Epiphytic Patterns Impacting Metabolite Diversity of Drynaria roosii Rhizomes Based on Widely Targeted Metabolomics
Abstract
1. Introduction
2. Materials and Methods
2.1. Rhizome Sample Collection and Chemical Reagents
2.2. Metabolite Extraction and Preparation of Rhizomes Samples
2.3. UPLC-MS/MS Measurement Based on the Widely Targeted Metabolomics Method
2.4. Quality Control of Extraction Samples
2.5. Qualitative and Quantitative Analysis of Detected Metabolites
2.6. Multivariate Statistical Analysis and Selection of Differentially Expressed Metabolites
3. Results
3.1. Metabolite Categories of Rhizomes and PCA Results between RTs and TTs of D. roosii
3.2. Metabolite Comparison and Discrimination Results of OPLS-DA between RTs and TTs of D. roosii
3.3. Annotation and Enrichment Analysis of DEMs between RT and TT of D. roosii
3.4. Differences in Chemical Composition between RT and TB of D. roosii
3.4.1. Differences in Primary Metabolites between RT and TB Rhizomes
3.4.2. Differences in Secondary Metabolites between RT and TB
4. Discussion
4.1. Epiphytic Patterns between RT and TT Generated Impacts on Metabolite Accumulation of D. roosii
4.2. Primary and Secondary Metabolites Displayed Differences among Different Tree Species in the Epiphytic Patterns of Tree Trunks of D. roosii
4.3. The Selection of Cultivation Patterns Should Pay Attention to Further Large-Scale Production
4.4. Metabolite Analysis Is Not the Only Research Target in Terms of the Effect Caused by the Differences in Epiphytic Patterns
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Y.; Ma, H.; Ma, S.; Li, W.; Tan, L. Physiological, proteomic and metabolomic analysis provide insights into Ca2+ tolerance in Drynaria roosii leaves. Plant Stress 2023, 7, 100132. [Google Scholar] [CrossRef]
- Huang, X.; Yuan, S.; Yang, C. Effects of total flavonoids from Drynaria fortunei on the proliferation and osteogenic differentiation of rat dental pulp stem cells. Mol. Med. Rep. 2012, 6, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Sung, Y.; Kim, D.; Yang, W.; Nho, K.J.; Seo, H.S.; Kim, Y.S.; Kim, H.K. Inhibitory effects of Drynaria fortunei extract on house dust mite antigen-induced atopic dermatitis in NC/Nga mice. J. Ethnopharmacol. 2012, 144, 94–100. [Google Scholar] [CrossRef]
- Jeong, J.; Lee, J.; Yoon, C.; Lee, Y.; Chung, K.; Kim, M.; Kim, C. Stimulative effects of Drynariae Rhizoma extracts on the proliferation and differentiation of osteoblastic MC3T3-E1 Cells. J. Ethnopharmacol. 2005, 96, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Long, M.; Qiu, D.; Li, F.; Johnson, F.; Luft, B. Flavonoid of Drynaria fortunei protects against acute renal failure. Phytother. Res. 2005, 19, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, Y.; Wu, M.; Ma, Z.; Huang, Z.; Tian, F.; Dong, S.; Luo, S.; Zhou, Y.; Zhang, J.; et al. The scientific elucidation of daodi medicinal materials. Chin. Med. 2020, 15, 86. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Guo, P.; Brand, E. The formation of daodi medicinal materials. J. Ethnopharmacol. 2012, 140, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Liu, C.; Huang, C.; Wang, M.; Long, T.; Liu, J.; Shi, J.; Shi, J.; Li, L.; He, Y.; et al. Transcriptome and metabonomics analysis revealed the molecular mechanism of differential metabolite production of Dendrobium nobile under different epiphytic patterns. Front. Plant Sci. 2022, 13, 868472. [Google Scholar] [CrossRef] [PubMed]
- Lu, A.J.; Jiang, Y.; Wu, J.; Tan, D.P.; Qin, L.; Lu, Y.L.; Qian, Y.; Bai, C.J.; Yang, J.Y.; Ling, H.; et al. Opposite trends of glycosides and alkaloids in Dendrobium nobile of different age based on UPLC-Q/TOF-MS combined with multivariate statistical analyses. Phytochem. Anal. 2022, 33, 619–634. [Google Scholar] [CrossRef]
- Jin, Q.; Jiao, C.; Sun, S.; Song, C.; Cai, Y.; Lin, Y.; Fan, H.; Zhu, Y. Metabolic analysis of medicinal Dendrobium officinale and Dendrobium huoshanense during different growth years. PLoS ONE 2016, 11, e0146607. [Google Scholar] [CrossRef]
- Wang, Q.; Du, G. Analysis of differences in secondary metabolites from Dendrobium nobile stems cultivated on epiphytic rocks in different growth years based on metabolomics. Chin. J. Exp. Tradit. Med. Formulae 2023, 30, 169–175. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, Q.; Ouyang, Z.; Dai, J.; Yue, Q.; Wei, Y.; Han, B. Comparison of active ingredients and protective effects of Dendrobium huoshanense of different growth years on acute liver injury. China J. Chin. Mater. Medica 2021, 46, 298–305. [Google Scholar] [CrossRef]
- Li, J.; Li, D.; Du, X.; Li, H.; Wang, D.; Xing, Q.; Yao, R.; Sun, M.; Shi, L. Modular organization analysis of specific naringin/neoeriocitrin related gene expression induced by UVC irradiation in Drynaria roosii. Environ. Exp. Bot. 2018, 156, 298–315. [Google Scholar] [CrossRef]
- Sun, M.; Li, J.; Li, D.; Huang, F.; Wang, D.; Li, H.; Xing, Q.; Zhu, H.; Shi, L. Full-Length transcriptome sequencing and modular organization analysis of the naringin/neoeriocitrin-related gene expression pattern in Drynaria roosii. Plant Cell Physiol. 2018, 59, 1398–1414. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Toume, K.; Kimijima, S.; Zhang, H.; Zhu, S.; He, Y.; Cai, S.; Maruyama, T.; Komatsu, K. Metabolite profiling of Drynariae Rhizoma using 1H NMR and HPLC coupled with multivariate statistical analysis. J. Nat. Med. 2023, 77, 839–857. [Google Scholar] [CrossRef]
- Hernandez-Rojas, A.C.; Kluge, J.; Noben, S.; Reyes Chávez, J.D.; Krömer, T.; Carvajal-Hernández, C.I.; Salazar, L.; Kessler, M. Phylogenetic diversity of ferns reveals different patterns of niche conservatism and habitat filtering between epiphytic and terrestrial assemblages. Front. Biogeogr. 2021, 13, e50023. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, Q.; Liu, R. Widely targeted metabolomics analysis reveals the effect of fermentation on the chemical composition of bee pollen. Food Chem. 2022, 375, 131908. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Shao, L.; Zhu, J.; Li, H.; Duan, H. Comparative analysis of tuberous root metabolites between cultivated and wild varieties of Rehmannia glutinosa by widely targeted metabolomics. Sci. Rep. 2021, 11, 11460. [Google Scholar] [CrossRef]
- Aydoğan, C. Recent advances and applications in LC-HRMS for food and plant natural products: A critical review. Anal. Bioanal. Chem. 2020, 412, 1973–1991. [Google Scholar] [CrossRef]
- Alvarez-Rivera, G.; Ballesteros-Vivas, D.; Parada-Alfonso, F.; Ibañez, E.; Cifuentes, A. Recent applications of high resolution mass spectrometry for the characterization of plant natural products. TrAC Trends Anal. Chem. 2019, 112, 87–101. [Google Scholar] [CrossRef]
- Wang, T.; Zou, Q.; Guo, Q.; Yang, F.; Wu, L.; Zhang, W. Widely targeted metabolomics analysis reveals the effect of flooding stress on the synthesis of flavonoids in Chrysanthemum morifolium. Molecules 2019, 24, 3695. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, H.; Yang, T.; Gao, D.; Li, X. Primary investigation of phenotypic plasticity in Fritillaria cirrhosa based on metabolome and transcriptome analyses. Cells 2022, 11, 3844. [Google Scholar] [CrossRef] [PubMed]
- Fraga, C.G.; Clowers, B.H.; Moore, R.J.; Zink, E.M. Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography−mass spectrometry, XCMS, and chemometrics. Anal. Chem. 2010, 82, 4165–4173. [Google Scholar] [CrossRef]
- Wei, G.; Long, F.; Bai, F. Study on Technology of ultrasonic-assisted extraction of total flavonoids from Rhizoma Drynaria. Guangzhou Chem. Ind. 2022, 50, 42–44. [Google Scholar] [CrossRef]
- Dang, Y.; Xu, W.; Song, Q.; Huang, C.; Wang, B.; Chen, C.; Yang, Y. Quality characteristics of Drynariae Rhizoma from different origins based on multi-index component quantitative analysis. Chin. J. New Drugs 2022, 31, 1736–1746. [Google Scholar] [CrossRef]
- Chen, L.; Ding, H.; Chen, X.; Wang, J.; Hu, Y.; Chen, H.; Liu, Y. Cultivation modes impacting root microbiomes and metabolites in medicinal orchid Dendrobium denneanum. Front. Microbiomes 2023, 2, 1287336. [Google Scholar] [CrossRef]
- Zhu, M.; Chen, H.; Si, J.; Wu, L. Effect of cultivation mode on bacterial and fungal communities of Dendrobium catenatum. BMC Microbiol. 2022, 22, 221. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Dong, W.; Si, J.; Liu, J.; Zhu, Y. Endophytic fungi, host genotype, and their interaction influence the growth and production of key chemical components of Dendrobium catenatum. Fungal Biol. 2020, 124, 864–876. [Google Scholar] [CrossRef]
- Shen, Z.; Gu, X.; Tian, B.; Zheng, G.; Huang, C.; Cai, C. Laws of Drynaria roosii growth and its naringin accumulation. Acta Agric. Univ. Jiangxiensis (Nat. Sci. Ed.) 2019, 41, 901–907. [Google Scholar] [CrossRef]
- Zaynab, M.; Fatima, M.; Sharif, Y.; Zafar, M.H.; Ali, H.; Khan, K.A. Role of primary metabolites in plant defense against pathogens. Microb. Pathog. 2019, 137, 103728. [Google Scholar] [CrossRef]
- Zhao, H.; Ni, S.; Cai, S.; Zhang, G. Comprehensive dissection of primary metabolites in response to diverse abiotic stress in barley at seedling stage. Plant Physiol. Biochem. 2021, 161, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Rojas, C.M.; Senthil-Kumar, M.; Tzin, V.; Mysore, K.S. Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Front. Plant Sci. 2014, 5, 17. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Li, X.; Zhang, C.; Lv, L.; Gao, B.; Li, M. Research progress on antibacterial activities and mechanisms of natural alkaloids: A review. Antibiotics 2021, 10, 318. [Google Scholar] [CrossRef]
- Mondal, A.; Gandhi, A.; Fimognari, C.; Atanasov, A.G.; Bishayee, A. Alkaloids for cancer prevention and therapy: Current progress and future perspectives. Eur. J. Pharmacol. 2019, 858, 172472. [Google Scholar] [CrossRef] [PubMed]
- Deya, P.; Kundua, A.; Kumarb, A.; Guptac, M.; Leea, Y.M.; Bhaktad, T.; Dashd, S.; Kim, H.S. Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). In Recent Advances in Natural Products Analysis; Elsevier: Amsterdam, The Netherlands, 2020; pp. 505–567. [Google Scholar]
- Dascalu, A.; Ghinet, A.; Lipka, E.; Furman, C.; Rigo, B.; Fayeulle, A.; Billamboz, M. Design, synthesis and antifungal activity of pterolactam-inspired amide Mannich bases. Fitoterapia 2020, 143, 104581. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xin, H.; Li, Y.; Zhang, D.; Shi, J.; Yang, J.; Chen, X. Skimmin, a coumarin from Hydrangea paniculata, slows down the progression of membranous glomerulonephritis by anti-inflammatory effects and inhibiting immune complex deposition. Evid.-Based Compl. Alt. 2013, 2013, 819296. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, J.; Li, H.; Li, Y.; Liu, Y.; Zhang, D.; Zhang, F.; Zhou, W.; Chen, X. Skimmin, a coumarin, suppresses the streptozotocin-induced diabetic nephropathy in wistar rats. Eur. J. Pharmacol. 2012, 692, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Deng, Y.; Zheng, Z.; Huang, W.; Chen, L.; Tong, Q.; Ming, Y. Corilagin, a promising medicinal herbal agent. Biomed. Pharmacother. 2018, 99, 43–50. [Google Scholar] [CrossRef]
- Saha, R.K.; Takahashi, T.; Kurebayashi, Y.; Fukushima, K.; Minami, A.; Kinbara, N.; Ichitani, M.; Sagesaka, Y.M.; Suzuki, T. Antiviral effect of strictinin on influenza virus replication. Antivir. Res. 2010, 88, 10–18. [Google Scholar] [CrossRef]
- Gesek, J.; Jakimiuk, K.; Atanasov, A.G.; Tomczyk, M. Sanguiins—Promising molecules with broad biological potential. Int. J. Mol. Sci. 2021, 22, 12972. [Google Scholar] [CrossRef]
- Chen, S.; Liang, W.; Zhang, X.; Li, X.; Zhan, Z.; Guo, L.; Huang, L.; Zhang, X.; Gao, W. Research progress on chemical compositions and pharmacological action of Drynariae Rhizoma. China J. Chin. Mater. Medica 2021, 46, 2737–2745. [Google Scholar] [CrossRef]
- Zhou, Q.; Zeng, X.; Huang, D.; Li, J.; Tang, M.; Li, S. Research progress on the chemical composition and biological activity of Drynariae Rhizoma. World Sci. Technol. Mod. Tradit. Chin. Med. 2021, 23, 2727–2741. [Google Scholar] [CrossRef]
- Fang, Y.; Qin, X.; Liao, Q.; Du, R.; Luo, X.; Zhou, Q.; Li, Z.; Chen, H.; Jin, W.; Yuan, Y.; et al. The genome of homosporous maidenhair fern sheds light on the euphyllophyte evolution and defences. Nat. Plants 2022, 8, 1024–1037. [Google Scholar] [CrossRef] [PubMed]
- Vasco, A.; Moran, R.C.; Ambrose, B.A. The evolution, morphology, and development of fern leaves. Front. Plant Sci. 2013, 4, 345. [Google Scholar] [CrossRef]
- Watkins, J.E.; Churchill, A.C.; Holbrook, N.M. A site for sori: Ecophysiology of fertile–sterile leaf dimorphy in ferns. Am. J. Bot. 2016, 103, 845–855. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.J.; Bi, M.H.; Nie, Z.F.; Jiang, H.; Liu, X.D.; Fang, X.W.; Brodribb, T.J. Evolution of stomatal closure to optimize water-use efficiency in response to dehydration in ferns and seed plants. New Phytol. 2021, 230, 2001–2010. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, M.; Tang, X.; Liu, Z.; Zhang, J.; Yang, M. Key technology of spore breeding for Drynaria fortune (Kunze). Chin. Wild Plant Resour. 2022, 41, 23–26. [Google Scholar] [CrossRef]
- Dang, Y.; Sun, Q.; Wang, B.; Wang, J.; Lu, X.; Chen, C. Effects of substrates, cutting types and cutting method on cutting propagation of Drynaria delavayi. Guizhou Agric. Sci. 2022, 50, 93–98. [Google Scholar]
- Taylor, A.; Zotz, G.; Weigelt, P.; Cai, L.; Karger, D.N.; König, C.; Kreft, H. Vascular epiphytes contribute disproportionately to global centres of plant diversity. Glob. Ecol. Biogeogr. 2022, 31, 62–74. [Google Scholar] [CrossRef]
Epiphytic Patterns | Biochemical Components | Categories |
---|---|---|
Rock tunnels | N-Acetyl-5-hydroxytryptamine | Alkaloids |
4-amino-5-oxo-5-(pentylamino)pentanoic acid | Amino acids and derivatives | |
Cyanidin-3,5-O-diglucoside (Cyanin) | Flavonoids | |
Gossypetin-3-O-rutinoside | Flavonoids | |
Kaempferol-3,7-O-dirhamnoside (Kaempferitrin) | Flavonoids | |
Kaempferol-3-(2″-acetylrhamnoside) | Flavonoids | |
Kaempferol-3-O-(2″-O-acetyl)glucoside | Flavonoids | |
Kuraridin | Flavonoids | |
Myricetin-3-O-glucuronide | Flavonoids | |
Epipinoresinol | Lignans | |
Pinoresinol | Lignans | |
Dodecanedioic aicd | Lipids | |
Demethyl coniferin | Others—alcohol | |
4-Hydroxy-3,5-Dimethoxybenzaldehyde (Syringaldehyde) | Others—aldehyde | |
Isopropyl ferulate | Phenolic acids | |
p-Coumaryl alcohol | Phenolic acids | |
Tree A | Cyanidin-3-O-(6″-O-acetyl)glucoside-5-O-glucoside | Flavonoids |
Lyoniresinol-9′-O-xyloside (Lyoniside) | Lignans | |
Pterosin O | Terpenoids | |
Sarcaglaboside A | Terpenoids | |
Tree B | Cyanidin 3-O-sophoroside | Flavonoids |
Tree C | None | - |
Tree D | 1′-O-Galactoyl p-Coumaric acid | Phenolic acids |
2,4-Hexadienoic acid | Organic acids | |
2-Methyl-4-pentenoic Acid | Organic acids |
Metabolites | Category | VIP Value | p Value | Log2(FC) |
---|---|---|---|---|
Thymidine | Nucleotides and derivatives | 1.2637 | 0.0002 | 3.246 |
Glucosyl 6,9-dihydroxydec-4-enoic acid | Others | 1.2659 | 0.0039 | 4.983 |
Homogentisic acid | Phenolic acids | 1.2648 | 0.0046 | 3.493 |
3-O-Digalloyl quinic acid | Phenolic acids | 1.2638 | 0.0168 | 5.444 |
Sibiricose A3 | Phenolic acids | 1.2625 | 0.0171 | 4.700 |
Salicin 6′-Acetate | Phenolic acids | 1.2623 | 0.0121 | 3.649 |
Sinapoylcaffeoyltartaric acid | Phenolic acids | 1.2616 | 0.0136 | 3.567 |
4-O-galactopyranosylxylose | Saccharides | 1.2665 | 0.0003 | 3.105 |
Dihydroxyoctanoic acid glucoside | Saccharides | 1.2624 | 0.0193 | 5.404 |
Sanguiin H4 | Tannin | 1.2628 | 0.0005 | 2.268 |
Val-Thr | Amino acids and derivatives | 1.2665 | 0.0028 | −11.422 |
Homoarginine | Amino acids and derivatives | 1.2665 | 0.0013 | −8.528 |
γ-Glu-Tyr | Amino acids and derivatives | 1.2663 | 0.0027 | −6.123 |
N-α-Acetyl-l-ornithine | Amino acids and derivatives | 1.2662 | 0.0082 | −10.937 |
Methyl l-pyroglutamate | Amino acids and derivatives | 1.2660 | 0.0030 | −5.311 |
Vaccarin | Flavones | 1.2665 | 0.0005 | −4.562 |
Isocytosine | Nucleotides and derivatives | 1.2665 | 0.0013 | −8.715 |
5,6-Dihydroxy-1H-indole-2-carboxylic acid | Plumerane | 1.2662 | 0.0011 | −4.038 |
3-Indolepropionic acid | Plumerane | 1.2659 | 0.0083 | −7.365 |
3-Oxo-Alpha-Ionol 3′-(6″-Malonyl)Glucoside | Sesquiterpenoids | 1.2659 | 0.0033 | −4.972 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, N.; Yang, X.; Wang, X.; Chen, C.; Wang, C.; Xu, Y.; Huang, H.; Wang, Y. Epiphytic Patterns Impacting Metabolite Diversity of Drynaria roosii Rhizomes Based on Widely Targeted Metabolomics. Metabolites 2024, 14, 409. https://doi.org/10.3390/metabo14080409
Chang N, Yang X, Wang X, Chen C, Wang C, Xu Y, Huang H, Wang Y. Epiphytic Patterns Impacting Metabolite Diversity of Drynaria roosii Rhizomes Based on Widely Targeted Metabolomics. Metabolites. 2024; 14(8):409. https://doi.org/10.3390/metabo14080409
Chicago/Turabian StyleChang, Nana, Xianping Yang, Xiaoqing Wang, Chao Chen, Chu Wang, Yang Xu, Hengyu Huang, and Ye Wang. 2024. "Epiphytic Patterns Impacting Metabolite Diversity of Drynaria roosii Rhizomes Based on Widely Targeted Metabolomics" Metabolites 14, no. 8: 409. https://doi.org/10.3390/metabo14080409
APA StyleChang, N., Yang, X., Wang, X., Chen, C., Wang, C., Xu, Y., Huang, H., & Wang, Y. (2024). Epiphytic Patterns Impacting Metabolite Diversity of Drynaria roosii Rhizomes Based on Widely Targeted Metabolomics. Metabolites, 14(8), 409. https://doi.org/10.3390/metabo14080409