Understanding the Genetic Landscape of Gestational Diabetes: Insights into the Causes and Consequences of Elevated Glucose Levels in Pregnancy
Abstract
:1. Pathophysiology of GDM
2. GDM Diagnosis and Screening
3. Epidemiology of GDM
4. Aetiology of GDM
5. Genetic Aetiology of GDM and Glycaemic Traits during Pregnancy
5.1. Variation in Glycaemic Traits Explained by Genetics
5.2. Robustly Associated Genetic Variants
5.3. Genetic Insights into the Relationship between GDM and T2DM
6. Relationship between GDM and Short- and Long-Term Adverse Health Outcomes
7. Conclusions
8. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Catalano, P.M.; Roman-Drago, N.M.; Amini, S.B.; Sims, E.A. Longitudinal Changes in Body Composition and Energy Balance in Lean Women with Normal and Abnormal Glucose Tolerance during Pregnancy. Am. J. Obstet. Gynecol. 1998, 179, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Sorenson, R.L.; Brelje, T.C. Adaptation of Islets of Langerhans to Pregnancy: Beta-Cell Growth, Enhanced Insulin Secretion and the Role of Lactogenic Hormones. Horm. Metab. Res. 1997, 29, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Bonner-Weir, S.; Deery, D.; Leahy, J.L.; Weir, G.C. Compensatory Growth of Pancreatic Beta-Cells in Adult Rats after Short-Term Glucose Infusion. Diabetes 1989, 38, 49–53. [Google Scholar] [CrossRef]
- Montaña, E.; Bonner-Weir, S.; Weir, G.C. Transplanted Beta Cell Response to Increased Metabolic Demand. Changes in Beta Cell Replication and Mass. J. Clin. Investig. 1994, 93, 1577–1582. [Google Scholar] [CrossRef]
- Buchanan, T.A.; Metzger, B.E.; Freinkel, N.; Bergman, R.N. Insulin Sensitivity and B-Cell Responsiveness to Glucose during Late Pregnancy in Lean and Moderately Obese Women with Normal Glucose Tolerance or Mild Gestational Diabetes. Am. J. Obstet. Gynecol. 1990, 162, 1008–1014. [Google Scholar] [CrossRef]
- Catalano, P.M.; Tyzbir, E.D.; Wolfe, R.R.; Calles, J.; Roman, N.M.; Amini, S.B.; Sims, E.A. Carbohydrate Metabolism during Pregnancy in Control Subjects and Women with Gestational Diabetes. Am. J. Physiol. 1993, 264 Pt 1, E60–E67. [Google Scholar] [CrossRef]
- Frøslie, K.F.; Røislien, J.; Qvigstad, E.; Godang, K.; Bollerslev, J.; Henriksen, T.; Veierød, M.B. Shape Information in Repeated Glucose Curves during Pregnancy Provided Significant Physiological Information for Neonatal Outcomes. PLoS ONE 2014, 9, e90798. [Google Scholar] [CrossRef] [PubMed]
- Lesser, K.B.; Carpenter, M.W. Metabolic Changes Associated with Normal Pregnancy and Pregnancy Complicated by Diabetes Mellitus. Semin. Perinatol. 1994, 18, 399–406. [Google Scholar] [PubMed]
- Metzger, B.E. Biphasic Effects of Maternal Metabolism on Fetal Growth. Quintessential Expression of Fuel-Mediated Teratogenesis. Diabetes 1991, 40 (Suppl. S2), 99–105. [Google Scholar] [CrossRef]
- Metzger, B.E.; Phelps, R.L.; Freinkel, N.; Navickas, I.A. Effects of Gestational Diabetes on Diurnal Profiles of Plasma Glucose, Lipids, and Individual Amino Acids. Diabetes Care 1980, 3, 402–409. [Google Scholar] [CrossRef]
- Di Cianni, G.; Miccoli, R.; Volpe, L.; Lencioni, C.; Del Prato, S. Intermediate Metabolism in Normal Pregnancy and in Gestational Diabetes. Diabetes Metab. Res. Rev. 2003, 19, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Hadden, D.R.; McLaughlin, C. Normal and Abnormal Maternal Metabolism during Pregnancy. Semin. Fetal. Neonatal Med. 2009, 14, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Catalano, P.M.; Tyzbir, E.D.; Roman, N.M.; Amini, S.B.; Sims, E.A. Longitudinal Changes in Insulin Release and Insulin Resistance in Nonobese Pregnant Women. Am. J. Obstet. Gynecol. 1991, 165 Pt 1, 1667–1672. [Google Scholar] [CrossRef] [PubMed]
- Catalano, P.M.; Tyzbir, E.D.; Wolfe, R.R.; Roman, N.M.; Amini, S.B.; Sims, E.A. Longitudinal Changes in Basal Hepatic Glucose Production and Suppression during Insulin Infusion in Normal Pregnant Women. Am. J. Obstet. Gynecol. 1992, 167 Pt 1, 913–919. [Google Scholar] [CrossRef]
- Butte, N.F. Carbohydrate and Lipid Metabolism in Pregnancy: Normal Compared with Gestational Diabetes Mellitus12345. Am. J. Clin. Nutr. 2000, 71, 1256S–1261S. [Google Scholar] [CrossRef]
- Sonagra, A.D.; Biradar, S.M.; Dattatreya K.; Murthy D.S., J. Normal Pregnancy—A State of Insulin Resistance. J. Clin. Diagn. Res. 2014, 8, CC01–CC03. [Google Scholar] [CrossRef]
- Plows, J.F.; Stanley, J.L.; Baker, P.N.; Reynolds, C.M.; Vickers, M.H. The Pathophysiology of Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2018, 19, 3342. [Google Scholar] [CrossRef]
- Buchanan, T.A.; Xiang, A.; Kjos, S.L.; Watanabe, R. What Is Gestational Diabetes? Diabetes Care 2007, 30 (Suppl. S2), S105–S111. [Google Scholar] [CrossRef]
- Barbour, L.A.; McCurdy, C.E.; Hernandez, T.L.; Kirwan, J.P.; Catalano, P.M.; Friedman, J.E. Cellular Mechanisms for Insulin Resistance in Normal Pregnancy and Gestational Diabetes. Diabetes Care 2007, 30 (Suppl. S2), S112–S119. [Google Scholar] [CrossRef] [PubMed]
- Vrachnis, N.; Belitsos, P.; Sifakis, S.; Dafopoulos, K.; Siristatidis, C.; Pappa, K.I.; Iliodromiti, Z. Role of Adipokines and Other Inflammatory Mediators in Gestational Diabetes Mellitus and Previous Gestational Diabetes Mellitus. Int. J. Endocrinol. 2012, 2012, 549748. [Google Scholar] [CrossRef]
- Kirwan, J.P.; Hauguel-De Mouzon, S.; Lepercq, J.; Challier, J.-C.; Huston-Presley, L.; Friedman, J.E.; Kalhan, S.C.; Catalano, P.M. TNF-Alpha Is a Predictor of Insulin Resistance in Human Pregnancy. Diabetes 2002, 51, 2207–2213. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pérez, A.; Vilariño-García, T.; Guadix, P.; Dueñas, J.L.; Sánchez-Margalet, V. Leptin and Nutrition in Gestational Diabetes. Nutrients 2020, 12, 1970. [Google Scholar] [CrossRef]
- Phelps, R.L.; Metzger, B.E.; Freinkel, N. Carbohydrate Metabolism in Pregnancy: XVII. Diurnal Profiles of Plasma Glucose, Insulin, Free Fatty Acids, Triglycerides, Cholesterol, and Individual Amino Acids in Late Normal Pregnancy. Am. J. Obstet. Gynecol. 1981, 140, 730–736. [Google Scholar] [CrossRef]
- Ernst, S.; Demirci, C.; Valle, S.; Velazquez-Garcia, S.; Garcia-Ocaña, A. Mechanisms in the Adaptation of Maternal β-Cells during Pregnancy. Diabetes Manag. Lond. Engl. 2011, 1, 239–248. [Google Scholar] [CrossRef]
- Lain, K.Y.; Catalano, P.M. Metabolic Changes in Pregnancy. Clin. Obstet. Gynecol. 2007, 50, 938–948. [Google Scholar] [CrossRef]
- Butler, A.E.; Cao-Minh, L.; Galasso, R.; Rizza, R.A.; Corradin, A.; Cobelli, C.; Butler, P.C. Adaptive Changes in Pancreatic Beta Cell Fractional Area and Beta Cell Turnover in Human Pregnancy. Diabetologia 2010, 53, 2167–2176. [Google Scholar] [CrossRef] [PubMed]
- Rieck, S.; Kaestner, K.H. Expansion of Beta-Cell Mass in Response to Pregnancy. Trends Endocrinol. Metab. TEM 2010, 21, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Toyofuku, Y.; Lynn, F.C.; Chak, E.; Uchida, T.; Mizukami, H.; Fujitani, Y.; Kawamori, R.; Miyatsuka, T.; Kosaka, Y.; et al. Serotonin Regulates Pancreatic Beta Cell Mass during Pregnancy. Nat. Med. 2010, 16, 804–808. [Google Scholar] [CrossRef]
- Karnik, S.K.; Chen, H.; McLean, G.W.; Heit, J.J.; Gu, X.; Zhang, A.Y.; Fontaine, M.; Yen, M.H.; Kim, S.K. Menin Controls Growth of Pancreatic Beta-Cells in Pregnant Mice and Promotes Gestational Diabetes Mellitus. Science 2007, 318, 806–809. [Google Scholar] [CrossRef]
- Ryan, E.A.; Enns, L. Role of Gestational Hormones in the Induction of Insulin Resistance. J. Clin. Endocrinol. Metab. 1988, 67, 341–347. [Google Scholar] [CrossRef]
- Desoye, G.; Nolan, C.J. The Fetal Glucose Steal: An Underappreciated Phenomenon in Diabetic Pregnancy. Diabetologia 2016, 59, 1089–1094. [Google Scholar] [CrossRef]
- Lindsay, R.S.; Walker, J.D.; Halsall, I.; Hales, C.N.; Calder, A.A.; Hamilton, B.A.; Johnstone, F.D.; Scottish Multicentre Study of Diabetes in Pregnancy. Insulin and Insulin Propeptides at Birth in Offspring of Diabetic Mothers. J. Clin. Endocrinol. Metab. 2003, 88, 1664–1671. [Google Scholar] [CrossRef]
- Silverman, B.L.; Landsberg, L.; Metzger, B.E. Fetal Hyperinsulinism in Offspring of Diabetic Mothers. Association with the Subsequent Development of Childhood Obesity. Ann. N. Y. Acad. Sci. 1993, 699, 36–45. [Google Scholar] [CrossRef]
- Dornhorst, A.; Nicholls, J.S.; Ali, K.; Andres, C.; Adamson, D.L.; Kelly, L.F.; Niththyananthan, R.; Beard, R.W.; Gray, I.P. Fetal Proinsulin and Birth Weight. Diabet. Med. 1994, 11, 177–181. [Google Scholar] [CrossRef]
- Lawlor, D.A. The Society for Social Medicine John Pemberton Lecture 2011. Developmental Overnutrition—An Old Hypothesis with New Importance? Int. J. Epidemiol. 2013, 42, 7–29. [Google Scholar] [CrossRef]
- McAuley, K.A.; Williams, S.M.; Mann, J.I.; Walker, R.J.; Lewis-Barned, N.J.; Temple, L.A.; Duncan, A.W. Diagnosing Insulin Resistance in the General Population. Diabetes Care 2001, 24, 460–464. [Google Scholar] [CrossRef]
- Joshipura, K.J.; Andriankaja, M.O.; Hu, F.B.; Ritchie, C.S. Relative Utility of 1-Hr Oral Glucose Tolerance Test as a Measure of Abnormal Glucose Homeostasis. Diabetes Res. Clin. Pract. 2011, 93, 268–275. [Google Scholar] [CrossRef]
- Lee, S.; Choi, S.; Kim, H.J.; Chung, Y.-S.; Lee, K.W.; Lee, H.C.; Huh, K.B.; Kim, D.J. Cutoff Values of Surrogate Measures of Insulin Resistance for Metabolic Syndrome in Korean Non-Diabetic Adults. J. Korean Med. Sci. 2006, 21, 695–700. [Google Scholar] [CrossRef]
- International Association of Diabetes and Pregnancy Study Groups Consensus Panel; Metzger, B.E.; Gabbe, S.G.; Persson, B.; Buchanan, T.A.; Catalano, P.A.; Damm, P.; Dyer, A.R.; Leiva, A.d.; Hod, M. International Association of Diabetes and Pregnancy Study Groups Recommendations on the Diagnosis and Classification of Hyperglycemia in Pregnancy. Diabetes Care 2010, 33, 676–682. [Google Scholar] [CrossRef]
- HAPO Study Cooperative Research Group. The Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study. Int. J. Gynecol. Obstet. 2002, 78, 69–77. [Google Scholar] [CrossRef]
- The HAPO Study Cooperative Research Group. Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study: Associations With Neonatal Anthropometrics. Diabetes 2009, 58, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Metzger, B.E.; Lowe, L.P.; Dyer, A.R.; Trimble, E.R.; Chaovarindr, U.; Coustan, D.R.; Hadden, D.R.; McCance, D.R.; Hod, M.; McIntyre, H.D.; et al. Hyperglycemia and Adverse Pregnancy Outcomes. Obstet. Anesth. Dig. 2009, 29, 39. [Google Scholar] [CrossRef]
- Aubry, E.M.; Raio, L.; Oelhafen, S. Effect of the IADPSG Screening Strategy for Gestational Diabetes on Perinatal Outcomes in Switzerland. Diabetes Res. Clin. Pract. 2021, 175, 108830. [Google Scholar] [CrossRef] [PubMed]
- Rai, A.S.; Sletner, L.; Jenum, A.K.; Øverby, N.C.; Stafne, S.N.; Qvigstad, E.; Pripp, A.H.; Sagedal, L.R. Employing Fasting Plasma Glucose to Safely Limit the Use of Oral Glucose Tolerance Tests in Pregnancy: A Pooled Analysis of Four Norwegian Studies. Front. Endocrinol. 2023, 14, 1278523. [Google Scholar] [CrossRef]
- Wang, H.; Li, N.; Chivese, T.; Werfalli, M.; Sun, H.; Yuen, L.; Hoegfeldt, C.A.; Elise Powe, C.; Immanuel, J.; Karuranga, S.; et al. IDF Diabetes Atlas: Estimation of Global and Regional Gestational Diabetes Mellitus Prevalence for 2021 by International Association of Diabetes in Pregnancy Study Group’s Criteria. Diabetes Res. Clin. Pract. 2022, 183, 109050. [Google Scholar] [CrossRef]
- Saeedi, M.; Cao, Y.; Fadl, H.; Gustafson, H.; Simmons, D. Increasing Prevalence of Gestational Diabetes Mellitus When Implementing the IADPSG Criteria: A Systematic Review and Meta-Analysis. Diabetes Res. Clin. Pract. 2021, 172, 108642. [Google Scholar] [CrossRef]
- Anna, V.; van der Ploeg, H.P.; Cheung, N.W.; Huxley, R.R.; Bauman, A.E. Sociodemographic Correlates of the Increasing Trend in Prevalence of Gestational Diabetes Mellitus in a Large Population of Women between 1995 and 2005. Diabetes Care 2008, 31, 2288–2293. [Google Scholar] [CrossRef]
- Deitch, J.; Yates, C.J.; Hamblin, P.S.; Kevat, D.; Shahid, I.; Teale, G.; Lee, I. Prevalence of Gestational Diabetes Mellitus, Maternal Obesity and Associated Perinatal Outcomes over 10 Years in an Australian Tertiary Maternity Provider. Diabetes Res. Clin. Pract. 2023, 203, 110793. [Google Scholar] [CrossRef]
- Ferrara, A.; Kahn, H.S.; Quesenberry, C.P.; Riley, C.; Hedderson, M.M. An Increase in the Incidence of Gestational Diabetes Mellitus: Northern California, 1991–2000. Obstet. Gynecol. 2004, 103, 526–533. [Google Scholar] [CrossRef]
- Dabelea, D.; Snell-Bergeon, J.K.; Hartsfield, C.L.; Bischoff, K.J.; Hamman, R.F.; McDuffie, R.S.; Kaiser Permanente of Colorado GDM Screening Program. Increasing Prevalence of Gestational Diabetes Mellitus (GDM) over Time and by Birth Cohort: Kaiser Permanente of Colorado GDM Screening Program. Diabetes Care 2005, 28, 579–584. [Google Scholar] [CrossRef]
- Beischer, N.A.; Oats, J.N.; Henry, O.A.; Sheedy, M.T.; Walstab, J.E. Incidence and Severity of Gestational Diabetes Mellitus According to Country of Birth in Women Living in Australia. Diabetes 1991, 40 (Suppl. S2), 35–38. [Google Scholar] [CrossRef]
- Thorpe, L.E.; Berger, D.; Ellis, J.A.; Bettegowda, V.R.; Brown, G.; Matte, T.; Bassett, M.; Frieden, T.R. Trends and Racial/Ethnic Disparities in Gestational Diabetes Among Pregnant Women in New York City, 1990–2001. Am. J. Public Health 2005, 95, 1536–1539. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhang, C. Prevalence of Gestational Diabetes and Risk of Progression to Type 2 Diabetes: A Global Perspective. Curr. Diab. Rep. 2016, 16, 7. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, A. Increasing Prevalence of Gestational Diabetes Mellitus: A Public Health Perspective. Diabetes Care 2007, 30 (Suppl. S2), S141–S146. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.D.; Ebrahim, S. “Mendelian Randomization”: Can Genetic Epidemiology Contribute to Understanding Environmental Determinants of Disease? Int. J. Epidemiol. 2003, 32, 1–22. [Google Scholar] [CrossRef]
- Khankari, N.K.; Keaton, J.M.; Walker, V.M.; Lee, K.M.; Shuey, M.M.; Clarke, S.L.; Heberer, K.R.; Miller, D.R.; Reaven, P.D.; Lynch, J.A.; et al. Using Mendelian Randomisation to Identify Opportunities for Type 2 Diabetes Prevention by Repurposing Medications Used for Lipid Management. eBioMedicine 2022, 80, 104038. [Google Scholar] [CrossRef]
- Ji, Y.; Yiorkas, A.M.; Frau, F.; Mook-Kanamori, D.; Staiger, H.; Thomas, E.L.; Atabaki-Pasdar, N.; Campbell, A.; Tyrrell, J.; Jones, S.E.; et al. Genome-Wide and Abdominal MRI Data Provide Evidence That a Genetically Determined Favorable Adiposity Phenotype Is Characterized by Lower Ectopic Liver Fat and Lower Risk of Type 2 Diabetes, Heart Disease, and Hypertension. Diabetes 2019, 68, 207–219. [Google Scholar] [CrossRef]
- Swerdlow, D.I. Mendelian Randomization and Type 2 Diabetes. Cardiovasc. Drugs Ther. 2016, 30, 51–57. [Google Scholar] [CrossRef]
- Røder, M.E.; Porte, D.; Schwartz, R.S.; Kahn, S.E. Disproportionately Elevated Proinsulin Levels Reflect the Degree of Impaired B Cell Secretory Capacity in Patients with Noninsulin-Dependent Diabetes Mellitus. J. Clin. Endocrinol. Metab. 1998, 83, 604–608. [Google Scholar] [CrossRef]
- Saltiel, A.R.; Kahn, C.R. Insulin Signalling and the Regulation of Glucose and Lipid Metabolism. Nature 2001, 414, 799–806. [Google Scholar] [CrossRef]
- Hribal, M.L.; Oriente, F.; Accili, D. Mouse Models of Insulin Resistance. Am. J. Physiol. Endocrinol. Metab. 2002, 282, E977–E981. [Google Scholar] [CrossRef]
- Tsalamandris, S.; Antonopoulos, A.S.; Oikonomou, E.; Papamikroulis, G.-A.; Vogiatzi, G.; Papaioannou, S.; Deftereos, S.; Tousoulis, D. The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. Eur. Cardiol. Rev. 2019, 14, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Donath, M.Y.; Shoelson, S.E. Type 2 Diabetes as an Inflammatory Disease. Nat. Rev. Immunol. 2011, 11, 98–107. [Google Scholar] [CrossRef]
- Duncan, B.B.; Schmidt, M.I.; Pankow, J.S.; Ballantyne, C.M.; Couper, D.; Vigo, A.; Hoogeveen, R.; Folsom, A.R.; Heiss, G. Low-Grade Systemic Inflammation and the Development of Type 2 Diabetes: The Atherosclerosis Risk in Communities Study. Diabetes 2003, 52, 1799–1805. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, A.D.; Manson, J.E.; Rifai, N.; Buring, J.E.; Ridker, P.M. C-Reactive Protein, Interleukin 6, and Risk of Developing Type 2 Diabetes Mellitus. JAMA 2001, 286, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.I.; Duncan, B.B.; Sharrett, A.R.; Lindberg, G.; Savage, P.J.; Offenbacher, S.; Azambuja, M.I.; Tracy, R.P.; Heiss, G. Markers of Inflammation and Prediction of Diabetes Mellitus in Adults (Atherosclerosis Risk in Communities Study): A Cohort Study. Lancet Lond. Engl. 1999, 353, 1649–1652. [Google Scholar] [CrossRef]
- Ellulu, M.S.; Patimah, I.; Khaza’ai, H.; Rahmat, A.; Abed, Y. Obesity and Inflammation: The Linking Mechanism and the Complications. Arch. Med. Sci. AMS 2017, 13, 851–863. [Google Scholar] [CrossRef]
- Stępień, M.; Stępień, A.; Wlazeł, R.N.; Paradowski, M.; Banach, M.; Rysz, J. Obesity Indices and Inflammatory Markers in Obese Non-Diabetic Normo- and Hypertensive Patients: A Comparative Pilot Study. Lipids Health Dis. 2014, 13, 29. [Google Scholar] [CrossRef]
- Borges, M.C.; Clayton, G.L.; Freathy, R.M.; Felix, J.F.; Fernández-Sanlés, A.; Soares, A.G.; Kilpi, F.; Yang, Q.; McEachan, R.R.C.; Richmond, R.C.; et al. Integrating Multiple Lines of Evidence to Assess the Effects of Maternal BMI on Pregnancy and Perinatal Outcomes. BMC Med. 2024, 22, 32. [Google Scholar] [CrossRef]
- Pervjakova, N.; Moen, G.-H.; Borges, M.-C.; Ferreira, T.; Cook, J.P.; Allard, C.; Beaumont, R.N.; Canouil, M.; Hatem, G.; Heiskala, A.; et al. Multi-Ancestry Genome-Wide Association Study of Gestational Diabetes Mellitus Highlights Genetic Links with Type 2 Diabetes. Hum. Mol. Genet. 2022, 31, 3377–3391. [Google Scholar] [CrossRef]
- Shirazian, N.; Emdadi, R.; Mahboubi, M.; Motevallian, A.; Fazel-Sarjuei, Z.; Sedighpour, N.; Fadaki, S.-F.; Shahmoradi, N. Screening for Gestational Diabetes: Usefulness of Clinical Risk Factors. Arch. Gynecol. Obstet. 2009, 280, 933–937. [Google Scholar] [CrossRef] [PubMed]
- Moses, R.; Griffiths, R.; Davis, W. Gestational Diabetes: Do All Women Need to Be Tested? Aust. N. Z. J. Obstet. Gynaecol. 1995, 35, 387–389. [Google Scholar] [CrossRef] [PubMed]
- Lao, T.T.; Ho, L.-F.; Chan, B.C.P.; Leung, W.-C. Maternal Age and Prevalence of Gestational Diabetes Mellitus. Diabetes Care 2006, 29, 948–949. [Google Scholar] [CrossRef]
- Kim, C.; Berger, D.K.; Chamany, S. Recurrence of Gestational Diabetes Mellitus: A Systematic Review. Diabetes Care 2007, 30, 1314–1319. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, W.; Huang, W.; Zhang, L.; Liang, X.; Li, G. Differing Risk Factors for New Onset and Recurrent Gestational Diabetes Mellitus in Multipara Women: A Cohort Study. BMC Endocr. Disord. 2022, 22, 3. [Google Scholar] [CrossRef]
- Schwartz, N.; Nachum, Z.; Green, M.S. The Prevalence of Gestational Diabetes Mellitus Recurrence—Effect of Ethnicity and Parity: A Metaanalysis. Am. J. Obstet. Gynecol. 2015, 213, 310–317. [Google Scholar] [CrossRef]
- Larrabure-Torrealva, G.T.; Martinez, S.; Luque-Fernandez, M.A.; Sanchez, S.E.; Mascaro, P.A.; Ingar, H.; Castillo, W.; Zumaeta, R.; Grande, M.; Motta, V.; et al. Prevalence and Risk Factors of Gestational Diabetes Mellitus: Findings from a Universal Screening Feasibility Program in Lima, Peru. BMC Pregnancy Childbirth 2018, 18, 303. [Google Scholar] [CrossRef]
- Moosazadeh, M.; Asemi, Z.; Lankarani, K.B.; Tabrizi, R.; Maharlouei, N.; Naghibzadeh-Tahami, A.; Yousefzadeh, G.; Sadeghi, R.; Khatibi, S.R.; Afshari, M.; et al. Family History of Diabetes and the Risk of Gestational Diabetes Mellitus in Iran: A Systematic Review and Meta-Analysis. Diabetes Metab. Syndr. Clin. Res. Rev. 2017, 11, S99–S104. [Google Scholar] [CrossRef]
- Williams, M.A.; Qiu, C.; Dempsey, J.C.; Luthy, D.A. Familial Aggregation of Type 2 Diabetes and Chronic Hypertension in Women with Gestational Diabetes Mellitus. J. Reprod. Med. 2003, 48, 955–962. [Google Scholar]
- Hedderson, M.; Ehrlich, S.; Sridhar, S.; Darbinian, J.; Moore, S.; Ferrara, A. Racial/Ethnic Disparities in the Prevalence of Gestational Diabetes Mellitus by BMI. Diabetes Care 2012, 35, 1492–1498. [Google Scholar] [CrossRef]
- Kim, S.Y.; Saraiva, C.; Curtis, M.; Wilson, H.G.; Troyan, J.; Sharma, A.J. Fraction of Gestational Diabetes Mellitus Attributable to Overweight and Obesity by Race/Ethnicity, California, 2007–2009. Am. J. Public Health 2013, 103, e65–e72. [Google Scholar] [CrossRef]
- Visscher, P.M.; Wray, N.R.; Zhang, Q.; Sklar, P.; McCarthy, M.I.; Brown, M.A.; Yang, J. 10 Years of GWAS Discovery: Biology, Function, and Translation. Am. J. Hum. Genet. 2017, 101, 5–22. [Google Scholar] [CrossRef] [PubMed]
- Esplin, E.D.; Oei, L.; Snyder, M.P. Personalized Sequencing and the Future of Medicine: Discovery, Diagnosis and Defeat of Disease. Pharmacogenomics 2014, 15, 1771–1790. [Google Scholar] [CrossRef] [PubMed]
- Scott, R.A.; Lagou, V.; Welch, R.P.; Wheeler, E.; Montasser, M.E.; Luan, J.; Mägi, R.; Strawbridge, R.J.; Rehnberg, E.; Gustafsson, S.; et al. Large-Scale Association Analyses Identify New Loci Influencing Glycemic Traits and Provide Insight into the Underlying Biological Pathways. Nat. Genet. 2012, 44, 991–1005. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, E.; Leong, A.; Liu, C.-T.; Hivert, M.-F.; Strawbridge, R.J.; Podmore, C.; Li, M.; Yao, J.; Sim, X.; Hong, J.; et al. Impact of Common Genetic Determinants of Hemoglobin A1c on Type 2 Diabetes Risk and Diagnosis in Ancestrally Diverse Populations: A Transethnic Genome-Wide Meta-Analysis. PLOS Med. 2017, 14, e1002383. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Z.; Sidorenko, J.; Revez, J.A.; Xue, A.; Lu, X.; Pärna, K.; Snieder, H.; Visscher, P.M.; Wray, N.R.; Yengo, L. Estimation and Implications of the Genetic Architecture of Fasting and Non-Fasting Blood Glucose. Nat. Commun. 2023, 14, 451. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Bakshi, A.; Zhu, Z.; Hemani, G.; Vinkhuyzen, A.A.E.; Lee, S.H.; Robinson, M.R.; Perry, J.R.B.; Nolte, I.M.; van Vliet-Ostaptchouk, J.V.; et al. Genetic Variance Estimation with Imputed Variants Finds Negligible Missing Heritability for Human Height and Body Mass Index. Nat. Genet. 2015, 47, 1114–1120. [Google Scholar] [CrossRef]
- Bulik-Sullivan, B.K.; Loh, P.-R.; Finucane, H.K.; Ripke, S.; Yang, J.; Schizophrenia Working Group of the Psychiatric Genomics Consortium; Patterson, N.; Daly, M.J.; Price, A.L.; Neale, B.M. LD Score Regression Distinguishes Confounding from Polygenicity in Genome-Wide Association Studies. Nat. Genet. 2015, 47, 291–295. [Google Scholar] [CrossRef]
- Moen, G.-H.; LeBlanc, M.; Sommer, C.; Prasad, R.B.; Lekva, T.; Normann, K.R.; Qvigstad, E.; Groop, L.; Birkeland, K.I.; Evans, D.M.; et al. Genetic Determinants of Glucose Levels in Pregnancy: Genetic Risk Scores Analysis and GWAS in the Norwegian STORK Cohort. Eur. J. Endocrinol. 2018, 179, 363–372. [Google Scholar] [CrossRef]
- Powe, C.E.; Nodzenski, M.; Talbot, O.; Allard, C.; Briggs, C.; Leya, M.V.; Perron, P.; Bouchard, L.; Florez, J.C.; Scholtens, D.M.; et al. Genetic Determinants of Glycemic Traits and the Risk of Gestational Diabetes Mellitus. Diabetes 2018, 67, 2703–2709. [Google Scholar] [CrossRef]
- Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007, 447, 661–678. Available online: https://pubmed.ncbi.nlm.nih.gov/17554300/ (accessed on 18 June 2024). [CrossRef] [PubMed]
- Zhen, J.; Gu, Y.; Wang, P.; Wang, W.; Bian, S.; Huang, S.; Liang, H.; Huang, M.; Yu, Y.; Chen, Q.; et al. Genome-Wide Association and Mendelian Randomisation Analysis among 30,699 Chinese Pregnant Women Identifies Novel Genetic and Molecular Risk Factors for Gestational Diabetes and Glycaemic Traits. Diabetologia 2024, 67, 703–713. [Google Scholar] [CrossRef]
- Wu, N.-N.; Zhao, D.; Ma, W.; Lang, J.-N.; Liu, S.-M.; Fu, Y.; Wang, X.; Wang, Z.-W.; Li, Q. A Genome-Wide Association Study of Gestational Diabetes Mellitus in Chinese Women. J. Matern.-Fetal Neonatal Med. 2021, 34, 1557–1564. [Google Scholar] [CrossRef] [PubMed]
- Yue, S.; Pei, L.; Lai, F.; Xiao, H.; Li, Z.; Zeng, R.; Chen, L.; Chen, W.; Liu, H.; Li, Y.; et al. Genome-Wide Analysis Study of Gestational Diabetes Mellitus and Related Pathogenic Factors in a Chinese Han Population. BMC Pregnancy Childbirth 2023, 23, 856. [Google Scholar] [CrossRef]
- Kwak, S.H.; Kim, S.H.; Cho, Y.M.; Go, M.J.; Cho, Y.S.; Choi, S.H.; Moon, M.K.; Jung, H.S.; Shin, H.D.; Kang, H.M.; et al. A Genome-Wide Association Study of Gestational Diabetes Mellitus in Korean Women. Diabetes 2012, 61, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Elliott, A.; Walters, R.K.; Pirinen, M.; Kurki, M.; Junna, N.; Goldstein, J.; Reeve, M.P.; Siirtola, H.; Lemmelä, S.; Turley, P.; et al. Distinct and Shared Genetic Architectures of Gestational Diabetes Mellitus and Type 2 Diabetes Mellitus. Nat. Genet. 2024, 56, 377–382. [Google Scholar] [CrossRef]
- Kurki, M.I.; Karjalainen, J.; Palta, P.; Sipilä, T.P.; Kristiansson, K.; Donner, K.M.; Reeve, M.P.; Laivuori, H.; Aavikko, M.; Kaunisto, M.A.; et al. FinnGen Provides Genetic Insights from a Well-Phenotyped Isolated Population. Nature 2023, 613, 508–518. [Google Scholar] [CrossRef]
- Raimondo, A.; Rees, M.G.; Gloyn, A.L. Glucokinase Regulatory Protein: Complexity at the Crossroads of Triglyceride and Glucose Metabolism. Curr. Opin. Lipidol 2015, 26, 88–95. [Google Scholar] [CrossRef]
- Matschinsky, F.M.; Magnuson, M.A. Glucokinase and Glycemic Disease: From Basics to Novel Therapeutics; S.Karger AG: Basel, Switzerland, 2004. [Google Scholar] [CrossRef]
- Van Schaftingen, E.A. Protein from Rat Liver Confers to Glucokinase the Property of Being Antagonistically Regulated by Fructose 6-Phosphate and Fructose 1-Phosphate. Eur. J. Biochem. 1989, 179, 179–184. [Google Scholar] [CrossRef]
- Beer, N.L.; Tribble, N.D.; McCulloch, L.J.; Roos, C.; Johnson, P.R.V.; Orho-Melander, M.; Gloyn, A.L. The P446L Variant in GCKR Associated with Fasting Plasma Glucose and Triglyceride Levels Exerts Its Effect through Increased Glucokinase Activity in Liver. Hum. Mol. Genet. 2009, 18, 4081–4088. [Google Scholar] [CrossRef]
- Rees, M.G.; Wincovitch, S.; Schultz, J.; Waterstradt, R.; Beer, N.L.; Baltrusch, S.; Collins, F.S.; Gloyn, A.L. Cellular Characterisation of the GCKR P446L Variant Associated with Type 2 Diabetes Risk. Diabetologia 2012, 55, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Sparsø, T.; Andersen, G.; Nielsen, T.; Burgdorf, K.S.; Gjesing, A.P.; Nielsen, A.L.; Albrechtsen, A.; Rasmussen, S.S.; Jørgensen, T.; Borch-Johnsen, K.; et al. The GCKR Rs780094 Polymorphism Is Associated with Elevated Fasting Serum Triacylglycerol, Reduced Fasting and OGTT-Related Insulinaemia, and Reduced Risk of Type 2 Diabetes. Diabetologia 2008, 51, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes of BioMedical Research; Saxena, R.; Voight, B.F.; Lyssenko, V.; Burtt, N.P.; de Bakker, P.I.W.; Chen, H.; Roix, J.J.; Kathiresan, S.; Hirschhorn, J.N.; et al. Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and Triglyceride Levels. Science 2007, 316, 1331–1336. [Google Scholar] [CrossRef] [PubMed]
- Onuma, H.; Tabara, Y.; Kawamoto, R.; Shimizu, I.; Kawamura, R.; Takata, Y.; Nishida, W.; Ohashi, J.; Miki, T.; Kohara, K.; et al. The GCKR Rs780094 Polymorphism Is Associated with Susceptibility of Type 2 Diabetes, Reduced Fasting Plasma Glucose Levels, Increased Triglycerides Levels and Lower HOMA-IR in Japanese Population. J. Hum. Genet. 2010, 55, 600–604. [Google Scholar] [CrossRef]
- Chen, G.; Shriner, D.; Zhang, J.; Zhou, J.; Adikaram, P.; Doumatey, A.P.; Bentley, A.R.; Adeyemo, A.; Rotimi, C.N. Additive Genetic Effect of GCKR, G6PC2, and SLC30A8 Variants on Fasting Glucose Levels and Risk of Type 2 Diabetes. PLoS ONE 2022, 17, e0269378. [Google Scholar] [CrossRef]
- Dupuis, J.; Langenberg, C.; Prokopenko, I.; Saxena, R.; Soranzo, N.; Jackson, A.U.; Wheeler, E.; Glazer, N.L.; Bouatia-Naji, N.; Gloyn, A.L.; et al. New Genetic Loci Implicated in Fasting Glucose Homeostasis and Their Impact on Type 2 Diabetes Risk. Nat. Genet. 2010, 42, 105–116. [Google Scholar] [CrossRef]
- Vaxillaire, M.; Cavalcanti-Proença, C.; Dechaume, A.; Tichet, J.; Marre, M.; Balkau, B.; Froguel, P.; for the DESIR Study Group. The Common P446L Polymorphism in GCKR Inversely Modulates Fasting Glucose and Triglyceride Levels and Reduces Type 2 Diabetes Risk in the DESIR Prospective General French Population. Diabetes 2008, 57, 2253–2257. [Google Scholar] [CrossRef]
- Lagou, V.; Jiang, L.; Ulrich, A.; Zudina, L.; González, K.S.G.; Balkhiyarova, Z.; Faggian, A.; Maina, J.G.; Chen, S.; Todorov, P.V.; et al. GWAS of Random Glucose in 476,326 Individuals Provide Insights into Diabetes Pathophysiology, Complications and Treatment Stratification. Nat. Genet. 2023, 55, 1448–1461. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Spracklen, C.N.; Marenne, G.; Varshney, A.; Corbin, L.J.; Luan, J.; Willems, S.M.; Wu, Y.; Zhang, X.; Horikoshi, M.; et al. The Trans-Ancestral Genomic Architecture of Glycemic Traits. Nat. Genet. 2021, 53, 840–860. [Google Scholar] [CrossRef]
- Sun, S.-C.; Lee, S.-E.; Xu, Y.-N.; Kim, N.-H. Perturbation of Spc25 Expression Affects Meiotic Spindle Organization, Chromosome Alignment and Spindle Assembly Checkpoint in Mouse Oocytes. Cell Cycle 2010, 9, 4552–4559. [Google Scholar] [CrossRef]
- Yon Jung, S.; Papp, J.C.; Sobel, E.M.; Pellegrini, M.; Yu, H. Genetic Variants of Glucose Metabolism and Exposure to Smoking in African American Breast Cancer. Endocr. Relat. Cancer 2023, 30, e220184. [Google Scholar] [CrossRef] [PubMed]
- Ellis, K.L.; Zhou, Y.; Beshansky, J.R.; Ainehsazan, E.; Yang, Y.; Selker, H.P.; Huggins, G.S.; Cupples, L.A.; Peter, I. Genetic Variation at Glucose and Insulin Trait Loci and Response to Glucose–Insulin–Potassium (GIK) Therapy: The IMMEDIATE Trial. Pharmacogenomics J. 2015, 15, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhu, Y.; Li, Z.; Bu, Q.; Sun, T.; Wang, H.; Sun, H.; Cao, X. Up-Regulation of SPC25 Promotes Breast Cancer. Aging 2019, 11, 5689–5704. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jia, J.; Huang, T. Shared Genetic Architecture and Casual Relationship between Leptin Levels and Type 2 Diabetes: Large-Scale Cross-Trait Meta-Analysis and Mendelian Randomization Analysis. BMJ Open Diabetes Res. Care 2020, 8, e001140. [Google Scholar] [CrossRef]
- Cui, F.; Hu, J.; Fan, Y.; Tan, J.; Tang, H. Knockdown of Spindle Pole Body Component 25 Homolog Inhibits Cell Proliferation and Cycle Progression in Prostate Cancer. Oncol. Lett. 2018, 15, 5712–5720. [Google Scholar] [CrossRef]
- Hutton, J.C.; O’Brien, R.M. Glucose-6-Phosphatase Catalytic Subunit Gene Family. J. Biol. Chem. 2009, 284, 29241–29245. [Google Scholar] [CrossRef]
- Arden, S.D.; Zahn, T.; Steegers, S.; Webb, S.; Bergman, B.; O’Brien, R.M.; Hutton, J.C. Molecular Cloning of a Pancreatic Islet-Specific Glucose-6-Phosphatase Catalytic Subunit-Related Protein. Diabetes 1999, 48, 531–542. [Google Scholar] [CrossRef]
- Xin, Y.; Kim, J.; Okamoto, H.; Ni, M.; Wei, Y.; Adler, C.; Murphy, A.J.; Yancopoulos, G.D.; Lin, C.; Gromada, J. RNA Sequencing of Single Human Islet Cells Reveals Type 2 Diabetes Genes. Cell Metab. 2016, 24, 608–615. [Google Scholar] [CrossRef]
- Martin, C.C.; Bischof, L.J.; Bergman, B.; Hornbuckle, L.A.; Hilliker, C.; Frigeri, C.; Wahl, D.; Svitek, C.A.; Wong, R.; Goldman, J.K.; et al. Cloning and Characterization of the Human and Rat Islet-Specific Glucose-6-Phosphatase Catalytic Subunit-Related Protein (IGRP) Genes. J. Biol. Chem. 2001, 276, 25197–25207. [Google Scholar] [CrossRef]
- Mahajan, A.; Sim, X.; Ng, H.J.; Manning, A.; Rivas, M.A.; Highland, H.M.; Locke, A.E.; Grarup, N.; Im, H.K.; Cingolani, P.; et al. Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus. PLoS Genet. 2015, 11, e1004876. [Google Scholar] [CrossRef]
- Li, X.; Shu, Y.-H.; Xiang, A.H.; Trigo, E.; Kuusisto, J.; Hartiala, J.; Swift, A.J.; Kawakubo, M.; Stringham, H.M.; Bonnycastle, L.L.; et al. Additive Effects of Genetic Variation in GCK and G6PC2 on Insulin Secretion and Fasting Glucose. Diabetes 2009, 58, 2946–2953. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Li, Y.; Wang, J.; Wang, C.; Fan, J.; Zhao, J.; Yin, L.; Liu, X.; Zhang, D.; Li, L. Meta-Analyses of the Association of G6PC2 Allele Variants with Elevated Fasting Glucose and Type 2 Diabetes. PLoS ONE 2017, 12, e0181232. [Google Scholar] [CrossRef] [PubMed]
- Udhaya Kumar, S.; Kamaraj, B.; Varghese, R.P.; Preethi, V.A.; Bithia, R.; George Priya Doss, C. Mutations in G6PC2 Gene with Increased Risk for Development of Type 2 Diabetes: Understanding via Computational Approach. Adv. Protein Chem. Struct. Biol. 2022, 130, 351–373. [Google Scholar] [CrossRef] [PubMed]
- Vendrell, J.; Querol, E.; Avilés, F.X. Metallocarboxypeptidases and Their Protein Inhibitors: Structure, Function and Biomedical Properties. Biochim. Biophys. Acta BBA—Protein Struct. Mol. Enzymol. 2000, 1477, 284–298. [Google Scholar] [CrossRef]
- Reznik, S.E.; Fricker, L.D. Carboxypeptidases from A to Z: Implications in Embryonic Development and Wnt Binding. Cell. Mol. Life Sci. CMLS 2001, 58, 1790–1804. [Google Scholar] [CrossRef]
- Lyons, P.J.; Fricker, L.D. Carboxypeptidase O Is a Glycosylphosphatidylinositol-Anchored Intestinal Peptidase with Acidic Amino Acid Specificity. J. Biol. Chem. 2011, 286, 39023–39032. [Google Scholar] [CrossRef] [PubMed]
- Beck, I.T. The Role of Pancreatic Enzymes in Digestion. Am. J. Clin. Nutr. 1973, 26, 311–325. [Google Scholar] [CrossRef]
- Burke, L.C.; Ezeribe, H.O.; Kwon, A.Y.; Dockery, D.; Lyons, P.J. Carboxypeptidase O Is a Lipid Droplet-Associated Enzyme Able to Cleave Both Acidic and Polar C-Terminal Amino Acids. PLoS ONE 2018, 13, e0206824. [Google Scholar] [CrossRef]
- Wei, S.; Segura, S.; Vendrell, J.; Aviles, F.X.; Lanoue, E.; Day, R.; Feng, Y.; Fricker, L.D. Identification and Characterization of Three Members of the Human Metallocarboxypeptidase Gene Family. J. Biol. Chem. 2002, 277, 14954–14964. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Taylor, A.J.; Fulcher, J.M.; Swensen, A.C.; Dai, X.-Q.; Komba, M.; Wrightson, K.L.C.; Fok, K.; Patterson, A.E.; Klein Geltink, R.I.; et al. Deletion of Carboxypeptidase E in β-Cells Disrupts Proinsulin Processing but Does Not Lead to Spontaneous Development of Diabetes in Mice. Diabetes 2023, 72, 1277–1288. [Google Scholar] [CrossRef]
- Alsters, S.I.M.; Goldstone, A.P.; Buxton, J.L.; Zekavati, A.; Sosinsky, A.; Yiorkas, A.M.; Holder, S.; Klaber, R.E.; Bridges, N.; van Haelst, M.M.; et al. Truncating Homozygous Mutation of Carboxypeptidase E (CPE) in a Morbidly Obese Female with Type 2 Diabetes Mellitus, Intellectual Disability and Hypogonadotrophic Hypogonadism. PLoS ONE 2015, 10, e0131417. [Google Scholar] [CrossRef]
- Naggert, J.K.; Fricker, L.D.; Varlamov, O.; Nishina, P.M.; Rouille, Y.; Steiner, D.F.; Carroll, R.J.; Paigen, B.J.; Leiter, E.H. Hyperproinsulinaemia in Obese Fat/Fat Mice Associated with a Carboxypeptidase E Mutation Which Reduces Enzyme Activity. Nat. Genet. 1995, 10, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.; Lockridge, A.; Alejandro, E.U. eIF4G1 and Carboxypeptidase E Axis Dysregulation in O-GlcNAc Transferase–Deficient Pancreatic β-Cells Contributes to Hyperproinsulinemia in Mice. J. Biol. Chem. 2019, 294, 13040–13050. [Google Scholar] [CrossRef] [PubMed]
- Defer, N.; Best-Belpomme, M.; Hanoune, J. Tissue Specificity and Physiological Relevance of Various Isoforms of Adenylyl Cyclase. Am. J. Physiol.-Ren. Physiol. 2000, 279, F400–F416. [Google Scholar] [CrossRef]
- Halls, M.L.; Cooper, D.M.F. Adenylyl Cyclase Signalling Complexes—Pharmacological Challenges and Opportunities. Pharmacol. Ther. 2017, 172, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Prentki, M.; Matschinsky, F.M. Ca2+, cAMP, and Phospholipid-Derived Messengers in Coupling Mechanisms of Insulin Secretion. Physiol. Rev. 1987, 67, 1185–1248. [Google Scholar] [CrossRef]
- Leech, C.A.; Castonguay, M.A.; Habener, J.F. Expression of Adenylyl Cyclase Subtypes in Pancreatic Beta-Cells. Biochem. Biophys. Res. Commun. 1999, 254, 703–706. [Google Scholar] [CrossRef]
- Eizirik, D.L.; Sammeth, M.; Bouckenooghe, T.; Bottu, G.; Sisino, G.; Igoillo-Esteve, M.; Ortis, F.; Santin, I.; Colli, M.L.; Barthson, J.; et al. The Human Pancreatic Islet Transcriptome: Expression of Candidate Genes for Type 1 Diabetes and the Impact of pro-Inflammatory Cytokines. PLoS Genet. 2012, 8, e1002552. [Google Scholar] [CrossRef]
- Vujkovic, M.; Keaton, J.M.; Lynch, J.A.; Miller, D.R.; Zhou, J.; Tcheandjieu, C.; Huffman, J.E.; Assimes, T.L.; Lorenz, K.; Zhu, X.; et al. Discovery of 318 New Risk Loci for Type 2 Diabetes and Related Vascular Outcomes among 1.4 Million Participants in a Multi-Ancestry Meta-Analysis. Nat. Genet. 2020, 52, 680–691. [Google Scholar] [CrossRef]
- Prasad, R.B.; Kristensen, K.; Katsarou, A.; Shaat, N. Association of Single Nucleotide Polymorphisms with Insulin Secretion, Insulin Sensitivity, and Diabetes in Women with a History of Gestational Diabetes Mellitus. BMC Med. Genomics 2021, 14, 274. [Google Scholar] [CrossRef]
- Saxena, R.; Hivert, M.-F.; Langenberg, C.; Tanaka, T.; Pankow, J.S.; Vollenweider, P.; Lyssenko, V.; Bouatia-Naji, N.; Dupuis, J.; Jackson, A.U.; et al. Genetic Variation in GIPR Influences the Glucose and Insulin Responses to an Oral Glucose Challenge. Nat. Genet. 2010, 42, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Huopio, H.; Cederberg, H.; Vangipurapu, J.; Hakkarainen, H.; Pääkkönen, M.; Kuulasmaa, T.; Heinonen, S.; Laakso, M. Association of Risk Variants for Type 2 Diabetes and Hyperglycemia with Gestational Diabetes. Eur. J. Endocrinol. 2013, 169, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Arora, G.P.; Almgren, P.; Brøns, C.; Thaman, R.G.; Vaag, A.A.; Groop, L.; Prasad, R.B. Association between Genetic Risk Variants and Glucose Intolerance during Pregnancy in North Indian Women. BMC Med. Genom. 2018, 11, 64. [Google Scholar] [CrossRef] [PubMed]
- Voight, B.F.; Scott, L.J.; Steinthorsdottir, V.; Morris, A.P.; Dina, C.; Welch, R.P.; Zeggini, E.; Huth, C.; Aulchenko, Y.S.; Thorleifsson, G.; et al. Twelve Type 2 Diabetes Susceptibility Loci Identified through Large-Scale Association Analysis. Nat. Genet. 2010, 42, 579–589. [Google Scholar] [CrossRef]
- Hodson, D.J.; Mitchell, R.K.; Marselli, L.; Pullen, T.J.; Gimeno Brias, S.; Semplici, F.; Everett, K.L.; Cooper, D.M.F.; Bugliani, M.; Marchetti, P.; et al. ADCY5 Couples Glucose to Insulin Secretion in Human Islets. Diabetes 2014, 63, 3009–3021. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Yuan, Z.; Zhang, C.; Ju, H.; Sun, Y.; Huang, N.; Chen, L.; Jin, L. Common Genetic Variants in ADCY5 and Gestational Glycemic Traits. PLoS ONE 2020, 15, e0230032. [Google Scholar] [CrossRef]
- Stijnen, P.; Ramos-Molina, B.; O’Rahilly, S.; Creemers, J.W.M. PCSK1 Mutations and Human Endocrinopathies: From Obesity to Gastrointestinal Disorders. Endocr. Rev. 2016, 37, 347–371. [Google Scholar] [CrossRef] [PubMed]
- Farooqi, I.S.; Volders, K.; Stanhope, R.; Heuschkel, R.; White, A.; Lank, E.; Keogh, J.; O’Rahilly, S.; Creemers, J.W.M. Hyperphagia and Early-Onset Obesity Due to a Novel Homozygous Missense Mutation in Prohormone Convertase 1/3. J. Clin. Endocrinol. Metab. 2007, 92, 3369–3373. [Google Scholar] [CrossRef]
- Benjannet, S.; Rondeau, N.; Day, R.; Chrétien, M.; Seidah, N.G. PC1 and PC2 Are Proprotein Convertases Capable of Cleaving Proopiomelanocortin at Distinct Pairs of Basic Residues. Proc. Natl. Acad. Sci. USA 1991, 88, 3564–3568. [Google Scholar] [CrossRef]
- Thomas, L.; Leduc, R.; Thorne, B.A.; Smeekens, S.P.; Steiner, D.F.; Thomas, G. Kex2-like Endoproteases PC2 and PC3 Accurately Cleave a Model Prohormone in Mammalian Cells: Evidence for a Common Core of Neuroendocrine Processing Enzymes. Proc. Natl. Acad. Sci. USA 1991, 88, 5297–5301. [Google Scholar] [CrossRef]
- Dhanvantari, S.; Seidah, N.G.; Brubaker, P.L. Role of Prohormone Convertases in the Tissue-Specific Processing of Proglucagon. Mol. Endocrinol. Baltim. Md 1996, 10, 342–355. [Google Scholar] [CrossRef]
- Rouillé, Y.; Kantengwa, S.; Irminger, J.C.; Halban, P.A. Role of the Prohormone Convertase PC3 in the Processing of Proglucagon to Glucagon-like Peptide 1. J. Biol. Chem. 1997, 272, 32810–32816. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Molina, B.; Martin, M.G.; Lindberg, I. PCSK1 Variants and Human Obesity. Prog. Mol. Biol. Transl. Sci. 2016, 140, 47–74. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Orci, L.; Carroll, R.; Norrbom, C.; Ravazzola, M.; Steiner, D.F. Severe Block in Processing of Proinsulin to Insulin Accompanied by Elevation of Des-64,65 Proinsulin Intermediates in Islets of Mice Lacking Prohormone Convertase 1/3. Proc. Natl. Acad. Sci. USA 2002, 99, 10299–10304. [Google Scholar] [CrossRef]
- Smeekens, S.P.; Montag, A.G.; Thomas, G.; Albiges-Rizo, C.; Carroll, R.; Benig, M.; Phillips, L.A.; Martin, S.; Ohagi, S.; Gardner, P. Proinsulin Processing by the Subtilisin-Related Proprotein Convertases Furin, PC2, and PC3. Proc. Natl. Acad. Sci. USA 1992, 89, 8822–8826. [Google Scholar] [CrossRef]
- Zhu, X.; Zhou, A.; Dey, A.; Norrbom, C.; Carroll, R.; Zhang, C.; Laurent, V.; Lindberg, I.; Ugleholdt, R.; Holst, J.J.; et al. Disruption of PC1/3 Expression in Mice Causes Dwarfism and Multiple Neuroendocrine Peptide Processing Defects. Proc. Natl. Acad. Sci. USA 2002, 99, 10293–10298. [Google Scholar] [CrossRef]
- Furuta, M.; Carroll, R.; Martin, S.; Swift, H.H.; Ravazzola, M.; Orci, L.; Steiner, D.F. Incomplete Processing of Proinsulin to Insulin Accompanied by Elevation of Des-31,32 Proinsulin Intermediates in Islets of Mice Lacking Active PC2. J. Biol. Chem. 1998, 273, 3431–3437. [Google Scholar] [CrossRef]
- Shen, W.-J.; Yao, T.; Kong, X.; Williams, K.W.; Liu, T. Melanocortin Neurons: Multiple Routes to Regulation of Metabolism. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863 Pt A, 2477–2485. [Google Scholar] [CrossRef]
- Yeo, G.S.H.; Chao, D.H.M.; Siegert, A.-M.; Koerperich, Z.M.; Ericson, M.D.; Simonds, S.E.; Larson, C.M.; Luquet, S.; Clarke, I.; Sharma, S.; et al. The Melanocortin Pathway and Energy Homeostasis: From Discovery to Obesity Therapy. Mol. Metab. 2021, 48, 101206. [Google Scholar] [CrossRef]
- Myers, M.G.; Olson, D.P. Central Nervous System Control of Metabolism. Nature 2012, 491, 357–363. [Google Scholar] [CrossRef]
- Yang, D.; Hou, X.; Yang, G.; Li, M.; Zhang, J.; Han, M.; Zhang, Y.; Liu, Y. Effects of the POMC System on Glucose Homeostasis and Potential Therapeutic Targets for Obesity and Diabetes. Diabetes Metab. Syndr. Obes. Targets Ther. 2022, 15, 2939–2950. [Google Scholar] [CrossRef] [PubMed]
- Folon, L.; Baron, M.; Toussaint, B.; Vaillant, E.; Boissel, M.; Scherrer, V.; Loiselle, H.; Leloire, A.; Badreddine, A.; Balkau, B.; et al. Contribution of Heterozygous PCSK1 Variants to Obesity and Implications for Precision Medicine: A Case-Control Study. Lancet Diabetes Endocrinol. 2023, 11, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Löffler, D.; Behrendt, S.; Creemers, J.W.M.; Klammt, J.; Aust, G.; Stanik, J.; Kiess, W.; Kovacs, P.; Körner, A. Functional and Clinical Relevance of Novel and Known PCSK1 Variants for Childhood Obesity and Glucose Metabolism. Mol. Metab. 2017, 6, 295–305. [Google Scholar] [CrossRef]
- Strawbridge, R.J.; Dupuis, J.; Prokopenko, I.; Barker, A.; Ahlqvist, E.; Rybin, D.; Petrie, J.R.; Travers, M.E.; Bouatia-Naji, N.; Dimas, A.S.; et al. Genome-Wide Association Identifies Nine Common Variants Associated with Fasting Proinsulin Levels and Provides New Insights into the Pathophysiology of Type 2 Diabetes. Diabetes 2011, 60, 2624–2634. [Google Scholar] [CrossRef]
- Nead, K.T.; Li, A.; Wehner, M.R.; Neupane, B.; Gustafsson, S.; Butterworth, A.; Engert, J.C.; Davis, A.D.; Hegele, R.A.; Miller, R.; et al. Contribution of Common Non-Synonymous Variants in PCSK1 to Body Mass Index Variation and Risk of Obesity: A Systematic Review and Meta-Analysis with Evidence from up to 331 175 Individuals. Hum. Mol. Genet. 2015, 24, 3582–3594. [Google Scholar] [CrossRef]
- Goyal, Y.; Verma, A.K.; Joshi, P.C.; Dev, K. Contemplating the Role of Genetic Variants of HHEX, CDKAL1, WFS1 and SLC30A8 Genes of TYPE-2 Diabetes in Asians Ethnic Groups. Gene Rep. 2019, 17, 100465. [Google Scholar] [CrossRef]
- Pierrel, F.; Douki, T.; Fontecave, M.; Atta, M. MiaB Protein Is a Bifunctional Radical-S-Adenosylmethionine Enzyme Involved in Thiolation and Methylation of tRNA. J. Biol. Chem. 2004, 279, 47555–47563. [Google Scholar] [CrossRef]
- Palmer, C.J.; Bruckner, R.J.; Paulo, J.A.; Kazak, L.; Long, J.Z.; Mina, A.I.; Deng, Z.; LeClair, K.B.; Hall, J.A.; Hong, S.; et al. Cdkal1, a Type 2 Diabetes Susceptibility Gene, Regulates Mitochondrial Function in Adipose Tissue. Mol. Metab. 2017, 6, 1212–1225. [Google Scholar] [CrossRef]
- El-Lebedy, D.; Ashmawy, I. Common Variants in TCF7L2 and CDKAL1 Genes and Risk of Type 2 Diabetes Mellitus in Egyptians. J. Genet. Eng. Biotechnol. 2016, 14, 247–251. [Google Scholar] [CrossRef]
- Steinthorsdottir, V.; Thorleifsson, G.; Reynisdottir, I.; Benediktsson, R.; Jonsdottir, T.; Walters, G.B.; Styrkarsdottir, U.; Gretarsdottir, S.; Emilsson, V.; Ghosh, S.; et al. A Variant in CDKAL1 Influences Insulin Response and Risk of Type 2 Diabetes. Nat. Genet. 2007, 39, 770–775. [Google Scholar] [CrossRef]
- Zeggini, E.; Weedon, M.N.; Lindgren, C.M.; Frayling, T.M.; Elliott, K.S.; Lango, H.; Timpson, N.J.; Perry, J.R.B.; Rayner, N.W.; Freathy, R.M.; et al. Replication of Genome-Wide Association Signals in UK Samples Reveals Risk Loci for Type 2 Diabetes. Science 2007, 316, 1336–1341. [Google Scholar] [CrossRef] [PubMed]
- Pascoe, L.; Tura, A.; Patel, S.K.; Ibrahim, I.M.; Ferrannini, E.; Zeggini, E.; Weedon, M.N.; Mari, A.; Hattersley, A.T.; McCarthy, M.I.; et al. Common Variants of the Novel Type 2 Diabetes Genes CDKAL1 and HHEX/IDE Are Associated with Decreased Pancreatic Beta-Cell Function. Diabetes 2007, 56, 3101–3104. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, H.A.; Madsen, A.L.; Viñuela, A.; Have, C.T.; Grarup, N.; Tura, A.; Mahajan, A.; Heggie, A.J.; Koivula, R.W.; De Masi, F.; et al. Genome-Wide Association Analysis of Pancreatic Beta-Cell Glucose Sensitivity. J. Clin. Endocrinol. Metab. 2020, 106, 80–90. [Google Scholar] [CrossRef]
- Ribas, V.; Drew, B.G.; Le, J.A.; Soleymani, T.; Daraei, P.; Sitz, D.; Mohammad, L.; Henstridge, D.C.; Febbraio, M.A.; Hewitt, S.C.; et al. Myeloid-Specific Estrogen Receptor Alpha Deficiency Impairs Metabolic Homeostasis and Accelerates Atherosclerotic Lesion Development. Proc. Natl. Acad. Sci. USA 2011, 108, 16457–16462. [Google Scholar] [CrossRef]
- Mauvais-Jarvis, F.; Clegg, D.J.; Hevener, A.L. The Role of Estrogens in Control of Energy Balance and Glucose Homeostasis. Endocr. Rev. 2013, 34, 309–338. [Google Scholar] [CrossRef]
- Meoli, L.; Isensee, J.; Zazzu, V.; Nabzdyk, C.S.; Soewarto, D.; Witt, H.; Foryst-Ludwig, A.; Kintscher, U.; Noppinger, P.R. Sex- and Age-Dependent Effects of Gpr30 Genetic Deletion on the Metabolic and Cardiovascular Profiles of Diet-Induced Obese Mice. Gene 2014, 540, 210–216. [Google Scholar] [CrossRef]
- Barreto-Andrade, J.N.; de Fátima, L.A.; Campello, R.S.; Guedes, J.A.C.; de Freitas, H.S.; Machado, M.M.O.U.F. Estrogen Receptor 1 (ESR1) Enhances Slc2a4/GLUT4 Expression by a SP1 Cooperative Mechanism. Int. J. Med. Sci. 2018, 15, 1320–1328. [Google Scholar] [CrossRef]
- Gregorio, K.C.R.; Laurindo, C.P.; Machado, U.F. Estrogen and Glycemic Homeostasis: The Fundamental Role of Nuclear Estrogen Receptors ESR1/ESR2 in Glucose Transporter GLUT4 Regulation. Cells 2021, 10, 99. [Google Scholar] [CrossRef]
- Meyer, M.R.; Clegg, D.J.; Prossnitz, E.R.; Barton, M. Obesity, Insulin Resistance and Diabetes: Sex Differences and Role of Oestrogen Receptors. Acta Physiol. 2011, 203, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Dahlman, I.; Vaxillaire, M.; Nilsson, M.; Lecoeur, C.; Gu, H.F.; Cavalcanti-Proença, C.; Efendic, S.; Ostenson, C.G.; Brismar, K.; Charpentier, G.; et al. Estrogen Receptor Alpha Gene Variants Associate with Type 2 Diabetes and Fasting Plasma Glucose. Pharmacogenet. Genom. 2008, 18, 967–975. [Google Scholar] [CrossRef]
- Fox, C.S.; Heard-Costa, N.; Cupples, L.A.; Dupuis, J.; Vasan, R.S.; Atwood, L.D. Genome-Wide Association to Body Mass Index and Waist Circumference: The Framingham Heart Study 100K Project. BMC Med. Genet. 2007, 8, S18. [Google Scholar] [CrossRef] [PubMed]
- Fox, C.S.; Yang, Q.; Cupples, L.A.; Guo, C.-Y.; Atwood, L.D.; Murabito, J.M.; Levy, D.; Mendelsohn, M.E.; Housman, D.E.; Shearman, A.M. Sex-Specific Association between Estrogen Receptor-α Gene Variation and Measures of Adiposity: The Framingham Heart Study. J. Clin. Endocrinol. Metab. 2005, 90, 6257–6262. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Wang, T.; Lu, W.; Mu, P.; Yang, Y.; Liang, W.; Li, C.; Lin, G. Estrogen Receptor Alpha Gene Polymorphism Associated with Type 2 Diabetes Mellitus and the Serum Lipid Concentration in Chinese Women in Guangzhou. Chin. Med. J. 2006, 119, 1794. [Google Scholar] [CrossRef] [PubMed]
- Ereqat, S.; Cauchi, S.; Eweidat, K.; Elqadi, M.; Nasereddin, A. Estrogen Receptor 1 Gene Polymorphisms (PvuII and XbaI) Are Associated with Type 2 Diabetes in Palestinian Women. PeerJ 2019, 7, e7164. [Google Scholar] [CrossRef]
- Lemaire, K.; Ravier, M.A.; Schraenen, A.; Creemers, J.W.M.; Van de Plas, R.; Granvik, M.; Van Lommel, L.; Waelkens, E.; Chimienti, F.; Rutter, G.A.; et al. Insulin Crystallization Depends on Zinc Transporter ZnT8 Expression, but Is Not Required for Normal Glucose Homeostasis in Mice. Proc. Natl. Acad. Sci. USA 2009, 106, 14872–14877. [Google Scholar] [CrossRef]
- Chimienti, F.; Devergnas, S.; Pattou, F.; Schuit, F.; Garcia-Cuenca, R.; Vandewalle, B.; Kerr-Conte, J.; Van Lommel, L.; Grunwald, D.; Favier, A.; et al. In Vivo Expression and Functional Characterization of the Zinc Transporter ZnT8 in Glucose-Induced Insulin Secretion. J. Cell Sci. 2006, 119, 4199–4206. [Google Scholar] [CrossRef]
- Wijesekara, N.; Dai, F.F.; Hardy, A.B.; Giglou, P.R.; Bhattacharjee, A.; Koshkin, V.; Chimienti, F.; Gaisano, H.Y.; Rutter, G.A.; Wheeler, M.B. Beta Cell-Specific Znt8 Deletion in Mice Causes Marked Defects in Insulin Processing, Crystallisation and Secretion. Diabetologia 2010, 53, 1656–1668. [Google Scholar] [CrossRef]
- Tamaki, M.; Fujitani, Y.; Hara, A.; Uchida, T.; Tamura, Y.; Takeno, K.; Kawaguchi, M.; Watanabe, T.; Ogihara, T.; Fukunaka, A.; et al. The Diabetes-Susceptible Gene SLC30A8/ZnT8 Regulates Hepatic Insulin Clearance. J. Clin. Investig. 2013, 123, 4513–4524. [Google Scholar] [CrossRef]
- Flannick, J.; Thorleifsson, G.; Beer, N.L.; Jacobs, S.B.R.; Grarup, N.; Burtt, N.P.; Mahajan, A.; Fuchsberger, C.; Atzmon, G.; Benediktsson, R.; et al. Loss-of-Function Mutations in SLC30A8 Protect against Type 2 Diabetes. Nat. Genet. 2014, 46, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Shan, Z.; Bao, W.; Zhang, Y.; Rong, Y.; Wang, X.; Jin, Y.; Song, Y.; Yao, P.; Sun, C.; Hu, F.B.; et al. Interactions between Zinc Transporter-8 Gene (SLC30A8) and Plasma Zinc Concentrations for Impaired Glucose Regulation and Type 2 Diabetes. Diabetes 2014, 63, 1796–1803. [Google Scholar] [CrossRef]
- Xiang, J.; Li, X.-Y.; Xu, M.; Hong, J.; Huang, Y.; Tan, J.-R.; Lu, X.; Dai, M.; Yu, B.; Ning, G. Zinc Transporter-8 Gene (SLC30A8) Is Associated with Type 2 Diabetes in Chinese. J. Clin. Endocrinol. Metab. 2008, 93, 4107–4112. [Google Scholar] [CrossRef] [PubMed]
- Stott, F.J.; Bates, S.; James, M.C.; McConnell, B.B.; Starborg, M.; Brookes, S.; Palmero, I.; Ryan, K.; Hara, E.; Vousden, K.H.; et al. The Alternative Product from the Human CDKN2A Locus, P14(ARF), Participates in a Regulatory Feedback Loop with P53 and MDM2. EMBO J. 1998, 17, 5001–5014. [Google Scholar] [CrossRef] [PubMed]
- Hara, E.; Smith, R.; Parry, D.; Tahara, H.; Stone, S.; Peters, G. Regulation of p16CDKN2 Expression and Its Implications for Cell Immortalization and Senescence. Mol. Cell. Biol. 1996, 16, 859–867. [Google Scholar] [CrossRef] [PubMed]
- Foulkes, W.D.; Flanders, T.Y.; Pollock, P.M.; Hayward, N.K. The CDKN2A (P16) Gene and Human Cancer. Mol. Med. 1997, 3, 5–20. [Google Scholar] [CrossRef] [PubMed]
- Hannou, S.A.; Wouters, K.; Paumelle, R.; Staels, B. Functional Genomics of the CDKN2A/B Locus in Cardiovascular and Metabolic Disease: What Have We Learned from GWASs? Trends Endocrinol. Metab. 2015, 26, 176–184. [Google Scholar] [CrossRef]
- Kong, Y.; Sharma, R.B.; Ly, S.; Stamateris, R.E.; Jesdale, W.M.; Alonso, L.C. CDKN2A/B T2D Genome-Wide Association Study Risk SNPs Impact Locus Gene Expression and Proliferation in Human Islets. Diabetes 2018, 67, 872–884. [Google Scholar] [CrossRef]
- Scott, L.J.; Mohlke, K.L.; Bonnycastle, L.L.; Willer, C.J.; Li, Y.; Duren, W.L.; Erdos, M.R.; Stringham, H.M.; Chines, P.S.; Jackson, A.U.; et al. A Genome-Wide Association Study of Type 2 Diabetes in Finns Detects Multiple Susceptibility Variants. Science 2007, 316, 1341–1345. [Google Scholar] [CrossRef]
- Irwin, D.M.; Tan, H. Molecular Evolution of the Vertebrate Hexokinase Gene Family: Identification of a Conserved Fifth Vertebrate Hexokinase Gene. Comp. Biochem. Physiol. Part D Genom. Proteom. 2008, 3, 96–107. [Google Scholar] [CrossRef]
- Khan, M.W.; Priyadarshini, M.; Cordoba-Chacon, J.; Becker, T.C.; Layden, B.T. Hepatic Hexokinase Domain Containing 1 (HKDC1) Improves Whole Body Glucose Tolerance and Insulin Sensitivity in Pregnant Mice. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 678–687. [Google Scholar] [CrossRef]
- Guo, C.; Ludvik, A.E.; Arlotto, M.E.; Hayes, M.G.; Armstrong, L.L.; Scholtens, D.M.; Brown, C.D.; Newgard, C.B.; Becker, T.C.; Layden, B.T.; et al. Coordinated Regulatory Variation Associated with Gestational Hyperglycaemia Regulates Expression of the Novel Hexokinase HKDC1. Nat. Commun. 2015, 6, 6069. [Google Scholar] [CrossRef]
- Hayes, M.G.; Urbanek, M.; Hivert, M.-F.; Armstrong, L.L.; Morrison, J.; Guo, C.; Lowe, L.P.; Scheftner, D.A.; Pluzhnikov, A.; Levine, D.M.; et al. Identification of HKDC1 and BACE2 as Genes Influencing Glycemic Traits during Pregnancy through Genome-Wide Association Studies. Diabetes 2013, 62, 3282–3291. [Google Scholar] [CrossRef]
- Kanthimathi, S.; Liju, S.; Laasya, D.; Anjana, R.M.; Mohan, V.; Radha, V. Hexokinase Domain Containing 1 (HKDC1) Gene Variants and Their Association with Gestational Diabetes Mellitus in a South Indian Population. Ann. Hum. Genet. 2016, 80, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.-X.; Hu, S.-M.; You, Y.-P.; Yang, G.-L.; Wang, W. Replication of Previous Genome-Wide Association Studies of HKDC1, BACE2, SLC16A11 and TMEM163 SNPs in a Gestational Diabetes Mellitus Case-Control Sample from Han Chinese Population. Diabetes Metab. Syndr. Obes. Targets Ther. 2019, 12, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Zapater, J.L.; Lednovich, K.R.; Layden, B.T. The Role of Hexokinase Domain Containing Protein-1 in Glucose Regulation During Pregnancy. Curr. Diab. Rep. 2021, 21, 27. [Google Scholar] [CrossRef]
- Pusec, C.M.; Ilievski, V.; De Jesus, A.; Farooq, Z.; Zapater, J.L.; Sweis, N.; Ismail, H.; Khan, M.W.; Ardehali, H.; Cordoba-Chacon, J.; et al. Liver-Specific Overexpression of HKDC1 Increases Hepatocyte Size and Proliferative Capacity. Sci. Rep. 2023, 13, 8034. [Google Scholar] [CrossRef]
- Zhou, Y.; Park, S.-Y.; Su, J.; Bailey, K.; Ottosson-Laakso, E.; Shcherbina, L.; Oskolkov, N.; Zhang, E.; Thevenin, T.; Fadista, J.; et al. TCF7L2 Is a Master Regulator of Insulin Production and Processing. Hum. Mol. Genet. 2014, 23, 6419–6431. [Google Scholar] [CrossRef] [PubMed]
- Osmark, P.; Hansson, O.; Jonsson, A.; Rönn, T.; Groop, L.; Renström, E. Unique Splicing Pattern of the TCF7L2 Gene in Human Pancreatic Islets. Diabetologia 2009, 52, 850–854. [Google Scholar] [CrossRef]
- Wu, H.-H.; Li, Y.-L.; Liu, N.-J.; Yang, Z.; Tao, X.-M.; Du, Y.-P.; Wang, X.-C.; Lu, B.; Zhang, Z.-Y.; Hu, R.-M.; et al. TCF7L2 Regulates Pancreatic β-Cell Function through PI3K/AKT Signal Pathway. Diabetol. Metab. Syndr. 2019, 11, 55. [Google Scholar] [CrossRef]
- Grant, S.F.A.; Thorleifsson, G.; Reynisdottir, I.; Benediktsson, R.; Manolescu, A.; Sainz, J.; Helgason, A.; Stefansson, H.; Emilsson, V.; Helgadottir, A.; et al. Variant of Transcription Factor 7-like 2 (TCF7L2) Gene Confers Risk of Type 2 Diabetes. Nat. Genet. 2006, 38, 320–323. [Google Scholar] [CrossRef]
- Dou, H.; Ma, E.; Yin, L.; Jin, Y.; Wang, H. The Association between Gene Polymorphism of TCF7L2 and Type 2 Diabetes in Chinese Han Population: A Meta-Analysis. PLoS ONE 2013, 8, e59495. [Google Scholar] [CrossRef]
- Qiao, H.; Zhang, X.; Zhao, X.; Zhao, Y.; Xu, L.; Sun, H.; Fu, S. Genetic Variants of TCF7L2 Are Associated with Type 2 Diabetes in a Northeastern Chinese Population. Gene 2012, 495, 115–119. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhao, J.; You, H.; Pang, C.; Yin, L.; Guo, T.; Feng, T.; Wang, C.; Gao, K.; Luo, X.; et al. Association of the Rs11196218 Polymorphism in TCF7L2 with Type 2 Diabetes Mellitus in Asian Population. Meta Gene 2014, 2, 332–341. [Google Scholar] [CrossRef]
- Gloyn, A.L.; Braun, M.; Rorsman, P. Type 2 Diabetes Susceptibility Gene TCF7L2 and Its Role in β-Cell Function. Diabetes 2009, 58, 800–802. [Google Scholar] [CrossRef]
- Keaton, J.M.; Gao, C.; Guan, M.; Hellwege, J.N.; Palmer, N.D.; Pankow, J.S.; Fornage, M.; Wilson, J.G.; Correa, A.; Rasmussen-Torvik, L.J.; et al. Genome-Wide Interaction with the Insulin Secretion Locus MTNR1B Reveals CMIP as a Novel Type 2 Diabetes Susceptibility Gene in African Americans. Genet. Epidemiol. 2018, 42, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.C.; da Silva, M.E.R.; Fukui, R.T.; Arruda-Marques, M.d.C.; dos Santos, R.F. TCF7L2 Correlation in Both Insulin Secretion and Postprandial Insulin Sensitivity. Diabetol. Metab. Syndr. 2018, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Zhu, Y.; Lü, B.; Xu, F.; Li, X.; Lai, M. TCF7L2 Gene Polymorphisms and Type 2 Diabetes Risk: A Comprehensive and Updated Meta-Analysis Involving 121 174 Subjects. Mutagenesis 2013, 28, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Le Bacquer, O.; Kerr-Conte, J.; Gargani, S.; Delalleau, N.; Huyvaert, M.; Gmyr, V.; Froguel, P.; Neve, B.; Pattou, F. TCF7L2 Rs7903146 Impairs Islet Function and Morphology in Non-Diabetic Individuals. Diabetologia 2012, 55, 2677–2681. [Google Scholar] [CrossRef]
- Tuomi, T.; Nagorny, C.L.F.; Singh, P.; Bennet, H.; Yu, Q.; Alenkvist, I.; Isomaa, B.; Östman, B.; Söderström, J.; Pesonen, A.-K.; et al. Increased Melatonin Signaling Is a Risk Factor for Type 2 Diabetes. Cell Metab. 2016, 23, 1067–1077. [Google Scholar] [CrossRef]
- McMullan, C.J.; Schernhammer, E.S.; Rimm, E.B.; Hu, F.B.; Forman, J.P. Melatonin Secretion and the Incidence of Type 2 Diabetes. JAMA 2013, 309, 1388–1396. [Google Scholar] [CrossRef]
- Stumpf, I.; Mühlbauer, E.; Peschke, E. Involvement of the cGMP Pathway in Mediating the Insulin-Inhibitory Effect of Melatonin in Pancreatic β-Cells. J. Pineal Res. 2008, 45, 318–327. [Google Scholar] [CrossRef]
- Bass, J.; Takahashi, J.S. Circadian Integration of Metabolism and Energetics. Science 2010, 330, 1349–1354. [Google Scholar] [CrossRef]
- Scheer, F.A.J.L.; Hilton, M.F.; Mantzoros, C.S.; Shea, S.A. Adverse Metabolic and Cardiovascular Consequences of Circadian Misalignment. Proc. Natl. Acad. Sci. USA 2009, 106, 4453–4458. [Google Scholar] [CrossRef] [PubMed]
- Song, J.-F.; Zhang, J.; Zhang, M.-Z.; Ni, J.; Wang, T.; Zhao, Y.-Q.; Khan, N.U. Evaluation of the Effect of MTNR1B Rs10830963 Gene Variant on the Therapeutic Efficacy of Nateglinide in Treating Type 2 Diabetes among Chinese Han Patients. BMC Med. Genomics 2021, 14, 156. [Google Scholar] [CrossRef] [PubMed]
- Lyssenko, V.; Nagorny, C.L.F.; Erdos, M.R.; Wierup, N.; Jonsson, A.; Spégel, P.; Bugliani, M.; Saxena, R.; Fex, M.; Pulizzi, N.; et al. Common Variant in MTNR1B Associated with Increased Risk of Type 2 Diabetes and Impaired Early Insulin Secretion. Nat. Genet. 2009, 41, 82–88. [Google Scholar] [CrossRef]
- Langenberg, C.; Pascoe, L.; Mari, A.; Tura, A.; Laakso, M.; Frayling, T.M.; Barroso, I.; Loos, R.J.F.; Wareham, N.J.; Walker, M.; et al. Common Genetic Variation in the Melatonin Receptor 1B Gene (MTNR1B) Is Associated with Decreased Early-Phase Insulin Response. Diabetologia 2009, 52, 1537–1542. [Google Scholar] [CrossRef]
- Liu, C.; Wu, Y.; Li, H.; Qi, Q.; Langenberg, C.; Loos, R.J.; Lin, X. MTNR1B Rs10830963 Is Associated with Fasting Plasma Glucose, HbA1Cand Impaired Beta-Cell Function in Chinese Hans from Shanghai. BMC Med. Genet. 2010, 11, 59. [Google Scholar] [CrossRef]
- Prokopenko, I.; Langenberg, C.; Florez, J.C.; Saxena, R.; Soranzo, N.; Thorleifsson, G.; Loos, R.J.F.; Manning, A.K.; Jackson, A.U.; Aulchenko, Y.; et al. Variants in MTNR1B Influence Fasting Glucose Levels. Nat. Genet. 2009, 41, 77–81. [Google Scholar] [CrossRef]
- Vejrazkova, D.; Vankova, M.; Vcelak, J.; Krejci, H.; Anderlova, K.; Tura, A.; Pacini, G.; Sumova, A.; Sladek, M.; Bendlova, B. The Rs10830963 Polymorphism of the MTNR1B Gene: Association With Abnormal Glucose, Insulin and C-Peptide Kinetics. Front. Endocrinol. 2022, 13, 868364. [Google Scholar] [CrossRef]
- Bonnefond, A.; Clément, N.; Fawcett, K.; Yengo, L.; Vaillant, E.; Guillaume, J.-L.; Dechaume, A.; Payne, F.; Roussel, R.; Czernichow, S.; et al. Rare MTNR1B Variants Impairing Melatonin Receptor 1B Function Contribute to Type 2 Diabetes. Nat. Genet. 2012, 44, 297–301. [Google Scholar] [CrossRef]
- Been, L.F.; Hatfield, J.L.; Shankar, A.; Aston, C.E.; Ralhan, S.; Wander, G.S.; Mehra, N.K.; Singh, J.R.; Mulvihill, J.J.; Sanghera, D.K. A Low Frequency Variant within the GWAS Locus of MTNR1B Affects Fasting Glucose Concentrations: Genetic Risk Is Modulated by Obesity. Nutr. Metab. Cardiovasc. Dis. NMCD 2012, 22, 944–951. [Google Scholar] [CrossRef]
- Wang, T.; Wang, X.; Lai, R.; Ling, H.; Zhang, F.; Lu, Q.; Lv, D.; Yin, X. MTNR1B Gene Polymorphisms Are Associated With the Therapeutic Responses to Repaglinide in Chinese Patients With Type 2 Diabetes Mellitus. Front. Pharmacol. 2019, 10, 1318. [Google Scholar] [CrossRef] [PubMed]
- Müssig, K.; Staiger, H.; Machicao, F.; Häring, H.-U.; Fritsche, A. Genetic Variants in MTNR1B Affecting Insulin Secretion. Ann. Med. 2010, 42, 387–393. [Google Scholar] [CrossRef]
- Kumar, S.; Matsuzaki, T.; Yoshida, Y.; Noda, M. Molecular Cloning and Biological Activity of a Novel Developmentally Regulated Gene Encoding a Protein with Beta-Transducin-like Structure. J. Biol. Chem. 1994, 269, 11318–11326. [Google Scholar] [CrossRef]
- Lüders, J.; Patel, U.K.; Stearns, T. GCP-WD Is a γ-Tubulin Targeting Factor Required for Centrosomal and Chromatin-Mediated Microtubule Nucleation. Nat. Cell Biol. 2006, 8, 137–147. [Google Scholar] [CrossRef]
- Haren, L.; Remy, M.-H.; Bazin, I.; Callebaut, I.; Wright, M.; Merdes, A. NEDD1-Dependent Recruitment of the γ-Tubulin Ring Complex to the Centrosome Is Necessary for Centriole Duplication and Spindle Assembly. J. Cell Biol. 2006, 172, 505–515. [Google Scholar] [CrossRef]
- Manning, J.A.; Shalini, S.; Risk, J.M.; Day, C.L.; Kumar, S. A Direct Interaction with NEDD1 Regulates γ-Tubulin Recruitment to the Centrosome. PLoS ONE 2010, 5, e9618. [Google Scholar] [CrossRef] [PubMed]
- Malumbres, M.; Barbacid, M. Cell Cycle, CDKs and Cancer: A Changing Paradigm. Nat. Rev. Cancer 2009, 9, 153–166. [Google Scholar] [CrossRef]
- Malumbres, M.; Barbacid, M. Mammalian Cyclin-Dependent Kinases. Trends Biochem. Sci. 2005, 30, 630–641. [Google Scholar] [CrossRef]
- Malumbres, M.; Barbacid, M. To Cycle or Not to Cycle: A Critical Decision in Cancer. Nat. Rev. Cancer 2001, 1, 222–231. [Google Scholar] [CrossRef]
- Muñiz, L.C.; Yehia, G.; Mémin, E.; Ratnakar, P.V.A.L.; Molina, C.A. Transcriptional Regulation of Cyclin D2 by the PKA Pathway and Inducible cAMP Early Repressor in Granulosa Cells. Biol. Reprod. 2006, 75, 279–288. [Google Scholar] [CrossRef]
- Robker, R.L.; Richards, J.S. Hormone-Induced Proliferation and Differentiation of Granulosa Cells: A Coordinated Balance of the Cell Cycle Regulators Cyclin D2 and p27Kip1. Mol. Endocrinol. 1998, 12, 924–940. [Google Scholar] [CrossRef] [PubMed]
- Quelle, D.E.; Ashmun, R.A.; Shurtleff, S.A.; Kato, J.Y.; Bar-Sagi, D.; Roussel, M.F.; Sherr, C.J. Overexpression of Mouse D-Type Cyclins Accelerates G1 Phase in Rodent Fibroblasts. Genes Dev. 1993, 7, 1559–1571. [Google Scholar] [CrossRef]
- Han, Y.; Xia, G.; Tsang, B.K. Regulation of Cyclin D2 Expression and Degradation by Follicle-Stimulating Hormone During Rat Granulosa Cell Proliferation In Vitro1. Biol. Reprod. 2013, 88, 57. [Google Scholar] [CrossRef] [PubMed]
- Salpeter, S.J.; Klochendler, A.; Weinberg-Corem, N.; Porat, S.; Granot, Z.; Shapiro, A.M.J.; Magnuson, M.A.; Eden, A.; Grimsby, J.; Glaser, B.; et al. Glucose Regulates Cyclin D2 Expression in Quiescent and Replicating Pancreatic β-Cells through Glycolysis and Calcium Channels. Endocrinology 2011, 152, 2589–2598. [Google Scholar] [CrossRef]
- McDermott, J.H.; Hickson, N.; Banerjee, I.; Murray, P.g.; Ram, D.; Metcalfe, K.; Clayton-Smith, J.; Douzgou, S. Hypoglycaemia Represents a Clinically Significant Manifestation of PIK3CA- and CCND2-Associated Segmental Overgrowth. Clin. Genet. 2018, 93, 687–692. [Google Scholar] [CrossRef] [PubMed]
- Georgia, S.; Hinault, C.; Kawamori, D.; Hu, J.; Meyer, J.; Kanji, M.; Bhushan, A.; Kulkarni, R.N. Cyclin D2 Is Essential for the Compensatory β-Cell Hyperplastic Response to Insulin Resistance in Rodents. Diabetes 2010, 59, 987–996. [Google Scholar] [CrossRef]
- Yaghootkar, H.; Stancáková, A.; Freathy, R.M.; Vangipurapu, J.; Weedon, M.N.; Xie, W.; Wood, A.R.; Ferrannini, E.; Mari, A.; Ring, S.M.; et al. Association Analysis of 29,956 Individuals Confirms That a Low-Frequency Variant at CCND2 Halves the Risk of Type 2 Diabetes by Enhancing Insulin Secretion. Diabetes 2015, 64, 2279–2285. [Google Scholar] [CrossRef]
- Grimbert, P.; Valanciute, A.; Audard, V.; Pawlak, A.; Le Gouvelo, S.; Lang, P.; Niaudet, P.; Bensman, A.; Guellaën, G.; Sahali, D. Truncation of C-Mip (Tc-Mip), a New Proximal Signaling Protein, Induces c-Maf Th2 Transcription Factor and Cytoskeleton Reorganization. J. Exp. Med. 2003, 198, 797–807. [Google Scholar] [CrossRef]
- Kamal, M.; Valanciute, A.; Dahan, K.; Ory, V.; Pawlak, A.; Lang, P.; Guellaen, G.; Sahali, D. C-Mip Interacts Physically with RelA and Inhibits Nuclear Factor Kappa B Activity. Mol. Immunol. 2009, 46, 991–998. [Google Scholar] [CrossRef]
- Ollero, M.; Sahali, D. The Enigmatic Emerging Role of the C-Maf Inducing Protein in Cancer. Diagnostics 2021, 11, 666. [Google Scholar] [CrossRef]
- Scott, R.A.; Scott, L.J.; Mägi, R.; Marullo, L.; Gaulton, K.J.; Kaakinen, M.; Pervjakova, N.; Pers, T.H.; Johnson, A.D.; Eicher, J.D.; et al. An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans. Diabetes 2017, 66, 2888–2902. [Google Scholar] [CrossRef] [PubMed]
- Dahlman, I.; Rydén, M.; Brodin, D.; Grallert, H.; Strawbridge, R.J.; Arner, P. Numerous Genes in Loci Associated With Body Fat Distribution Are Linked to Adipose Function. Diabetes 2016, 65, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Sakai, K.; Imamura, M.; Tanaka, Y.; Iwata, M.; Hirose, H.; Kaku, K.; Maegawa, H.; Watada, H.; Tobe, K.; Kashiwagi, A.; et al. Replication Study for the Association of 9 East Asian GWAS-Derived Loci with Susceptibility to Type 2 Diabetes in a Japanese Population. PLoS ONE 2013, 8, e76317. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, T.; Wu, Y.; Juan, J.; Qin, X.; Tang, X.; Wu, T.; Hu, Y. Opposite Genetic Effects of CMIP Polymorphisms on the Risk of Type 2 Diabetes and Obesity: A Family-Based Study in China. Int. J. Mol. Sci. 2018, 19, 1011. [Google Scholar] [CrossRef]
- Zhao, W.; Rasheed, A.; Tikkanen, E.; Lee, J.-J.; Butterworth, A.S.; Howson, J.M.M.; Assimes, T.L.; Chowdhury, R.; Orho-Melander, M.; Damrauer, S.; et al. Identification of New Susceptibility Loci for Type 2 Diabetes and Shared Etiological Pathways with Coronary Heart Disease. Nat. Genet. 2017, 49, 1450–1457. [Google Scholar] [CrossRef] [PubMed]
- Shungin, D.; Winkler, T.W.; Croteau-Chonka, D.C.; Ferreira, T.; Locke, A.E.; Mägi, R.; Strawbridge, R.J.; Pers, T.H.; Fischer, K.; Justice, A.E.; et al. New Genetic Loci Link Adipose and Insulin Biology to Body Fat Distribution. Nature 2015, 518, 187–196. [Google Scholar] [CrossRef]
- Wen, W.; Kato, N.; Hwang, J.-Y.; Guo, X.; Tabara, Y.; Li, H.; Dorajoo, R.; Yang, X.; Tsai, F.-J.; Li, S.; et al. Genome-Wide Association Studies in East Asians Identify New Loci for Waist-Hip Ratio and Waist Circumference. Sci. Rep. 2016, 6, 17958. [Google Scholar] [CrossRef]
- Yan, Y.-X.; Li, J.-J.-H.; Xiao, H.-B.; Wang, S.; He, Y.; Wu, L.-J. Association Analysis of Copy Number Variations in Type 2 Diabetes-Related Susceptible Genes in a Chinese Population. Acta Diabetol. 2018, 55, 909–916. [Google Scholar] [CrossRef]
- Cho, Y.S.; Chen, C.-H.; Hu, C.; Long, J.; Hee Ong, R.T.; Sim, X.; Takeuchi, F.; Wu, Y.; Go, M.J.; Yamauchi, T.; et al. Meta-Analysis of Genome-Wide Association Studies Identifies Eight New Loci for Type 2 Diabetes in East Asians. Nat. Genet. 2012, 44, 67–72. [Google Scholar] [CrossRef]
- Hattori, K.; Naguro, I.; Runchel, C.; Ichijo, H. The Roles of ASK Family Proteins in Stress Responses and Diseases. Cell Commun. Signal. CCS 2009, 7, 9. [Google Scholar] [CrossRef]
- Kaji, T.; Yoshida, S.; Kawai, K.; Fuchigami, Y.; Watanabe, W.; Kubodera, H.; Kishimoto, T. ASK3, a Novel Member of the Apoptosis Signal-Regulating Kinase Family, Is Essential for Stress-Induced Cell Death in HeLa Cells. Biochem. Biophys. Res. Commun. 2010, 395, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Widmann, C.; Gibson, S.; Jarpe, M.B.; Johnson, G.L. Mitogen-Activated Protein Kinase: Conservation of a Three-Kinase Module from Yeast to Human. Physiol. Rev. 1999, 79, 143–180. [Google Scholar] [CrossRef] [PubMed]
- Takeda, K.; Noguchi, T.; Naguro, I.; Ichijo, H. Apoptosis Signal-Regulating Kinase 1 in Stress and Immune Response. Annu. Rev. Pharmacol. Toxicol. 2008, 48, 199–225. [Google Scholar] [CrossRef] [PubMed]
- Kamiyama, M.; Naguro, I.; Ichijo, H. In Vivo Gene Manipulation Reveals the Impact of Stress-Responsive MAPK Pathways on Tumor Progression. Cancer Sci. 2015, 106, 785–796. [Google Scholar] [CrossRef]
- Nag, A.; Dhindsa, R.S.; Mitchell, J.; Vasavda, C.; Harper, A.R.; Vitsios, D.; Ahnmark, A.; Bilican, B.; Madeyski-Bengtson, K.; Zarrouki, B.; et al. Human Genetics Uncovers MAP3K15 as an Obesity-Independent Therapeutic Target for Diabetes. Sci. Adv. 2022, 8, eadd5430. [Google Scholar] [CrossRef]
- Wang, Q.; Dhindsa, R.S.; Carss, K.; Harper, A.R.; Nag, A.; Tachmazidou, I.; Vitsios, D.; Deevi, S.V.V.; Mackay, A.; Muthas, D.; et al. Rare Variant Contribution to Human Disease in 281,104 UK Biobank Exomes. Nature 2021, 597, 527–532. [Google Scholar] [CrossRef]
- Backman, J.D.; Li, A.H.; Marcketta, A.; Sun, D.; Mbatchou, J.; Kessler, M.D.; Benner, C.; Liu, D.; Locke, A.E.; Balasubramanian, S.; et al. Exome Sequencing and Analysis of 454,787 UK Biobank Participants. Nature 2021, 599, 628–634. [Google Scholar] [CrossRef]
- Foley, C.N.; Staley, J.R.; Breen, P.G.; Sun, B.B.; Kirk, P.D.W.; Burgess, S.; Howson, J.M.M. A Fast and Efficient Colocalization Algorithm for Identifying Shared Genetic Risk Factors across Multiple Traits. Nat. Commun. 2021, 12, 764. [Google Scholar] [CrossRef]
- Farrar, D.; Fairley, L.; Santorelli, G.; Tuffnell, D.; Sheldon, T.A.; Wright, J.; van Overveld, L.; Lawlor, D.A. Association between Hyperglycaemia and Adverse Perinatal Outcomes in South Asian and White British Women: Analysis of Data from the Born in Bradford Cohort. Lancet Diabetes Endocrinol. 2015, 3, 795–804. [Google Scholar] [CrossRef]
- Suzuki, K.; Hatzikotoulas, K.; Southam, L.; Taylor, H.J.; Yin, X.; Lorenz, K.M.; Mandla, R.; Huerta-Chagoya, A.; Rayner, N.W.; Bocher, O.; et al. Multi-Ancestry Genome-Wide Study in >2.5 Million Individuals Reveals Heterogeneity in Mechanistic Pathways of Type 2 Diabetes and Complications. medRxiv 2023. [Google Scholar] [CrossRef]
- Mahajan, A.; Spracklen, C.N.; Zhang, W.; Ng, M.C.Y.; Petty, L.E.; Kitajima, H.; Yu, G.Z.; Rüeger, S.; Speidel, L.; Kim, Y.J.; et al. Multi-Ancestry Genetic Study of Type 2 Diabetes Highlights the Power of Diverse Populations for Discovery and Translation. Nat. Genet. 2022, 54, 560–572. [Google Scholar] [CrossRef] [PubMed]
- Bryson, C.L.; Ioannou, G.N.; Rulyak, S.J.; Critchlow, C. Association between Gestational Diabetes and Pregnancy-Induced Hypertension. Am. J. Epidemiol. 2003, 158, 1148–1153. [Google Scholar] [CrossRef] [PubMed]
- Guillén, M.A.; Herranz, L.; Barquiel, B.; Hillman, N.; Burgos, M.A.; Pallardo, L.F. Influence of Gestational Diabetes Mellitus on Neonatal Weight Outcome in Twin Pregnancies. Diabet. Med. 2014, 31, 1651–1656. [Google Scholar] [CrossRef]
- Joffe, G.M.; Esterlitz, J.R.; Levine, R.J.; Clemens, J.D.; Ewell, M.G.; Sibai, B.M.; Catalano, P.M. The Relationship between Abnormal Glucose Tolerance and Hypertensive Disorders of Pregnancy in Healthy Nulliparous Women. Calcium for Preeclampsia Prevention (CPEP) Study Group. Am. J. Obstet. Gynecol. 1998, 179, 1032–1037. [Google Scholar] [CrossRef]
- Gorgal, R.; Gonçalves, E.; Barros, M.; Namora, G.; Magalhães, A.; Rodrigues, T.; Montenegro, N. Gestational Diabetes Mellitus: A Risk Factor for Non-Elective Cesarean Section. J. Obstet. Gynaecol. Res. 2012, 38, 154–159. [Google Scholar] [CrossRef]
- Phaloprakarn, C.; Tangjitgamol, S. Risk Score for Predicting Primary Cesarean Delivery in Women with Gestational Diabetes Mellitus. BMC Pregnancy Childbirth 2020, 20, 607. [Google Scholar] [CrossRef]
- Persson, M.; Norman, M.; Hanson, U. Obstetric and Perinatal Outcomes in Type 1 Diabetic Pregnancies: A Large, Population-Based Study. Diabetes Care 2009, 32, 2005–2009. [Google Scholar] [CrossRef] [PubMed]
- Farrar, D.; Simmonds, M.; Bryant, M.; Sheldon, T.A.; Tuffnell, D.; Golder, S.; Dunne, F.; Lawlor, D.A. Hyperglycaemia and Risk of Adverse Perinatal Outcomes: Systematic Review and Meta-Analysis. Obstet. Anesth. Dig. 2017, 37, 64. [Google Scholar] [CrossRef]
- Boriboonhirunsarn, D.; Tanpong, S. Rate of Spontaneous Preterm Delivery Between Pregnant Women With and Without Gestational Diabetes. Cureus 2023, 15, e34565. [Google Scholar] [CrossRef]
- González González, N.L.; Goya, M.; Bellart, J.; Lopez, J.; Sancho, M.A.; Mozas, J.; Medina, V.; Padrón, E.; Megia, A.; Pintado, P.; et al. Obstetric and Perinatal Outcome in Women with Twin Pregnancy and Gestational Diabetes. J. Matern. Fetal Neonatal Med. 2012, 25, 1084–1089. [Google Scholar] [CrossRef]
- Balsells, M.; García-Patterson, A.; Gich, I.; Corcoy, R. Maternal and Fetal Outcome in Women with Type 2 Versus Type 1 Diabetes Mellitus: A Systematic Review and Metaanalysis. J. Clin. Endocrinol. Metab. 2009, 94, 4284–4291. [Google Scholar] [CrossRef] [PubMed]
- Murphy, H.R.; Steel, S.A.; Roland, J.M.; Morris, D.; Ball, V.; Campbell, P.J.; Temple, R.C.; East Anglia Study Group for Improving Pregnancy Outcomes in Women with Diabetes (EASIPOD). Obstetric and Perinatal Outcomes in Pregnancies Complicated by Type 1 and Type 2 Diabetes: Influences of Glycaemic Control, Obesity and Social Disadvantage. Diabet. Med. 2011, 28, 1060–1067. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, B.; Sun, Y.; Du, Y.; Santillan, M.K.; Santillan, D.A.; Snetselaar, L.G.; Bao, W. Association of Maternal Prepregnancy Diabetes and Gestational Diabetes Mellitus With Congenital Anomalies of the Newborn. Diabetes Care 2020, 43, 2983–2990. [Google Scholar] [CrossRef] [PubMed]
- Greco, E.; Calanducci, M.; Nicolaides, K.H.; Barry, E.V.H.; Huda, M.S.B.; Iliodromiti, S. Gestational Diabetes Mellitus and Adverse Maternal and Perinatal Outcomes in Twin and Singleton Pregnancies: A Systematic Review and Meta-Analysis. Am. J. Obstet. Gynecol. 2024, 230, 213–225. [Google Scholar] [CrossRef]
- Ye, W.; Luo, C.; Huang, J.; Li, C.; Liu, Z.; Liu, F. Gestational Diabetes Mellitus and Adverse Pregnancy Outcomes: Systematic Review and Meta-Analysis. BMJ 2022, 377, e067946. [Google Scholar] [CrossRef] [PubMed]
- HAPO Study Cooperative Research Group; Metzger, B.E.; Lowe, L.P.; Dyer, A.R.; Trimble, E.R.; Chaovarindr, U.; Coustan, D.R.; Hadden, D.R.; McCance, D.R.; Hod, M.; et al. Hyperglycemia and Adverse Pregnancy Outcomes. N. Engl. J. Med. 2008, 358, 1991–2002. [Google Scholar] [CrossRef]
- McBride, N.; Fernández-Sanlés, A.; Arab, M.A.; Bond, T.A.; Zheng, J.; Magnus, M.C.; Corfield, E.C.; Clayton, G.L.; Hwang, L.-D.; Beaumont, R.N.; et al. Effects of the Maternal and Fetal Proteome on Birth Weight: A Mendelian Randomization Analysis. medRxiv 2023. [Google Scholar] [CrossRef]
- Song, C.; Lyu, Y.; Li, C.; Liu, P.; Li, J.; Ma, R.C.; Yang, X. Long-Term Risk of Diabetes in Women at Varying Durations after Gestational Diabetes: A Systematic Review and Meta-Analysis with More than 2 Million Women. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2018, 19, 421–429. [Google Scholar] [CrossRef]
- Vounzoulaki, E.; Khunti, K.; Abner, S.C.; Tan, B.K.; Davies, M.J.; Gillies, C.L. Progression to Type 2 Diabetes in Women with a Known History of Gestational Diabetes: Systematic Review and Meta-Analysis. BMJ 2020, 369, m1361. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, Y.; Wang, D.; Chen, H.; Chen, H.; Ming, W.-K.; Wang, Z. Incidence Rate of Type 2 Diabetes Mellitus after Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis of 170,139 Women. J. Diabetes Res. 2020, 2020, 3076463. [Google Scholar] [CrossRef]
- Nielsen, K.K.; Kapur, A.; Damm, P.; de Courten, M.; Bygbjerg, I.C. From Screening to Postpartum Follow-up—The Determinants and Barriers for Gestational Diabetes Mellitus (GDM) Services, a Systematic Review. BMC Pregnancy Childbirth 2014, 14, 41. [Google Scholar] [CrossRef] [PubMed]
- Herath, H.; Herath, R.; Wickremasinghe, R. Gestational Diabetes Mellitus and Risk of Type 2 Diabetes 10 Years after the Index Pregnancy in Sri Lankan Women—A Community Based Retrospective Cohort Study. PLoS ONE 2017, 12, e0179647. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Newton, K.M.; Knopp, R.H. Gestational Diabetes and the Incidence of Type 2 Diabetes: A Systematic Review. Diabetes Care 2002, 25, 1862–1868. [Google Scholar] [CrossRef] [PubMed]
- Dennison, R.A.; Chen, E.S.; Green, M.E.; Legard, C.; Kotecha, D.; Farmer, G.; Sharp, S.J.; Ward, R.J.; Usher-Smith, J.A.; Griffin, S.J. The Absolute and Relative Risk of Type 2 Diabetes after Gestational Diabetes: A Systematic Review and Meta-Analysis of 129 Studies. Diabetes Res. Clin. Pract. 2021, 171, 108625. [Google Scholar] [CrossRef]
- Bellamy, L.; Casas, J.-P.; Hingorani, A.D.; Williams, D. Type 2 Diabetes Mellitus after Gestational Diabetes: A Systematic Review and Meta-Analysis. Lancet Lond. Engl. 2009, 373, 1773–1779. [Google Scholar] [CrossRef]
- Kramer, C.K.; Campbell, S.; Retnakaran, R. Gestational Diabetes and the Risk of Cardiovascular Disease in Women: A Systematic Review and Meta-Analysis. Diabetologia 2019, 62, 905–914. [Google Scholar] [CrossRef]
- Li, J.; Song, C.; Li, C.; Liu, P.; Sun, Z.; Yang, X. Increased Risk of Cardiovascular Disease in Women with Prior Gestational Diabetes: A Systematic Review and Meta-Analysis. Diabetes Res. Clin. Pract. 2018, 140, 324–338. [Google Scholar] [CrossRef]
- Xu, Y.; Shen, S.; Sun, L.; Yang, H.; Jin, B.; Cao, X. Metabolic Syndrome Risk after Gestational Diabetes: A Systematic Review and Meta-Analysis. PLoS ONE 2014, 9, e87863. [Google Scholar] [CrossRef]
- Pathirana, M.M.; Lassi, Z.S.; Ali, A.; Arstall, M.A.; Roberts, C.T.; Andraweera, P.H. Association between Metabolic Syndrome and Gestational Diabetes Mellitus in Women and Their Children: A Systematic Review and Meta-Analysis. Endocrine 2021, 71, 310–320. [Google Scholar] [CrossRef]
- Aceti, A.; Santhakumaran, S.; Logan, K.M.; Philipps, L.H.; Prior, E.; Gale, C.; Hyde, M.J.; Modi, N. The Diabetic Pregnancy and Offspring Blood Pressure in Childhood: A Systematic Review and Meta-Analysis. Diabetologia 2012, 55, 3114–3127. [Google Scholar] [CrossRef]
- Philipps, L.H.; Santhakumaran, S.; Gale, C.; Prior, E.; Logan, K.M.; Hyde, M.J.; Modi, N. The Diabetic Pregnancy and Offspring BMI in Childhood: A Systematic Review and Meta-Analysis. Diabetologia 2011, 54, 1957–1966. [Google Scholar] [CrossRef] [PubMed]
- Pathirana, M.M.; Lassi, Z.S.; Roberts, C.T.; Andraweera, P.H. Cardiovascular Risk Factors in Offspring Exposed to Gestational Diabetes Mellitus in Utero: Systematic Review and Meta-Analysis. J. Dev. Orig. Health Dis. 2020, 11, 599–616. [Google Scholar] [CrossRef]
- Abokaf, H.; Shoham-Vardi, I.; Sergienko, R.; Landau, D.; Sheiner, E. In Utero Exposure to Gestational Diabetes Mellitus and Long Term Endocrine Morbidity of the Offspring. Diabetes Res Clin Pr. 2018, 144, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Liu, E.; Qiao, Y.; Katzmarzyk, P.T.; Chaput, J.-P.; Fogelholm, M.; Johnson, W.D.; Kuriyan, R.; Kurpad, A.; Lambert, E.V.; et al. Maternal Gestational Diabetes and Childhood Obesity at Age 9–11: Results of a Multinational Study. Diabetologia 2016, 59, 2339–2348. [Google Scholar] [CrossRef]
- Holder, T.; Giannini, C.; Santoro, N.; Pierpont, B.; Shaw, M.; Duran, E.; Caprio, S.; Weiss, R. A Low Disposition Index in Adolescent Offspring of Mothers with Gestational Diabetes: A Risk Marker for the Development of Impaired Glucose Tolerance in Youth. Diabetologia 2014, 57, 2413–2420. [Google Scholar] [CrossRef]
- Clausen, T.D.; Mathiesen, E.R.; Hansen, T.; Pedersen, O.; Jensen, D.M.; Lauenborg, J.; Damm, P. High Prevalence of Type 2 Diabetes and Pre-Diabetes in Adult Offspring of Women with Gestational Diabetes Mellitus or Type 1 Diabetes: The Role of Intrauterine Hyperglycemia. Diabetes Care 2008, 31, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Bacelis, J.; Sole-Navais, P.; Srivastava, A.; Juodakis, J.; Rouse, A.; Hallman, M.; Teramo, K.; Melbye, M.; Feenstra, B.; et al. Dissecting Maternal and Fetal Genetic Effects Underlying the Associations between Maternal Phenotypes, Birth Outcomes, and Adult Phenotypes: A Mendelian-Randomization and Haplotype-Based Genetic Score Analysis in 10,734 Mother–Infant Pairs. PLOS Med. 2020, 17, e1003305. [Google Scholar] [CrossRef] [PubMed]
- Solé-Navais, P.; Flatley, C.; Steinthorsdottir, V.; Vaudel, M.; Juodakis, J.; Chen, J.; Laisk, T.; LaBella, A.L.; Westergaard, D.; Bacelis, J.; et al. Genetic Effects on the Timing of Parturition and Links to Fetal Birth Weight. Nat. Genet. 2023, 55, 559–567. [Google Scholar] [CrossRef]
- Beaumont, R.N.; Flatley, C.; Vaudel, M.; Wu, X.; Chen, J.; Moen, G.-H.; Skotte, L.; Helgeland, Ø.; Solé-Navais, P.; Banasik, K.; et al. Genome-Wide Association Study of Placental Weight Identifies Distinct and Shared Genetic Influences between Placental and Fetal Growth. Nat. Genet. 2023, 55, 1807–1819. [Google Scholar] [CrossRef]
- Juliusdottir, T.; Steinthorsdottir, V.; Stefansdottir, L.; Sveinbjornsson, G.; Ivarsdottir, E.V.; Thorolfsdottir, R.B.; Sigurdsson, J.K.; Tragante, V.; Hjorleifsson, K.E.; Helgadottir, A.; et al. Distinction between the Effects of Parental and Fetal Genomes on Fetal Growth. Nat. Genet. 2021, 53, 1135–1142. [Google Scholar] [CrossRef]
- Beaumont, R.N.; Warrington, N.M.; Cavadino, A.; Tyrrell, J.; Nodzenski, M.; Horikoshi, M.; Geller, F.; Myhre, R.; Richmond, R.C.; Paternoster, L.; et al. Genome-Wide Association Study of Offspring Birth Weight in 86 577 Women Identifies Five Novel Loci and Highlights Maternal Genetic Effects That Are Independent of Fetal Genetics. Hum. Mol. Genet. 2018, 27, 742–756. [Google Scholar] [CrossRef] [PubMed]
- Warrington, N.M.; Beaumont, R.N.; Horikoshi, M.; Day, F.R.; Helgeland, Ø.; Laurin, C.; Bacelis, J.; Peng, S.; Hao, K.; Feenstra, B.; et al. Maternal and Fetal Genetic Effects on Birth Weight and Their Relevance to Cardio-Metabolic Risk Factors. Nat. Genet. 2019, 51, 804–814. [Google Scholar] [CrossRef] [PubMed]
Initial Screening (Two-Step Approach) | Diagnostic Test | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Region | Organization | Year | Screening Advice | Glucose Load (g) | Cut-off | Glucose Load (g) | Fasting Glucose | 1-h Glucose | 2-h Glucose | 3-h Glucose | HbA1c |
International | WHO (World Health Organization) | 2013 | Universal | 75 | FG ≥ 92 mg/dL (5.1 mmol/L), or 1-h glucose ≥ 180 mg/dL (10.0 mmol/L) or2-h glucose ≥ 153 mg/dL (8.5 mmol/L) | 75 | ≥92 mg/dL (5.1 mmol/L) | - | ≥153 mg/dL (8.5 mmol/L) | - | - |
IADPSG (International Association of Diabetes and Pregnancy Study Groups) | 2010 | Universal | - | - | 75 | ≥92 mg/dL (5.1 mmol/L) | ≥180 mg/dL (10.0 mmol/L) | ≥153 mg/dL (8.5 mmol/L) | - | - | |
Americas | ADA (American Diabetes Association) | 2020 | Risk-based | 50 | ≥140 mg/dL (7.8 mmol/L) | 100 | ≥92 mg/dL (5.1 mmol/L) | ≥180 mg/dL (10.0 mmol/L) | ≥153 mg/dL (8.5 mmol/L) | ≥140 mg/dL (7.8 mmol/L) | - |
NDDG (National Diabetes Data Group) | 1979 | - | 50 | ≥140 mg/dL (7.8 mmol/L) | 100 | ≥105 mg/dL (5.8 mmol/L) | ≥190 mg/dL (10.6 mmol/L) | ≥165 mg/dL (9.2 mmol/L) | ≥145 mg/dL (8.0 mmol/L) | - | |
C&C (Carpenter and Coustan criteria) | 1982 | - | - | - | 100 | ≥95 mg/dL (5.3 mmol/L) | ≥180 mg/dL (10.0 mmol/L) | ≥155 mg/dL (8.6 mmol/L) | ≥140 mg/dL (7.8 mmol/L) | ||
SOGC (Society of Obstetricians and Gynecologists of Canada) | 2019 | Universal | - | - | 75 | ≥95 mg/dL (5.3 mmol/L) | ≥190 mg/dL (10.6 mmol/L) | ≥162 mg/dL (≥9.0 mmol/L) | - | - | |
ACOG (American College of Obstetricians and Gynecologists) | 2018 | Risk-based | 50 | ≥140 mg/dL (7.8 mmol/L) | 100 | ≥95 mg/dL (5.3 mmol/L) | ≥180 mg/dL (10.0 mmol/L) | ≥155 mg/dL (8.6 mmol/L) | ≥140 mg/dL (7.8 mmol/L) | - | |
CDA (Canadian Diabetes Association) | 2018 | Universal | 50 | ≥140 mg/dL (7.8 mmol/L) | 75 | ≥95 mg/dL (5.3 mmol/L) | ≥190 mg/dL (10.6 mmol/L) | ≥162 mg/dL (≥9.0 mmol/L) | - | ||
(BSD) Brazilian Society of Diabetes | 2010 | Universal | - | FG ≥ 85 mg/dL (4.7 mmol/L) | 75 | ≥92 mg/dL (5.1 mmol/L) | ≥180 mg/dL (10.0 mmol/L) | ≥153 mg/dL (8.5 mmol/L) | - | - | |
Australasia | ADIPS (Australasian Diabetes in Pregnancy Society) | 2014 | Universal | - | - | 75 | ≥ 92 mg/dL (5.1 mmol/L) | ≥ 180 mg/dL (10.0 mmol/L) | ≥153 mg/dL (8.5 mmol/L) | - | - |
Queensland Clinical Guideline | 2015 | Risk-based | - | - | 75 | ≥92 mg/dL (5.1 mmol/L) | ≥180 mg/dL (10.0 mmol/L) | ≥153 mg/dL (8.5 mmol/L) | - | ≥41 mmol/mol (5.95%) | |
NZSSD (New Zealand Society for the Study of Diabetes) | 2014 | Universal | - | HbA1c ≥ 50 mmol/mol treated for GDM, HbA1c 41-49 mmol/mol required a 75g OGTT, HbA1c ≤ 40 mmol/mol required 50 g OGTT | 75 and 50 | ≥99 mg/dL (5.5 mmol/L) | - | ≥162 mg/dL (9.0 mmol/L) | - | ≥50 mmol/mol (7.15%) | |
Asia | DIPSI (Diabetes in Pregnancy Study Group India) | 2009 | Universal | - | - | 75 | - | - | ≥140 mg/dL (7.8 mmol/L) | - | - |
JDS (Japan Diabetes Society) | 2016 | Risk-based | - | - | 75 | ≥126 mg/dL (7.0 mmol/L) | - | ≥200 mg/dL (11.1 mmol/L) | - | ≥48 mmol/mol (6.5%) | |
JSOG (Japan Society of Obstetrics and Gynecology) | 2010 | Universal | - | - | 75 | ≥100 mg/dL (5.5 mmol/L) | ≥180 mg/dL (10.0 mmol/L) | ≥150 mg/dL (8.3 mmol/L) | - | - | |
HKCOG (Hong Kong College of Obstetricians and Gynecologists) | 2016 | Risk-based | - | - | 75 | ≥126 mg/dL (7.0 mmol/L) | - | ≥199.72 mg/dL (11.1 mmol/L) | - | - | |
Ministry of Health (MOH) of China | 2012 | Risk-based | - | - | 75 | ≥92 mg/dL (5.1 mmol/L) | ≥180 mg/dL (10.0 mmol/L) | ≥153 mg/dL (8.5 mmol/L) | - | - | |
Europe | EASD (European Association for the Study of Diabetes) | 1991 | - | - | - | 75 | ≥108.1 mg/dL (6.0 mmol/L) | - | ≥162 mg/dL (9.0 mmol/L) | - | - |
SIGN (Scottish Intercollegiate Guidelines Network) | 2017 | Risk-based | - | HbA1c ≥ 6.5%, or FG ≥126 mg/dL (7.0 mmol/L) or 2-h glucose ≥ 200 mg/dL (11.1 mmol/L) | 75 | ≥92 mg/dL (5.1 mmol/L) | ≥180 mg/dL (10.0 mmol/L) | ≥153 mg/dL (8.5 mmol/L) | - | - | |
GDA (German Diabetes Association) | 2014 | Risk-based | - | FG ≥ 92 mg/dL (5.1 mmol/L) | 75 | ≥92 mg/dL (5.1 mmol/L) | ≥180 mg/dL (10.0 mmol/L) | ≥153 mg/dL (8.5 mmol/L) | - | - | |
NICE (National Institute for Health and Care Excellence) | 2015 | Risk-based | - | - | 75 | ≥101 mg/dL (5.6 mmol/L) | - | ≥140 mg/dL (7.8 mmol/L) | - | - |
Candidate Gene | Lead Associated SNP | Function of Likely Gene | Known Associations | Reported by * |
---|---|---|---|---|
GCKR | rs780093 | The Glucokinase regulator (GCKR) gene encodes glucokinase regulatory protein (GKRP), an inhibitor of the glucose-metabolizing enzyme glucokinase (GCK), which regulates glucose disposal and storage [98,99,100]. GKRP also responds to increases in circulating glucose concentration by initiating a signalling cascade that results in insulin secretion and subsequent glucose uptake and storage [98,99,100]. | Polymorphisms in the GCKR gene have been implicated in the susceptibility to T2DM and fasting glucose levels [101,102,103,104,105,106,107,108,109,110]. | [96] |
SPC25-G6PC2 | rs1402837 | The Spindle pole body component 25 (SPC25) gene encodes a mitosis-associated spindle-assembly checkpoint regulatory protein involved in kinetochore–microtubule interaction [111]. SPC25 has been further reported to play a role in DNA repair, cell proliferation and regulation of both plasma glucose levels and β-cell function [112,113,114,115,116,117]. As for the G6PC2 gene, it is predominantly expressed in pancreatic islets and encodes a glucose-6-phosphatase enzyme involved in the conversion of glucose-6-phosphate (G6P) to glucose and inorganic phosphate, a crucial step in glucose metabolism [117,118,119,120]. | Although its role in glucose metabolism still needs to be elucidated, genetic variation in the SPC25 gene could potentially indirectly affect cellular functions related to glucose metabolism through its involvement in cell proliferation processes. Although SPC25 does not have a clear role in glucose regulation, genetic variation in G6PC2 has been associated with fasting and random (i.e., glucose measurements under non-standardized conditions) blood glucose levels, and HbA1c levels [107,109,110,121,122,123,124] | [96] |
CPO | rs1597916 | The carboxypeptidase O (CPO) gene encodes an enzyme involved in digestion of dietary proteins and peptides, assisting in the absorption of amino acids in the intestinal tract [125,126,127,128,129,130]. | The exact function of CPO in glucose levels and diabetes needs to be further investigated; however, carboxypeptidases have been previously associated with glucose metabolism and the development of T2DM [131,132,133,134]. | [92] |
ADCY5 | rs6798189 | The Adenylate cyclase 5 (ADCY5) gene encodes an enzyme involved in the production of cyclic AMP, a key molecule involved in various cellular processes, including glucose metabolism [135,136,137,138,139]. | Multiple studies have associated variants in this gene with β-cell function, fasting, and 2-h glucose levels, as well as T2DM risk [109,110,113,140,141,142,143,144,145,146,147]. | [96] |
PCSK1 | rs1820176 | The Proprotein Convertase Subtilisin/Kexin Type 1 (PCSK1) gene encodes prohormone convertase 1/3, which plays a role in the processing and activation of prohormones and precursor proteins [148,149,150,151,152,153,154]. PCSK1 was further reported to be involved in the activation and cleavage of a precursor to insulin (i.e., proinsulin) as well as in the processing of pro-opiomelanocortin (POMC), pathways that affect glucose metabolism [155,156,157,158,159,160,161,162]. | Genetic association studies have implicated PCSK1 variants in glucose homeostasis, BMI, and susceptibility to obesity [109,113,162,163,164,165,166]. | [96] |
CDKAL1 | rs34499031, rs9348441, rs7766070, rs7754840 | CDKAL1 (CDK5 Regulatory Subunit-Associated Protein 1-Like 1) encodes for methyl transferase (tRNA modifying enzyme) and has been reported to influence insulin processing and secretion through proinsulin conversion, which directly affects β-cell function [167,168,169,170]. | Studies have implicated CDKAL1 variants in T2DM risk and abnormal β-cell function [104,109,110,171,172,173,174]. | [70,92,95,96] |
ESR1 | rs537224022 | The Estrogen Receptor 1 (ESR1) gene plays a crucial role in insulin sensitivity and glucose metabolism through its contributions to glucose uptake and utilization [175,176,177,178,179,180]. | Genetic association studies have reported variants in ESR1 to be associated with T2DM and fasting plasma glucose [181,182,183,184,185]. | [96] |
SLC30A8 | rs13266634 | SLC30A8 (solute carrier family 30, member 8) gene encodes an islet zinc transporter (ZnT8), involved in zinc transport into β-cell insulin-secretory granules and essential for insulin packaging and secretion [186,187,188,189]. | Studies have reported associations between SLC30A8 genetic variants and plasma glucose levels, and susceptibility to T2DM [104,106,110,113,190,191,192]. | [92] |
CDKN2A-CDKN2B | rs1333051, rs7019437, rs10811662 | CDKN2A and CDKN2B (Cyclin-Dependent Kinase Inhibitor 2A and 2B, respectively) are genes controlling cellular proliferation through their role in cell cycle regulation [193,194,195]. | Variants in the CDKN2A and CDKN2B genes have been associated with susceptibility to T2DM, β-cell proliferation, and glucose levels [109,110,145,196,197,198]. | [70,96] |
HKDC1 | rs9663238 | The hexokinase domain-containing 1 (HKDC1) gene encodes a hexokinase protein and plays a crucial role in the regulation of glucose homeostasis through its effect on whole-body glucose disposal and insulin sensitivity [199,200]. | Genetic association studies have reported that variants in HKDC1 are associated with glucose homeostasis, HbA1c, plasma glucose levels in non-pregnant individuals, and liver enzyme alanine aminotransferase levels [84,110,201,202,203,204,205,206]. | [70] |
TCF7L2 | rs34872471, rs7903146 | The TCF7L2 (Transcription Factor 7-Like 2) gene encodes a transcription factor involved in cellular signalling pathways and glucose metabolism, playing an important role in the synthesis and maturation of proinsulin, as well as β-cell proliferation [207,208,209]. | Variants in TCF7L2 have been implicated in insulin secretion and resistance, plasma glucose levels, β-cell function, and susceptibility to T2DM [109,110,140,198,210,211,212,213,214,215,216,217,218]. | [70,96] |
MTNR1B | rs10830963, rs10830962 | The Melatonin Receptor 1B (MTNR1B) gene encodes melatonin receptors, which are involved in modulating insulin secretion and glucose metabolism in pancreatic β-cells [219]. | Variants in the MTNR1B gene are associated with insulin response, plasma glucose levels, risk of T2DM, and offspring birthweight [109,110,112,141,220,221,222,223,224,225,226,227,228,229,230,231,232,233]. | [70,92,95,96] |
NEDD1 | rs74628648 | The NEDD1 (Neural precursor cell expressed, developmentally down-regulated gene 1) gene encodes a protein that interacts with γ-tubulin and forms a complex that is targeted to the centrosome for spindle assembly and centriole duplication; hence, it is involved in mitosis [234,235,236,237]. | Although the role of NEDD1 in diabetes still needs to be elucidated, it is speculated that the protein encoded by this gene might be linked to glucose metabolism through its involvement in cellular division which could, for instance, affect β-cells. | [96] |
CCND2 | rs76895963 | The CCND2 (Cyclin D2) gene encodes a protein involved in cell cycle regulation and proliferation, being associated with β-cell replication and expansion, which consequently affects beta-cell mass and function [238,239,240,241,242,243,244,245,246,247]. | It is hypothesized that Cyclin D2 may indirectly affect insulin secretion through its role in regulating β-cell proliferation and function, with studies also reporting an association between variants in CCND2 and both blood glucose levels and T2DM [109,110,248]. | [96] |
CMIP | rs2926003 | Encodes a c-Maf-inducing protein involved in multiple signalling pathways and associated with inflammatory responses [249,250,251]. | Variants in CMIP have been reported to be associated with T2DM, obesity, and obesity-related traits [252,253,254,255,256,257,258,259,260]. | [96] |
MAP3K15 | rs56381411 | The MAP3K15 (Mitogen-Activated Protein Kinase Kinase Kinase 15) gene encodes a protein kinase that regulates apoptotic-mediated cell death and stress response [261,262,263,264,265]. | Other genetic variants within this gene have previously been associated with risk of T2DM, blood glucose, and glycosylated haemoglobin (HbA1c) levels possibly due to its involvement in pancreatic islet cell or stress response pathways [140,266,267,268]. | [96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brito Nunes, C.; Borges, M.C.; Freathy, R.M.; Lawlor, D.A.; Qvigstad, E.; Evans, D.M.; Moen, G.-H. Understanding the Genetic Landscape of Gestational Diabetes: Insights into the Causes and Consequences of Elevated Glucose Levels in Pregnancy. Metabolites 2024, 14, 508. https://doi.org/10.3390/metabo14090508
Brito Nunes C, Borges MC, Freathy RM, Lawlor DA, Qvigstad E, Evans DM, Moen G-H. Understanding the Genetic Landscape of Gestational Diabetes: Insights into the Causes and Consequences of Elevated Glucose Levels in Pregnancy. Metabolites. 2024; 14(9):508. https://doi.org/10.3390/metabo14090508
Chicago/Turabian StyleBrito Nunes, Caroline, Maria Carolina Borges, Rachel M. Freathy, Deborah A. Lawlor, Elisabeth Qvigstad, David M. Evans, and Gunn-Helen Moen. 2024. "Understanding the Genetic Landscape of Gestational Diabetes: Insights into the Causes and Consequences of Elevated Glucose Levels in Pregnancy" Metabolites 14, no. 9: 508. https://doi.org/10.3390/metabo14090508
APA StyleBrito Nunes, C., Borges, M. C., Freathy, R. M., Lawlor, D. A., Qvigstad, E., Evans, D. M., & Moen, G. -H. (2024). Understanding the Genetic Landscape of Gestational Diabetes: Insights into the Causes and Consequences of Elevated Glucose Levels in Pregnancy. Metabolites, 14(9), 508. https://doi.org/10.3390/metabo14090508