, A.A.M.M.; Atieya, K.M. Studies on Biological Effect of Some Selected Foods (Un-Pollinated Siwi Date, Date Palm Pollen and Doum Fruit). J. Food Dairy Sci. 2017, 8, 461–468. [Google Scholar] [CrossRef]
- Alanber, L. Estimation of The Content of Lipids And Fatty Acids in Pollen of Phoenixdactylifera (Date Palm) from Basrah, Iraq. Rev. Boliv. De Química 2017, 34, 9–13. [Google Scholar]
- Abed El Azim, M.H.M. Identification Phenolic and Biological Activities of Methanolic Extract of Date Palm Pollen (Phoenix dactylifera). J. Microb. Biochem. Technol. 2015, 7, 47–50. [Google Scholar] [CrossRef]
- Waly, M.I. Health Benefits and Nutritional Aspects of Date Palm Pollen. Can. J. Clin. Nutr. 2020, 8, 1–3. [Google Scholar] [CrossRef]
- Grzesik, M.; Naparło, K.; Bartosz, G.; Sadowska-Bartosz, I. Antioxidant Properties of Catechins: Comparison with Other Antioxidants. Food Chem. 2018, 241, 480–492. [Google Scholar] [CrossRef]
- Daoud, A.; Malika, D.; Bakari, S.; Hfaiedh, N.; Mnafgui, K.; Kadri, A.; Gharsallah, N. Assessment of Polyphenol Composition, Antioxidant and Antimicrobial Properties of Various Extracts of Date Palm Pollen (DPP) from Two Tunisian Cultivars. Arab. J. Chem. 2019, 12, 3075–3086. [Google Scholar] [CrossRef]
- Abedi, A.; Karimian, S.M.; Roudsari, H.R.S. The Effect of Aqueous Extract of Phoenix dactylifera Pollen Grain on Sexual Behavior of Male Rats. J. Physiol. Pharmacol. Adv. 2012, 2, 235–242. [Google Scholar]
- Mohamed, N.A.; Ahmed, O.M.; Hozayen, W.G.; Ahmed, M.A. Ameliorative Effects of Bee Pollen and Date Palm Pollen on the Glycemic State and Male Sexual Dysfunctions in Streptozotocin-Induced Diabetic Wistar Rats. Biomed. Pharmacother. 2018, 97, 9–18. [Google Scholar] [CrossRef]
- El-Kashlan, A.M.; Nooh, M.M.; Hassan, W.A.; Rizk, S.M. Therapeutic Potential of Date Palm Pollen for Testicular Dysfunction Induced by Thyroid Disorders in Male Rats. PLoS ONE 2015, 10, e0139493. [Google Scholar] [CrossRef]
- Falahati, A.M.; Fallahi, S.; Allamehzadeh, Z.; Izadi Raieni, M.; Malekzadeh, K. Effects of Date Palm Pollen Supplementations on The Expression of PRDX1 and PRDX6 Genes in Infertile Men: A Controlled Clinical Trial. Int. J. Fertil. Steril. 2023, 17, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Mehraban, F.; Jafari, M.; Toori, M.A.; Sadeghi, H.; Joodi, B.; Mostafazade, M.; Sadeghi, H. Effects of Date Palm Pollen (Phoenix dactylifera L.) and Astragalus Ovinus on Sperm Parameters and Sex Hormones in Adult Male Rats. Iran. J. Reprod. Med. 2014, 12, 705. [Google Scholar] [PubMed]
- Karimi, F.Z.; Salehian, M.; Hosseini, H.; Norouzi, Z.; Afiat, M. The Effect of the Medicinal Plants on Sexual Function in Postmenopausal Women in Iran: A Systematic Review of Clinical Trials. J. Sabzevar Univ. Med. Sci. 2023, 30, 144–162. [Google Scholar]
- Jenkinson, C.; Petroczi, A.; Naughton, D.P. Red Wine and Component Flavonoids Inhibit UGT2B17 in Vitro. Nutr. J. 2012, 11, 67. [Google Scholar] [CrossRef] [PubMed]
- Ly, C.; Yockell-Lelievre, J.; Ferraro, Z.M.; Arnason, J.T.; Ferrier, J.; Gruslin, A. The Effects of Dietary Polyphenols on Reproductive Health and Early Development. Hum. Reprod. Update 2015, 21, 228–248. [Google Scholar] [CrossRef]
- Kruk, J.; Aboul-Enein, B.H.; Duchnik, E.; Marchlewicz, M. Antioxidative Properties of Phenolic Compounds and Their Effect on Oxidative Stress Induced by Severe Physical Exercise. J. Physiol. Sci. 2022, 72, 19. [Google Scholar] [CrossRef] [PubMed]
- Galleano, M.; Pechanova, O.; Fraga, C.G. Hypertension, Nitric Oxide, Oxidants, and Dietary Plant Polyphenols. Curr. Pharm. Biotechnol. 2010, 11, 837–848. [Google Scholar] [CrossRef] [PubMed]
- Fraga, C.G.; Galleano, M.; Verstraeten, S.V.; Oteiza, P.I. Basic Biochemical Mechanisms behind the Health Benefits of Polyphenols. Mol. Asp. Med. 2010, 31, 435–445. [Google Scholar] [CrossRef]
- Yang, S.Y.; Pyo, M.C.; Nam, M.H.; Lee, K.W. ERK/Nrf2 Pathway Activation by Caffeic Acid in HepG2 Cells Alleviates Its Hepatocellular Damage Caused by t-Butylhydroperoxide-Induced Oxidative Stress. BMC Complement. Altern. Med. 2019, 19, 139. [Google Scholar] [CrossRef]
- Benouamane, O.; Vergara-Barberan, M.; Benaziza, A.; Garcia-Alvarez-Coque, M.C.; Simó-Alfonso, E.; China, B.; Lerma-Garcia, M.J. Characterization of Different Cultivars of Algerian Date Palm (Phoenix dactylifera L.) Leaves and Pollen by Comprehensive Two-Dimensional Liquid Chromatography of Phenolic Compounds Extracted with Different Solvents. Microchem. J. 2022, 182, 107874. [Google Scholar] [CrossRef]
- Abdallah, W.E.; Awad, H.M.; AbdelMohsen, M.M. Phytochemical Composition, Antioxidant and Antitumor Activities of Some Date Palm Pollen Extracts. Egypt. J. Chem. 2023, 66, 425–434. [Google Scholar] [CrossRef]
- Abou Zeid, H.M.; Shiha, M.A.; Shehata, A.A. Comparative Study of Pollen Grains Morphology and Phytochemical Constituents of Some Saudi Arabian Date Palm (Phoenix dactylifera L.) Cultivars. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2800–2809. [Google Scholar] [CrossRef]
- Hassan, A.; El Wafa, M.H.A. An Œstrogenic Substance in Pollen-Grains of Date Palm Tree Phœnix dactylifera L., Palmæ. Nature 1947, 159, 409–410. [Google Scholar] [CrossRef]
- Soliman, F.A.; Soliman, L. The Gonadotrophic Activity of Date Palm Pollen Grains. Experientia 1957, 13, 411–412. [Google Scholar] [CrossRef]
- El-Ridi, M.S.; El Mofty, A.; Khalifa, K.; Soliman, L. Gonadotrophs Hormones in Pollen Grains of the Date Palm. Z. Naturforschung B 1960, 15, 45–49. [Google Scholar] [CrossRef]
- Otify, A.M.; Hammam, A.M.M.; Aly Farag, M. Phoenix dactylifera L. Date Tree Pollen Fertility Effects on Female Rats in Relation to Its UPLC-MS Profile via a Biochemometric Approach. Steroids 2021, 173, 108888. [Google Scholar] [CrossRef]
- Mahran, G.H.; Abdel–Wahab, S.M.; Attia, A.M. A Phytochemical Study of Date Palm Pollen. Planta Med. 1976, 29, 171–175. [Google Scholar] [CrossRef]
- Bacha, M.A.; Ali, M.A.; Farahat, F.A. Chemical Composition of Pollen Grains of Some Date Palm Males Grown in Riyadh, Saudi Arabia. Arab. Gulf J. Sci. Res. 1997, 15, 783–803. [Google Scholar]
- Shahin, F.M. Utilization of Date Palm Pollen as Natural Source for Producing Function Bakery Product. Egypt. J. Agric. Res. 2014, 92, 1457–1470. [Google Scholar] [CrossRef]
- Saleh, M.; Kokoszyński, D.; Mousa, M.A.A.; Abuoghaba, A.A.K. Effect of Date Palm Pollen Supplementation on the Egg Production, Ovarian Follicles Development, Hematological Variables and Hormonal Profile of Laying Hens. Animals 2021, 11, 69. [Google Scholar] [CrossRef]
- Chaira, N.; Mrabet, A.; Ferchichi, A.L.I. Evaluation of Antioxidant Activity, Phenolics, Sugar and Mineral Contents in Date Palm Fruits. J. Food Biochem. 2009, 33, 390–403. [Google Scholar] [CrossRef]
- Idowu, A.T.; Igiehon, O.O.; Adekoya, A.E.; Idowu, S. Dates Palm Fruits: A Review of Their Nutritional Components, Bioactivities and Functional Food Applications. AIMS Agric. Food. 2020, 5, 734–755. [Google Scholar] [CrossRef]
- Handgraaf, S.; Philippe, J. The Role of Sexual Hormones on the Enteroinsular Axis. Endocr. Rev. 2019, 40, 1152–1162. [Google Scholar] [CrossRef]
- Bikle, D.D. The Free Hormone Hypothesis: When, Why, and How to Measure the Free Hormone Levels to Assess Vitamin D, Thyroid, Sex Hormone, and Cortisol Status. JMBR Plus 2021, 5, e10418. [Google Scholar] [CrossRef]
- Hansberg-Pastor, V.; González-Arenas, A.; Piña-Medina, A.G.; Camacho-Arroyo, I. Sex Hormones Regulate Cytoskeletal Proteins Involved in Brain Plasticity. Front. Psychiatry 2015, 6, 165. [Google Scholar] [CrossRef]
- Lynch, S.; Boyett, J.E.; Smith, M.R.; Giordano-Mooga, S. Sex Hormone Regulation of Proteins Modulating Mitochondrial Metabolism, Dynamics and Inter-Organellar Cross Talk in Cardiovascular Disease. Front. Cell Dev. Biol. 2021, 8, 610516. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, L.; Gao, A.; Khawar, M.B.; Gao, F.; Li, W. Food-Derived High Arginine Peptides Promote Spermatogenesis Recovery in Busulfan Treated Mice. Front. Cell Dev. Biol. 2021, 9, 791471. [Google Scholar] [CrossRef]
- Chen, J.Q.; Li, Y.S.; Li, Z.J.; Lu, H.X.; Zhu, P.Q.; Li, C.M. Dietary L-Arginine Supplementation Improves Semen Quality and Libido of Boars under High Ambient Temperature. Animal 2018, 12, 1611–1620. [Google Scholar] [CrossRef]
- De Luca, M.N.; Colone, M.; Gambioli, R.; Stringaro, A.; Unfer, V. Oxidative Stress and Male Fertility: Role of Antioxidants and Inositols. Antioxidants 2021, 10, 1283. [Google Scholar] [CrossRef] [PubMed]
- Aly, H.S.H. Evaluation of Pollen Grains Germination, Viability and Chemical Composition of Some Date Palm Males. Middle East. J. Agric. Res. 2018, 7, 235–247. [Google Scholar]
- Abdallah, E.M. Preliminary Screening for Antibacterial Properties of the Male Flowers of Phoenix dactylifera. South Asian J. Res. Microbiol. 2019, 3, 1–6. [Google Scholar] [CrossRef]
- Ma, X.; Wu, L.; Wang, Y.; Han, S.; El-Dalatony, M.M.; Feng, F.; Tao, Z.; Yu, L.; Wang, Y. Diet and Human Reproductive System: Insight of Omics Approaches. Food Sci. Nutr. 2022, 10, 1368–1384. [Google Scholar] [CrossRef]
- Collodel, G.; Castellini, C.; Lee, J.C.-Y.; Signorini, C. Relevance of Fatty Acids to Sperm Maturation and Quality. Oxid. Med. Cell. Longev. 2020, 2020, e7038124. [Google Scholar] [CrossRef]
- El-Yazal, S.A.S.; El-Yazal, M.A.S. Determination of Five Mineral Element Contents in Pollen Grains of Different Seedling Date Palm (Phoenix dactylifera L.) Male Trees Grown in Fayoum Governorate, Egypt. J. Hortic. Plant Res. 2019, 7, 16–25. [Google Scholar] [CrossRef]
- Fallah, A.; Mohammad-Hasani, A.; Colagar, A.H. Zinc Is an Essential Element for Male Fertility: A Review of Zn Roles in Men’s Health, Germination, Sperm Quality, and Fertilization. J. Reprod. Infertil. 2018, 19, 69–81. [Google Scholar]
- Garner, T.B.; Hester, J.M.; Carothers, A.; Diaz, F.J. Role of Zinc in Female Reproduction. Biol. Reprod. 2021, 104, 976–994. [Google Scholar] [CrossRef]
- Omu, A.E.; Al-Bader, A.A.; Dashti, H.; Oriowo, M.A. Magnesium in Human Semen: Possible Role in Premature Ejaculation. Arch. Androl. 2001, 46, 59–66. [Google Scholar] [CrossRef]
- Hull, E.M.; Dominguez, J.M. Male Sexual Behavior. In Hormones, Brain and Behavior; Elsevier: Amsterdam, The Netherlands, 2002; Volume 1, pp. 3–137. [Google Scholar]
- Souza, I.L.L.D.; Ferreira, E.D.S.; Vasconcelos, L.H.C.; Cavalcante, F.D.A.; Silva, B.A.D. Erectile Dysfunction: Key Role of Cavernous Smooth Muscle Cells. Front. Pharmacol. 2022, 13, 895044. [Google Scholar] [CrossRef]
- Hirota, K. An Intimate Crosstalk between Iron Homeostasis and Oxygen Metabolism Regulated by the Hypoxia-Inducible Factors (HIFs). Free Radic. Biol. Med. 2019, 133, 118–129. [Google Scholar] [CrossRef]
- Clagett-Dame, M.; Knutson, D. Vitamin A in Reproduction and Development. Nutrients 2011, 3, 385–428. [Google Scholar] [CrossRef]
- Mohd Mutalip, S.S.; Ab-Rahim, S.; Rajikin, M.H. Vitamin E as an Antioxidant in Female Reproductive Health. Antioxidants 2018, 7, 22. [Google Scholar] [CrossRef]
- Vašková, J.; Klepcová, Z.; Špaková, I.; Urdzík, P.; Štofilová, J.; Bertková, I.; Kl’oc, M.; Rabajdová, M. The Importance of Natural Antioxidants in Female Reproduction. Antioxidants 2023, 12, 907. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Mirsalehian, A.; Bahador, A. Prevalence of Urogenital Mycoplasmas in Iran and Their Effects on Fertility Potential: A Systematic Review and Meta-Analysis. Iran. J. Public. Health 2016, 45, 409–422. [Google Scholar]
- Kroyer, G.; Hegedus, N. Evaluation of Bioactive Properties of Pollen Extracts as Functional Dietary Food Supplement. Innov. Food Sci. Emerg. Technol. 2001, 2, 171–174. [Google Scholar] [CrossRef]
- Stanley, R.G.; Linskens, H.F. Pollen: Biology Biochemistry Management; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1974. [Google Scholar]
- Binding, G.P. About Pollen; Springer: London, UK, 1971. [Google Scholar]
- Selmani, C.; Chabane, D.; Bouguedoura, N. Ethnobotanical Survey of Phoenix dactylifera L. Pollen Used for the Treatment of Infertility Problems in Algerian Oases. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 175–186. [Google Scholar] [CrossRef]
- Guerradi, M.; Outlioua, K.; Hamdouni, N. Rôle de La Femme Dans La Gestion de La Diversité Génétique Du Palmier Dattier Dans Les Oasis Du Maghreb. Rev. Régions Arid. Numéro Spécial 2004, 869–873. [Google Scholar]
- El-Wahed, A.; Mahfouz, R.; Nasr, A.A.A. Effects of Date Palm Pollen on Women with the Polycystic Ovarian Syndrome. Egypt. J. Hosp. Med. 2022, 89, 4622–4625. [Google Scholar] [CrossRef]
- Jahromi, A.R.; Mosallanezhad, Z.; Hosini, F.S.; Jamali, S.; Sharifi, N. The Effect of Date Palm on Sexual Function in Infertile Couples: A Double-Blind Controlled Clinical Trial. BMC Res. Notes 2022, 15, 55. [Google Scholar] [CrossRef]
- Mirzaei, M.; Namiranian, N.; Bagheri-Fahraji, B.; Gholami, S. Infertility and Physical Activity: A Cross-Sectional Study of Women Living in Yazd Aged 20–49 Yr, 2014–2015. Int. J. Reprod Biomed. 2020, 18, 795. [Google Scholar] [CrossRef]
- Punab, M.; Poolamets, O.; Paju, P.; Vihljajev, V.; Pomm, K.; Ladva, R.; Korrovits, P.; Laan, M. Causes of Male Infertility: A 9-Year Prospective Monocentre Study on 1737 Patients with Reduced Total Sperm Counts. Hum. Reprod. 2017, 32, 18–31. [Google Scholar] [CrossRef]
- Iftikhar, S.; Bashir, A.; Anwar, M.S.; Mastoi, S.M.; Shahzad, M. Effect of Date Palm Pollen (DPP) on Serum Testosterone Levels in Prepubertal Albino Rats. Pak. J. Med. Health Sci. 2011, 5, 639–644. [Google Scholar]
- Durairajanayagam, D. Lifestyle Causes of Male Infertility. Arab. J. Urol. 2019, 16, 10–20. [Google Scholar] [CrossRef]
- Sengupta, P.; Nwagha, U.; Dutta, S.; Krajewska-Kulak, E.; Izuka, E. Evidence for Decreasing Sperm Count in African Population from 1965 to 2015. Afr. Health Sci. 2017, 17, 418–427. [Google Scholar] [CrossRef]
- Ugwuja, E.I.; Ugwu, N.C.; Ejikeme, B.N. Prevalence of Low Sperm Count and Abnormal Semen Parameters in Male Partners of Women Consulting at Infertility Clinic in Abakaliki, Nigeria. Afr. J. Reprod. Health 2008, 12, 67–73. [Google Scholar]
- Rösing, D.; Klebingat, K.J.; Berberich, H.J.; Bosinski, H.A.G.; Loewit, K.; Beier, K.M. Male Sexual Dysfunction: Diagnosis and Treatment from a Sexological and Interdisciplinary Perspective. Dtsch. Arztebl. Int. 2009, 106, 821–828. [Google Scholar] [CrossRef]
- Spasovska Trajanovska, A.; Vujovic, V.; Ignjatova, L.; Janikevik Ivanovska, D.; Chibishev, A. Sexual Dysfunction as a Side Effect of Hyperprolactinemia in Methadone Maintenance Therapy. Med. Arh. 2013, 67, 48–50. [Google Scholar] [CrossRef]
- Gerra, G.; Manfredini, M.; Somaini, L.; Maremmani, I.; Leonardi, C.; Donnini, C. Sexual Dysfunction in Men Receiving Methadone Maintenance Treatment: Clinical History and Psychobiological Correlates. Eur. Addict. Res. 2016, 22, 163–175. [Google Scholar] [CrossRef]
- Ujah, G.A.; Nna, V.U.; Agah, M.I.; Omue, L.O.; Leku, C.B.; Osim, E.E. Effect of Quercetin on Cadmium Chloride-Induced Impairments in Sexual Behaviour and Steroidogenesis in Male Wistar Rats. Andrologia 2018, 50, e12866. [Google Scholar] [CrossRef]
- Chen, L.; Shi, G.; Huang, D.; Li, Y.; Ma, C.; Shi, M.; Su, B.; Shi, G. Male Sexual Dysfunction: A Review of Literature on Its Pathological Mechanisms, Potential Risk Factors, and Herbal Drug Intervention. Biomed. Pharmacother. 2019, 112, 108585. [Google Scholar] [CrossRef]
- Weinberg, A.E.; Eisenberg, M.; Patel, C.J.; Chertow, G.M.; Leppert, J.T. Diabetes Severity, Metabolic Syndrome, and the Risk of Erectile Dysfunction. J. Sex. Med. 2013, 10, 3102–3109. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; An, P.; Wang, H.; Wang, X.; Shen, X.; Li, X.; Min, J.; Liu, S.; Wang, F. Dietary Intake of Heme Iron and Risk of Cardiovascular Disease: A Dose–Response Meta-Analysis of Prospective Cohort Studies. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 24–35. [Google Scholar] [CrossRef]
- Yasir, A.; Nasir, M.; Munazza, A.; Muhammad, T.; Fan, Z.; Di-Jie, L.; Chen, Z.; Chong, Y.; Peng, S.; Ai-Rong, Q. Effect of Date Palm Pollen on Serum Testosterone and Intra-Testicular Environment in Male Albino Rats. Afr. J. Pharm. Pharmacol. 2014, 8, 793–800. [Google Scholar] [CrossRef]
- Yosefzadeh, S.; Sadeghi, S.; Rakhshandeh, H.; Dadghar, S.; Mazloum, S.R. The Effect of Date Palm Pollen Capsule on Orgasm and Sexual Satisfaction in Menopausal Women: A Double-Blind Controlled Clinical Trial. Iran. J. Obstet. Gynecol. Infertil. 2017, 20, 43–51. [Google Scholar] [CrossRef]
- Salmani, R.; Nasiri, K.; Javadzadeh, Y.; Salmani, R.; Clark, C.C.T.; Aghamohammadi, V. Effect of Date Palm Pollen Supplementation on Female Sexual Function in Non-Menopausal Women: A Double Blind Randomized Clinical Trial. Chin. Herb. Med. 2022, 14, 643–648. [Google Scholar] [CrossRef]
- Al-Sanafi, A.E.; Bahaaldean, E.F.; Marbeem, M.I.; Marbut, M.M. The Effect of Date Palm Pollen & Zinc Sulphate in the Treatment of Human Male Infertility. Tikrit J. Pure Sci. 2023, 2, 31–34. [Google Scholar] [CrossRef]
- Marbeen, M.I.; Al-Snafi, A.E.; Marbut, M.M.; Allahwerdy, I.Y. The Probable Therapeutic Effects of Date Palm Pollen in the Treatment of Male Infertility. Tikrit J. Pure Sci. 2005, 1, 30–35. [Google Scholar] [CrossRef]
- Hooshang, H.; Farahani, A.V.; Rezaeizadeh, H.; Forouzannia, S.K.; Alaeddini, F.; Ashraf, H.; Karimi, M. Efficacy of Date Palm Pollen in the Male Sexual Dysfunction after Coronary Artery Bypass Graft: A Randomized, Double-Blind, Clinical Trial. Evid. Based Complement. Altern. Med. 2022, 2022, 5032681. [Google Scholar] [CrossRef]
- Sullivan, M.E.; Thompson, C.S.; Dashwood, M.R.; Khan, M.A.; Jeremy, J.Y.; Morgan, R.J.; Mikhailidis, D.P. Nitric Oxide and Penile Erection: Is Erectile Dysfunction Another Manifestation of Vascular Disease? Cardiovasc. Res. 1999, 43, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Ferlin, A.; Foresta, C. New Genetic Markers for Male Infertility. Curr. Opin. Gynecol. Obstet. 2014, 26, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Abedi, A.; Karimian, S.M.; Parviz, M.; Mohammadi, P.; Roudsari, H.R.S. Effect of Aqueous Extract of Phoenix dactylifera Pollen on Dopamine System of Nucleus Accumbens in Male Rats. Neurosci. J. 2014, 5, 49–59. [Google Scholar] [CrossRef]
- Omojokun, O.S.; Famurewa, A.J.; Jaiyeoba, O.A.; Oboh, G.; Agbebi, O.J. Alkaloid Extracts from Bitter Leaf (Vernonia amygdalina) and Black Nightshade (Solanum nigrum) Inhibit Phosphodiesterase-5, Arginase Activities and Oxidative Stress in Rats Penile Tissue. J. Food Biochem. 2019, 43, e12889. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, A.K. Impact of Environmental Factors on Human Semen Quality and Male Fertility: A Narrative Review. Environ. Sci. Eur. 2022, 34, 6. [Google Scholar] [CrossRef]
- Fainberg, J.; Kashanian, J.A. Recent Advances in Understanding and Managing Male Infertility. F1000Research 2019, 8, 670. [Google Scholar] [CrossRef] [PubMed]
- Rasekh, A.; Jashni, H.K.; Rahmanian, K.; Jahromi, A.S. Effect of Palm Pollen on Sperm Parameters of Infertile Man. Pak. J. Biol. Sci. 2015, 18, 196–199. [Google Scholar] [CrossRef]
- Karimi, M.; Asbagh, F.A.; Rahimi, R.; Safavi, M.; Pourmand, G.; Hoseini, F.S.; Mirzaei, M. Improvement of Semen Parameters in a Man With Idiopathic Severe Oligoasthenoteratozoospermia Using Date Palm Pollen (Phoenix dactylifera L.) Based on Iranian Traditional Medicine: A Case Report. Iran. Red. Crescent Med. J. 2018, 20, e62969. [Google Scholar] [CrossRef]
- Saibabu, V.; Fatima, Z.; Khan, L.A.; Hameed, S. Therapeutic Potential of Dietary Phenolic Acids. Adv. Pharmacol. Pharm. Sci. 2015, 2015, e823539. [Google Scholar] [CrossRef]
- Alahyane, A.; Harrak, H.; Ayour, J.; Elateri, I.; Ait-Oubahou, A.; Benichou, M. Bioactive Compounds and Antioxidant Activity of Seventeen Moroccan Date Varieties and Clones (Phoenix dactylifera L.). S. Afr. J. Bot. 2018, 121, 402–409. [Google Scholar] [CrossRef]
- Abdelkhalek, F.; Said, M.; El Nabtity, S.; Darwish, W. Nutritive Value, and Pharmacological Effects of Dates (Phoenix dactylifera L.): A Mini Review. Zag. Vet. J. 2022, 50, 73–86. [Google Scholar] [CrossRef]
- Miyamoto, N.; Izumi, H.; Miyamoto, R.; Kondo, H.; Tawara, A.; Sasaguri, Y.; Kohno, K. Quercetin Induces the Expression of Peroxiredoxins 3 and 5 via the Nrf2/NRF1 Transcription Pathway. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1055–1063. [Google Scholar] [CrossRef]
- Fallahi, S.; Rajaei, M.; Hesam, M.J.; Koolivand, M.; Malekzadeh, K. The Effect of Phoenix dactylifera Pollen on the Expression of NRF2, SOD2, CAT, and GPX4 Genes, and Sperm Parameters of Fertile and Infertile Men: A Controlled Clinical Trial. Int. J. Reprod. Biomed. 2021, 19, 545–558. [Google Scholar] [CrossRef]
- El-Neweshy, M.S.; El-Maddawy, Z.K.; El-Sayed, Y.S. Therapeutic Effects of Date Palm (Phoenix dactylifera L.) Pollen Extract on Cadmium-Induced Testicular Toxicity. Andrologia 2013, 45, 369–378. [Google Scholar] [CrossRef]
- Johnson, F.C.; Sinclair, H.M. The Antioxidant Vitamins. Crit. Rev. Food Sci. Nutr. 1979, 11, 217–309. [Google Scholar] [CrossRef]
- Yoganathan, T.; Eskild, W.; Hansson, V. Investigation of Detoxification Capacity of Rat Testicular Germ Cells and Sertoli Cells. Free Radic. Biol. Med. 1989, 7, 355–359. [Google Scholar] [CrossRef]
- Paolicchi, A.; Pezzini, A.; Saviozzi, M.; Piaggi, S.; Andreuccetti, M.; Chieli, E.; Malvaldi, G.; Casini, A.F. Localization of a GSH-Dependent Dehydroascorbate Reductase in Rat Tissues and Subcellular Fractions. Arch. Biochem. Biophys. 1996, 333, 489–495. [Google Scholar] [CrossRef]
- Di Guardo, F.; Vloeberghs, V.; Bardhi, E.; Blockeel, C.; Verheyen, G.; Tournaye, H.; Drakopoulos, P. Low Testosterone and Semen Parameters in Male Partners of Infertile Couples Undergoing Ivf with a Total Sperm Count Greater than 5 Million. J. Clin. Med. 2020, 9, 3824. [Google Scholar] [CrossRef]
- Hosseini, S.E.; Mehrabani, D.; Razavi, F. Effect of Palm Pollen Extract on Sexual Hormone Levels and Follicle Numbers in Adult Female BALB/c Mice. Intern. Med. Today 2014, 20, 139–143. [Google Scholar]
- Hammed, M.S.; Arrak, J.K.; Al-Khafaji, N.J.; Hassan, A.A. Effect of Date Palm Pollen Suspension on Ovarian Function and Fertility in Adult Female Rats Exposed to Lead Acetate. Diyala J. Med. 2012, 3, 90–96. [Google Scholar]
- Jiheel, M.J.; Arrak, J.K. Effect of Different Doses of Ethanolic Extract of Date Palm Pollen Grains on Serum Gonadotropin and Total Glutathione in Mature Female Rats. Kufa J. For. Vet. Med. Sci. 2015, 6, 109–119. [Google Scholar] [CrossRef]
- Sadeghi, S.; Yosefzadeh, S.; Rakhshandeh, H.; Dadghar, S.; Mazloum, S.R. The Impact of Date Palm Pollen Capsule on Vaginal Iubrication and Dyspareunia In Menopausal Woman. J. Kebidanan 2018, 6, 1399. [Google Scholar]
- Abdel-Sattar, M.; Mohamed, Y.I. Pollen Viability of Date Palm from Different Sources in Relation to Its Chemical Composition. Alex. J. Agric. Sci. 2017, 62, 149–155. [Google Scholar]
- Ito, T.Y.; Trant, A.S.; Polan, M.L. A Double-Blind Placebo-Controlled Study of ArginMax, a Nutritional Supplement for Enhancement of Female Sexual Function. J. Sex Marital Ther. 2001, 27, 541–549. [Google Scholar] [CrossRef]
- Cieri-Hutcherson, N.E.; Jaenecke, A.; Bahia, A.; Lucas, D.; Oluloro, A.; Stimmel, L.; Hutcherson, T.C. Systematic Review of L-Arginine for the Treatment of Hypoactive Sexual Desire Disorder and Related Conditions in Women. Pharmacy 2021, 9, 71. [Google Scholar] [CrossRef]
- Croft, H.A. Understanding the Role of Serotonin in Female Hypoactive Sexual Desire Disorder and Treatment Options. J. Sex Med. 2017, 14, 1575–1584. [Google Scholar] [CrossRef]
- Gauthaman, K.; Ganesan, A.P. The Hormonal Effects of Tribulus terrestri and Its Role in the Management of Male Erectile Dysfunction–an Evaluation Using Primates, Rabbit and Rat. Phytomedicine 2008, 15, 44–54. [Google Scholar] [CrossRef]
Parameter | DPP | DPP | DPP | DPP | DPP | DPP | DPP | DPP |
---|---|---|---|---|---|---|---|---|
Moisture (%) | 28.8 | N/A | 30.31 | 29 | 8.041 | 8.14 | 44.88 | 9.59 |
Ash (%) | 4.57 | 10.23 | 6.16 | 6.2 | 5.585 | 4.99 | N/A | 8.59 |
Crude fiber (%) | 1.37 | 8.09 | N/A | 2.3 | 0.113 | N/A | N/A | N/A |
Crude fat (%) | 20.74 | 10.8 | 10.24 | 31.5 | 7.678 | N/A | 8.5 | N/A |
Crude protein (%) | 31.11 | 36.28 | 38.18 | 39.8 | 19.45 | N/A | 26.93 | N/A |
Carbohydrate (%) | 13.41 | 17.14 | 18.22 | 20.2 | 26.25 | 3.78 | 22.78 | N/A |
Aw | N/A | N/A | 0.898 | N/A | N/A | N/A | N/A | 0.45 |
pH | N/A | N/A | 6.31 | N/A | N/A | 4.75 | N/A | 6.23 |
Reference | H. M. Hassan, [10] | El-Kholy et al. [9] | Sebii et al. [35] | Basuny et al. [36] | Al-Samarai et al. [37] | Ibrahim et al. [38] | Alanber [39] | Salhi et al. [11] |
Fatty Acids | DPP (µg/g) | DPP (IU/g) | DPP (IU/g) | |
---|---|---|---|---|
Capric acid | (C10:0) | 0.46 | 0.46 | N/A |
Lauric acid | (C12:0) | 4.82 | 5.08 | 5.37 |
Myristic acid | (C14:0) | 13.33 | 16.22 | 16.01 |
Palmitic acid | (C16:0) | 34.45 | 24.24 | 34.63 |
Stearic acid | (C18:0) | 2.04 | 3.43 | 3.9 |
Arachidic acid | (C20:0) | 7.32 | 6.64 | 7.5 |
Palmitoleic acid | (C16:1n-7) | 7.07 | 7.23 | 7.79 |
Oleic acid | (C18:1n-9) | 7.19 | 7.11 | 7.45 |
Linoleic acid | (C18:2) | 14.24 | 20.26 | 15.5 |
Arachidonic acid | (C20:4n-6) | 4.57 | 0.57 | N/A |
Eicosapentaenoic acid | (C20:5n-3) | 0.52 | N/A | N/A |
References | H. M. Hassan [10] | El-Kholy et al. [9] | Basuny et al. [36] |
Element | 1 Letter Code | DPP | DPP | DPP | DPP | DPP | DPP |
---|---|---|---|---|---|---|---|
Carbon | C | 26.80–30.16 | N/A | N/A | N/A | N/A | N/A |
Nitrogen | N | 53.10–55.4 | N/A | N/A | N/A | 0.31 | N/A |
Oxygen | O | 15.57–16.67 | N/A | N/A | N/A | N/A | N/A |
Magnesium | Mg | 0–0.16 | N/A | 0.32 | N/A | 1.96 | 1.86 |
Phosphorous | P | 0.31–0.93 | N/A | N/A | 0.39 | N/A | N/A |
Sulfur | S | 0–0.69 | N/A | N/A | N/A | N/A | N/A |
Potassium | K | 0–15.16 | N/A | 0.75 | 0.40 | 7.35 | 13.39 |
Calcium | Ca | 0.20–26.38 | N/A | 0.56 | 0.21 | 1.08 | 4.92 |
Zinc | Zn | 0–0.38 | 0.28 | 0.12 | 0.27 | 0.28 | 0.61 |
Iron | Fe | 0–0.47 | 0.24 | 0.23 | 0.26 | 0.85 | 0.96 |
Manganese | Mn | 0–0.33 | 0.28 | 0.07 | 0.30 | 0.27 | 0.52 |
Sodium | Na | 0.06–0.22 | N/A | N/A | N/A | 0.43 | 0.19 |
Boron | B | N/A | 0.31 | N/A | N/A | 0.30 | N/A |
Selenium | Se | N/A | 0.30 | N/A | 0.32 | 0.25 | N/A |
Molybdenum | Mo | N/A | 0.30 | N/A | N/A | 0.32 | N/A |
Copper | Cu | N/A | 0.32 | N/A | 0.25 | 0.36 | N/A |
Cobalt | Co | N/A | 0.30 | N/A | N/A | 0.20 | N/A |
Nickel | Ni | N/A | 0.30 | N/A | N/A | 0.17 | N/A |
Cadmium | Cd | N/A | N/A | N/A | N/A | 0.01 | N/A |
References | Bishr and Desoukey [13] | H. M. Hassan [10] | El-Kholy et al. [9] | Basuny et al. [36] | Al-Samarai et al. [37] | Ibrahim et al. [38] |
Full Name | Vitamin | DPP (µg/g) | DPP (IU/g) | DPP (IU/g) |
---|---|---|---|---|
Retinol | A | N/A | 77.0833 | 75.70 |
Thiamin | B1 | 11–60 | N/A | N/A |
Riboflavin | B2 | 10–260 | N/A | N/A |
Cobalamin | B12 | 14–2316 | N/A | N/A |
Ascorbic acid | C | N/A | 0.90 | 1.51 |
Alpha-tocopherol | E | N/A | 30.31 | 35.11 |
References | H. M. Hassan [10] | El-Kholy et al. [9] | Basuny et al. [36] |
Test Group | Form of DPP | Doses of DPP | Time | Results | Reference |
---|---|---|---|---|---|
Menopausal women | Powder | 350 mg/day | 35 days | ↑ Vaginal lubrication; ↓ dyspareunia | Sadeghi et al. (2018) [138] |
300 mg/day | 35 days | ↑ Orgasm | Yosefzadeh et al. (2017) [112] | ||
Women | 300 mg/day | 35 days | ↑ Lubrication; ↑ desire domains of the Female Sexual Function Index | Salmani et al. (2022) [113] | |
Women with PCOS | 3 g/day | 3 months | ↓ Estrogen and LH levels; ↑ progesterone and FSH levels; ↑ ovulation | El-Wahed et al. (2022) [96] | |
Postmenopausal women | Aqueous extract | 300 mg | 4 weeks | No change in sexual dysfunction | Loripoor et al. (2023) [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salhi, S.; Rahim, A.; Chentouf, M.; Harrak, H.; Bister, J.L.; Hamidallah, N.; El Amiri, B. Reproductive Enhancement through Phytochemical Characteristics and Biological Activities of Date Palm Pollen: A Comprehensive Review on Potential Mechanism Pathways. Metabolites 2024, 14, 166. https://doi.org/10.3390/metabo14030166
Salhi S, Rahim A, Chentouf M, Harrak H, Bister JL, Hamidallah N, El Amiri B. Reproductive Enhancement through Phytochemical Characteristics and Biological Activities of Date Palm Pollen: A Comprehensive Review on Potential Mechanism Pathways. Metabolites. 2024; 14(3):166. https://doi.org/10.3390/metabo14030166
Chicago/Turabian StyleSalhi, Saad, Abdellatif Rahim, Mouad Chentouf, Hasnaa Harrak, Jean Loup Bister, Naima Hamidallah, and Bouchra El Amiri. 2024. "Reproductive Enhancement through Phytochemical Characteristics and Biological Activities of Date Palm Pollen: A Comprehensive Review on Potential Mechanism Pathways" Metabolites 14, no. 3: 166. https://doi.org/10.3390/metabo14030166
APA StyleSalhi, S., Rahim, A., Chentouf, M., Harrak, H., Bister, J. L., Hamidallah, N., & El Amiri, B. (2024). Reproductive Enhancement through Phytochemical Characteristics and Biological Activities of Date Palm Pollen: A Comprehensive Review on Potential Mechanism Pathways. Metabolites, 14(3), 166. https://doi.org/10.3390/metabo14030166