Lipidomic Signature of Pregnant and Postpartum Females by Longitudinal and Transversal Evaluation: Putative Biomarkers Determined by UHPLC-QTOF-ESI+-MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants and Sample Collection
2.2. Sample Processing
2.3. UHPLC-QTOF-ESI+-MS Analysis
2.4. Statistical Analyses
3. Results
- Group homogeneity varied, with group Gf (>24 weeks of pregnancy) displaying a broader distribution of metabolic profiles, indicating lower homogeneity.
- When analyzing all 290 metabolites, group Gf showed higher levels compared to group Gi (<24 weeks of pregnancy), while no significant metabolic differences were observed between groups C and N.
- Among metabolite classes, hormones, long-chain fatty acids, lipids, and carnitines were key contributors to differentiating the pregnant groups Gi and Gf. The most pronounced metabolic changes were observed between these groups and were influenced by the pregnancy stage. No significant differences were detected between profiles for Gi1 (6–14 weeks) and Gi2 (14–22 weeks).
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chandra, M.; Paray, A.A. Natural Physiological Changes During Pregnancy. Yale J. Biol. Med. 2024, 97, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Morton, A. Physiological Changes and Cardiovascular Investigations in Pregnancy. Heart Lung Circ. 2021, 30, e6–e15. [Google Scholar] [CrossRef] [PubMed]
- Carlin, A.; Alfirevic, Z. Physiological changes of pregnancy and monitoring. Best. Pract. Res. Clin. Obstet. Gynaecol. 2008, 22, 801–823. [Google Scholar] [CrossRef] [PubMed]
- McKeating, D.R.; Fisher, J.J.; Perkins, A.V. Elemental Metabolomics and Pregnancy Outcomes. Nutrients 2019, 11, 73. [Google Scholar] [CrossRef]
- Luan, H.; Meng, N.; Liu, P.; Feng, Q.; Lin, S.; Fu, J.; Davidson, R.; Chen, X.; Rao, W.; Chen, F.; et al. Pregnancy-induced metabolic phenotype variations in maternal plasma. J. Proteome Res. 2014, 13, 1527–1536. [Google Scholar] [CrossRef] [PubMed]
- Nobakht, M.G.B.F. Application of metabolomics to preeclampsia diagnosis. Syst. Biol. Reprod. Med. 2018, 64, 324–339. [Google Scholar] [CrossRef] [PubMed]
- Kindschuh, W.F.; Baldini, F.; Liu, M.C.; Liao, J.; Meydan, Y.; Lee, H.H.; Korem, T. Preterm birth is associated with xenobiotics and predicted by the vaginal metabolome. Nat. Microbiol. 2023, 8, 246–259. [Google Scholar] [CrossRef]
- Moros, G.; Boutsikou, T.; Fotakis, C.; Iliodromiti, Z.; Sokou, R.; Katsila, T.; Zoumpoulakis, P. Insights into intrauterine growth restriction based on maternal and umbilical cord blood metabolomics. Sci. Rep. 2021, 11, 7824. [Google Scholar] [CrossRef]
- McBride, N.; Yousefi, P.; White, S.L.; Poston, L.; Farrar, D.; Sattar, N.; Lawlor, D.A. Do nuclear magnetic resonance (NMR)-based metabolomics improve the prediction of pregnancy-related disorders? Findings from a UK birth cohort with independent validation. BMC Med. 2020, 18, 366. [Google Scholar] [CrossRef]
- Sachse, D.; Bærug, A.; Sletner, L.; Birkeland, K.I.; Nakstad, B.; Jenum, A.K.; Berg, J.P. Urine NMR metabolomics analysis of breastfeeding biomarkers during and after pregnancy in a large prospective cohort study. Scand. J. Clin. Lab. Investig. 2014, 74, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Handelman, S.K.; Romero, R.; Tarca, A.L.; Pacora, P.; Ingram, B.; Maymon, E.; Chaiworapongsa, T.; Hassan, S.S.; Erez, O. The plasma metabolome of women in early pregnancy differs from that of non-pregnant women. PLoS ONE 2019, 14, e0224682. [Google Scholar] [CrossRef] [PubMed]
- Ryckman, K.K.; Donovan, B.M.; Fleener, D.K.; Bedell, B.; Borowski, K.S. Pregnancy-related changes of amino acid and acylcarnitine concentrations: The impact of obesity. AJP Rep. 2016, 6, e329–e336. [Google Scholar]
- Orczyk-Pawilowicz, M.; Jawien, E.; Deja, S.; Hirnle, L.; Zabek, A.; Mlynarz, P. Metabolomics of human amniotic fluid and maternal plasma during normal pregnancy. PLoS ONE 2015, 11, e0152740. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, P.; Huang, Y.; Yang, X.; Sun, F.; Ye, Y.; Lai, Y.; Ouyang, J.; Wu, L.; Li, Y.; et al. BMI and lipidomic biomarkers with risk of gestational diabetes in pregnant women. Obesity 2022, 30, 2044–2054. [Google Scholar] [CrossRef]
- Wu, P.; Ye, Y.; Yang, X.; Huang, Y.; Ye, Y.; Lai, Y.; Ouyang, J.; Wu, L.; Xu, J.; Yuan, J.; et al. Liver biomarkers, lipid metabolites, and risk of gestational diabetes mellitus in a prospective study among Chinese pregnant women. BMC Med. 2023, 21, 1–12. [Google Scholar] [CrossRef]
- Luan, H.; Meng, N.; Liu, P.; Fu, J.; Chen, X.; Rao, W.; Jiang, H.; Xu, X.; Cai, Z.; Wang, J. Non-targeted metabolomics and lipidomics LC–MS data from maternal plasma of 180 healthy pregnant women. GigaScience 2015, 4, 16. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhao, J.; Lam, S.M.; Chen, L.; Gao, Y.; Wang, W.; Xu, Y.; Tan, T.; Yu, H.; Zhang, M.; et al. Low-input lipidomics reveals lipid metabolism remodelling during early mammalian embryo development. Nat. Cell Biol. 2024, 26, 278–293. [Google Scholar] [CrossRef]
- Lain, K.Y.; Catalano, P.M. Metabolic changes in pregnancy. Clin. Obstet. Gynecol. 2007, 50, 938–948. [Google Scholar] [CrossRef] [PubMed]
- Meo, S.A.; Hassain, A. Metabolic Physiology in Pregnancy. J. Pak. Med. Assoc. 2016, 66 (Suppl. S1), S8–S10. [Google Scholar] [PubMed]
- Ye, Q.; Zeng, X.; Cai, S.; Qiao, S.; Zeng, X. Mechanisms of lipid metabolism in uterine receptivity and embryo development. Trends Endocrinol. Metab. 2021, 32, 1015–1030. [Google Scholar] [CrossRef]
- Mulder, J.W.; Kusters, D.M.; van Lennep, J.E.R.; Hutten, B.A. Lipid metabolism during pregnancy: Consequences for mother and child. Curr. Opin. Lipidol. 2024, 35, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Kerlan, V.; Nahoul, K.; Le Martelot, M.; Bercovici, J. Longitudinal study of maternal plasma bioavailable testosterone and androstanediol glucuronide levels during pregnancy. Clin. Endocrinol. 1994, 40, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Ladyman, S.R.; Brooks, V.L. Central actions of insulin during pregnancy and lactation. J. Neuroendocrinol. 2021, 33, e12946. [Google Scholar] [CrossRef]
- Parisi, F.; Fenizia, C.; Introini, A.; Zavatta, A.; Scaccabarozzi, C.; Biasin, M.; Savasi, V. The pathophysiological role of estrogens in the initial stages of pregnancy: Molecular mechanisms and clinical implications for pregnancy outcome from the periconceptional period to end of the first trimester. Hum. Reprod. Updat. 2023, 29, 699–720. [Google Scholar] [CrossRef]
- Karvaly, G.; Kovács, K.; Gyarmatig, M.; Gerszi, D.; Nagy, S.; Jalal, D.A.; Tóth, Z.; Vasarhelyi, B.; Gyarmati, B. Reference data on estrogen metabolome in healthy pregnancy. Mol. Cell. Probes 2024, 74, 101953. [Google Scholar] [CrossRef] [PubMed]
- Rybak-Krzyszkowska, M.; Staniczek, J.; Kondracka, A.; Bogusławska, J.; Kwiatkowski, S.; Góra, T.; Strus, M.; Górczewski, W. From Biomarkers to the Molecular Mechanism of Preeclampsia—A Comprehensive Literature Review. Int. J. Mol. Sci. 2023, 24, 13252. [Google Scholar] [CrossRef] [PubMed]
- Bollig, K.J.; Senapati, S.; Takacs, P.; Robins, J.C.; Haisenleder, D.J.; A Beer, L.; Speicher, D.W.; Koelper, N.C.; Barnhart, K.T. Evaluation of novel biomarkers for early pregnancy outcome prediction. Biol. Reprod. 2024, 110, 548–557. [Google Scholar] [CrossRef]
- Liang, L.; Rasmussen, M.-L.H.; Piening, B.; Shen, X.; Chen, S.; Röst, H.; Snyder, J.K.; Tibshirani, R.; Skotte, L.; Lee, N.C.; et al. Metabolic Dynamics and Prediction of Gestational Age and Time to Delivery in Pregnant Women. Cell 2020, 181, 1680–1692.e15. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Ren, J.; Ren, Y.; Wu, Y.; Zeng, Y.; Zhang, Q.; Xiao, X. Using metabolomics and proteomics to identify the potential urine biomarkers for prediction and diagnosis of gestational diabetes. EBioMedicine 2024, 101, 105008. [Google Scholar] [CrossRef]
- Tranidou, A.; Tsakiridis, I.; Apostolopoulou, A.; Xenidis, T.; Pazaras, N.; Mamopoulos, A.; Athanasiadis, A.; Chourdakis, M.; Dagklis, T. Prediction of Gestational Diabetes Mellitus in the First Trimester of Pregnancy Based on Maternal Variables and Pregnancy Biomarkers. Nutrients 2023, 16, 120. [Google Scholar] [CrossRef]
- Avnon, T.; Dubinsky, E.P.; Lavie, I.; Bashi, T.B.-M.; Anbar, R.; Yogev, Y. The impact of a vegan diet on pregnancy outcomes. J. Perinatol. 2021, 41, 1129–1133. [Google Scholar] [CrossRef] [PubMed]
- Wang, X. Healthy diet during pregnancy-navigating the double-edged sword. Am. J. Clin. Nutr. 2021, 114, 414–415. [Google Scholar] [CrossRef]
- Mate, A.; Reyes-Goya, C.; Santana-Garrido, Á.; Vázquez, C.M. Lifestyle, Maternal Nutrition and Healthy Pregnancy. Curr. Vasc. Pharmacol. 2021, 19, 132–140. [Google Scholar] [CrossRef] [PubMed]
Subjects | Mean Age | SD | Mean Weeks | SD |
---|---|---|---|---|
Pregnant < 24 weeks (n = 37) | 28 | 4 | 14 | 5 |
Pregnant 6–14 weeks (n = 20) | 28 | 5 | 10 | 2 |
Pregnant 14–22 weeks (n = 17) | 29 | 3 | 18 | 3 |
Pregnant > 24 weeks (n = 28) | 27 | 5 | 34 | 5 |
Postpartum all (n = 42) | 29 | 6 | ||
Postpartum C-section (n = 25) | 29 | 6 | ||
Postpartum natural birth (n = 17) | 29 | 6 | ||
Blood collection 1–2 days postpartum n = 23 (13 C-section,10 natural birth) | 31 | 5 | ||
Blood collection > 3 days postpartum, n = 19 (12 C-section, 7 natural birth) | 26 | 7 |
m/z | Identification | AUC | p-Value | Log2 FC | Relative Variation |
---|---|---|---|---|---|
301.1486 | 2-Methoxyestrone | 0.861 | 2.35 × 10−9 | 1.961 | POSTPARTUM > PREGNANT |
343.2675 | Eicosanedioic acid FA 20:1; O2 | 0.854 | 3.75 × 10−9 | 1.517 | POSTPARTUM > PREGNANT |
397.0554 | Pregnenolone sulfate | 0.843 | 3.81 × 10−12 | −2.417 | POSTPARTUM < PREGNANT |
644.4431 | GlcCer (d18:1/12:0) | 0.834 | 2.54 × 10−3 | 0.004 | POSTPARTUM > PREGNANT |
350.9749 | Estrone 3-sulfate | 0.832 | 2.17 × 10−8 | −1.134 | POSTPARTUM < PREGNANT |
820.5259 | Cer(d18:1/35:0 (35OH)) | 0.832 | 4.31 × 10−4 | 0.197 | POSTPARTUM > PREGNANT |
701.4499 | CerPE(d16:2 (4E,6E)/20:1 (11Z) (2OH)) | 0.817 | 2.01 × 10−2 | 0.416 | POSTPARTUM > PREGNANT |
337.2131 | Docosadienoic acid acid FA 22:2 | 0.812 | 7.87 × 10−10 | −1.672 | POSTPARTUM < PREGNANT |
356.3396 | N-palmitoyl valine | 0.812 | 1.31 × 10−2 | 1.349 | POSTPARTUM > PREGNANT |
246.1301 | Valeroylcarnitine | 0.810 | 3.22 × 10−1 | −1.132 | POSTPARTUM < PREGNANT |
425.2279 | Alpha-Tocotrienol | 0.808 | 1.78 × 10−5 | 1.342 | POSTPARTUM > PREGNANT |
461.2776 | LysoPA 20:3 | 0.805 | 1.37 × 10−4 | 1.117 | POSTPARTUM > PREGNANT |
501.3423 | Palmitoleyl linolenate | 0.792 | 1.94 × 10−6 | −1.600 | POSTPARTUM < PREGNANT |
249.1769 | 3,9-hexadecadiynoic acid FA 16:4 | 0.791 | 3.97 × 10−6 | 0.172 | POSTPARTUM > PREGNANT |
544.1518 | LysoPC (20:4) | 0.788 | 9.93 × 10−6 | −3.327 | POSTPARTUM < PREGNANT |
355.2231 | PGF2β | 0.787 | 2.95 × 10−7 | −1.129 | POSTPARTUM < PREGNANT |
348.9766 | Dihydrocorticosterone | 0.787 | 3.37 × 10−6 | −1.009 | POSTPARTUM < PREGNANT |
672.4711 | GlcCer (d18:1/14:0) | 0.782 | 1.85 × 10−3 | −0.031 | POSTPARTUM < PREGNANT |
150.0856 | Methionine | 0.780 | 4.32 × 10−4 | 1.071 | POSTPARTUM > PREGNANT |
776.5121 | 1-O-palmitoyl-Cer (d18:1/16:0) | 0.774 | 3.24 × 10−3 | −0.055 | POSTPARTUM < PREGNANT |
m/z | Identification | AUC | p-Value | Log2 FC | Relative Variation |
---|---|---|---|---|---|
693.4191 | DG (42:8) | 0.922 | 8.41 × 10−7 | −0.217 | Gi < Gf |
348.9766 | Dihydrocorticosterone | 0.902 | 1.67 × 10−11 | 1.991 | Gi > Gf |
125.9763 | Taurine | 0.877 | 4.25 × 10−7 | −0.770 | Gi < Gf |
810.5288 | Cer(d18:1/35:0 (35OH)) | 0.874 | 1.01 × 10−2 | −1.973 | Gi < Gf |
172.1932 | L-Homocysteine sulfate | 0.865 | 1.13 × 10−5 | −0.638 | Gi < Gf |
537.3859 | Beta-carotene | 0.854 | 2.46 × 10−6 | −2.140 | Gi < Gf |
216.2175 | Propenoylcarnitine | 0.846 | 4.42 × 10−5 | 0.398 | Gi > Gf |
298.3268 | Sphingosine 18:2 | 0.841 | 4.58 × 10−5 | −2.636 | Gi < Gf |
679.4567 | DG (40:1) | 0.840 | 6.57 × 10−4 | −0.437 | Gi < Gf |
328.9923 | Phenylalanyltyrosine | 0.839 | 3.54 × 10−8 | 1.713 | Gi > Gf |
235.1540 | 5-Methoxytryptophan | 0.832 | 1.59 × 10−5 | 0.332 | Gi > Gf |
149.0686 | Mevalonic acid | 0.831 | 7.98 × 10−3 | −0.821 | Gi < Gf |
387.2326 | Cholesterol | 0.828 | 7.61 × 10−6 | −0.199 | Gi < Gf |
825.4906 | TG (50:5) | 0.825 | 5.20 × 10−5 | −0.213 | Gi < Gf |
173.1407 | Capric acid | 0.823 | 4.58 × 10−5 | 0.180 | Gi < Gf |
230.2320 | Butenoylcarnitine | 0.820 | 1.03 × 10−5 | −0.808 | Gi < Gf |
577.3524 | DG (33:3) | 0.814 | 6.58 × 10−5 | −0.683 | Gi < Gf |
243.1195 | Thymidine | 0.806 | 2.30 × 10−6 | 0.187 | Gi > Gf |
350.9749 | Estrone 3-sulfate | 0.803 | 2.21 × 10−6 | 1.578 | Gi > Gf |
427.2616 | N-stearoyl arginine | 0.803 | 1.91 × 10−4 | 0.202 | Gi > Gf |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Traila, A.; Craina, M.; Socaciu, C.; Socaciu, A.I.; Nitusca, D.; Marian, C. Lipidomic Signature of Pregnant and Postpartum Females by Longitudinal and Transversal Evaluation: Putative Biomarkers Determined by UHPLC-QTOF-ESI+-MS. Metabolites 2025, 15, 27. https://doi.org/10.3390/metabo15010027
Traila A, Craina M, Socaciu C, Socaciu AI, Nitusca D, Marian C. Lipidomic Signature of Pregnant and Postpartum Females by Longitudinal and Transversal Evaluation: Putative Biomarkers Determined by UHPLC-QTOF-ESI+-MS. Metabolites. 2025; 15(1):27. https://doi.org/10.3390/metabo15010027
Chicago/Turabian StyleTraila, Alexandra, Marius Craina, Carmen Socaciu, Andreea Iulia Socaciu, Diana Nitusca, and Catalin Marian. 2025. "Lipidomic Signature of Pregnant and Postpartum Females by Longitudinal and Transversal Evaluation: Putative Biomarkers Determined by UHPLC-QTOF-ESI+-MS" Metabolites 15, no. 1: 27. https://doi.org/10.3390/metabo15010027
APA StyleTraila, A., Craina, M., Socaciu, C., Socaciu, A. I., Nitusca, D., & Marian, C. (2025). Lipidomic Signature of Pregnant and Postpartum Females by Longitudinal and Transversal Evaluation: Putative Biomarkers Determined by UHPLC-QTOF-ESI+-MS. Metabolites, 15(1), 27. https://doi.org/10.3390/metabo15010027