The Influence of Concurrent Autoimmune Thyroiditis on the Cardiometabolic Consequences of Cabergoline in Postmenopausal Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Design
2.3. Laboratory Assays
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Auriemma, R.S.; Pirchio, R.; Pivonello, R.; Colao, A. Hyperprolactinemia after menopause: Diagnosis and management. Maturitas 2021, 151, 36–40. [Google Scholar] [CrossRef]
- Gierach, M.; Bruska-Sikorska, M.; Rojek, M.; Junik, R. Hyperprolactinemia and insulin resistance. Endokrynol. Pol. 2022, 73, 959–967. [Google Scholar] [CrossRef]
- Auriemma, R.S.; De Alcubierre, D.; Pirchio, R.; Pivonello, R.; Colao, A. Glucose abnormalities associated to prolactin secreting pituitary adenomas. Front. Endocrinol. 2019, 10, 327. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.B.; Li, C.L.; He, D.S.; Mao, Z.G.; Liu, D.H.; Fan, X.; Hu, B.; Zhu, Y.H.; Wang, H.J. Increased carotid intima media thickness is associated with prolactin levels in subjects with untreated prolactinoma: A pilot study. Pituitary 2014, 17, 232–239. [Google Scholar] [CrossRef]
- Yavuz, D.; Deyneli, O.; Akpinar, I.; Yildiz, E.; Gözü, H.; Sezgin, O.; Haklar, G.; Akalin, S. Endothelial function, insulin sensitivity and inflammatory markers in hyperprolactinemic premenopausal women. Eur. J. Endocrinol. 2003, 149, 187–193. [Google Scholar] [CrossRef]
- Arslan, M.S.; Topaloglu, O.; Sahin, M.; Tutal, E.; Gungunes, A.; Cakir, E.; Ozturk, I.U.; Karbek, B.; Ucan, B.; Ginis, Z. Preclinical atherosclerosis in patients with prolactinoma. Endocr. Pract. 2014, 20, 447–451. [Google Scholar] [CrossRef]
- Erem, C.; Kocak, M.; Nuhoglu, I.; Yılmaz, M.; Ucuncu, O. Blood coagulation, fibrinolysis and lipid profile in patients with prolactinoma. Clin. Endocrinol. 2010, 73, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Carrero, J.; Kyriazis, J.; Sonmez, A.; Tzanakis, I.; Quereshi, A.; Stenvinkel, P.; Saglam, M.; Stylianou, K.; Yaman, H.; Taslipinar, A.; et al. Prolactin levels, endothelial dysfunction, and the risk of cardiovascular events and mortality in patients with CKD. Clin. Am. J. Soc. Nephrol. 2012, 7, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Yazici, D.; Sunbul, M.; Yasar, M.; Deyneli, O.; Yavuz, D. Is there an increased cardiovascular risk in patients with prolactinoma? A challenging question. J. Clin. Ultrasound 2021, 49, 870–877. [Google Scholar] [CrossRef] [PubMed]
- Doğan, B.A.; Arduç, A.; Tuna, M.M.; Nasıroğlu, N.I.; Işık, S.; Berker, D.; Güler, S. Evaluation of atherosclerosis after cessation of cabergoline therapy in patients with prolactinoma. Anatol. J. Cardiol. 2016, 16, 440–447. [Google Scholar] [PubMed]
- Georgiopoulos, G.A.; Stamatelopoulos, K.S.; Lambrinoudaki, I.; Lykka, M.; Kyrkou, K.; Rizos, D.; Creatsa, M.; Christodoulakos, G.; Alevizaki, M.; Sfikakis, P.P.; et al. Prolactin and preclinical atherosclerosis in menopausal women with cardiovascular risk factors. Hypertension 2009, 54, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Georgiopoulos, G.; Lambrinoudaki, I.; Athanasouli, F.; Armeni, E.; Koliviras, A.; Augoulea, A.; Rizos, D.; Papamichael, C.; Protogerou, A.; Stellos, K.; et al. Prolactin as a predictor of endothelial dysfunction and arterial stiffness progression in menopause. J. Hum. Hypertens. 2017, 31, 520–524. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Curhan, G.C.; Forman, J.P. Plasma prolactin level and risk of incident hypertension in postmenopausal women. J. Hypertens. 2010, 28, 1400–1405. [Google Scholar] [CrossRef] [PubMed]
- Raaz, D.; Wallaschofski, H.; Stumpf, C.; Yilmaz, A.; Cicha, I.; Klinghammer, L. Increased prolactin in acute coronary syndromes as putative co-activator of ADP-stimulated P-selectin expression. Horm. Metab. Res. 2006, 38, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Wallaschofski, H.; Lohmann, T.; Hild, E.; Kobsar, A.; Siegemund, A.; Spilcke-Liss, E.; Hentschel, B.; Stumpf, C.; Daniel, W.G.; Garlichs, C.D.; et al. Enhanced platelet activation by prolactin in patients with ischemic stroke. Thromb. Haemost. 2006, 96, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Wallaschofski, H.; Eigenthaler, M.; Kiefer, M.; Donné, M.; Hentschel, B.; Gertz, H.J.; Lohmann, T. Hyperprolactinemia in patients on antipsychotic drugs causes ADP-stimulated platelet activation that might explain the increased risk for venous thromboembolism: Pilot study. J. Clin. Psychopharmacol. 2003, 23, 479–483. [Google Scholar] [CrossRef]
- Ciccone, M.M.; De Pergola, G.; Porcelli, M.T.; Scicchitano, P.; Caldarola, P.; Iacoviello, M. Increased carotid IMT in overweight and obese women affected by Hashimoto’s thyroiditis: An adiposity and autoimmune linkage? BMC Cardiovasc. Disord. 2010, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Xiang, G.D.; He, Y.S.; Zhao, L.S.; Hou, J.; Yue, L.; Xiang, H.J. Impairment of endothelium-dependent arterial dilation in Hashimoto’s thyroiditis patients with euthyroidism. Clin. Endocrinol. 2006, 64, 698–702. [Google Scholar] [CrossRef]
- Stamatelopoulos, K.S.; Kyrkou, K.; Chrysochoou, E.; Karga, H.; Chatzidou, S.; Georgiopoulos, G.; Georgiou, S.; Xiromeritis, K.; Papamichael, C.M.; Alevizaki, M. Arterial stiffness but not intima-media thickness is increased in euthyroid patients with Hashimoto’s thyroiditis: The effect of menopausal status. Thyroid 2009, 19, 857–862. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Yao, Z.; Wang, G. The relationship between the impairment of endothelial function and thyroid antibodies in Hashimoto’s thyroiditis patients with euthyroidism. Horm. Metab. Res. 2020, 52, 642–646. [Google Scholar] [CrossRef]
- Liu, J.; Duan, Y.; Fu, J.; Wang, G. Association between thyroid hormones, thyroid antibodies, and cardiometabolic factors in nonobese individuals with normal thyroid function. Front. Endocrinol. 2018, 9, 130. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, C.; Chen, Y.; Wang, N. Are thyroid autoimmune diseases are associated with cardiometabolic risks in a population with normal thyroid-stimulating hormone? Mediators Inflamm. 2018, 2018, 1856137. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, R.; Okopień, B. The effect of levothyroxine and selenomethionine on lymphocyte and monocyte cytokine release in women with Hashimoto’s thyroiditis. J. Clin. Endocrinol. Metab. 2011, 96, 2206–2215. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, R.; Kowalcze, K.; Okopień, B. Cardiometabolic risk factors in atorvastatin-treated women with euthyroid autoimmune thyroiditis. Pharmacology 2023, 108, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Nyirenda, M.J.; Clark, D.N.; Finlayson, A.R.; Read, J.; Elders, A.; Bain, M. Thyroid disease and increased cardiovascular risk. Thyroid 2005, 15, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Gessl, A.; Lemmens-Gruber, R.; Kautzky-Willer, A. Thyroid disorders. Handb. Exp. Pharmacol. 2012, 214, 361–386. [Google Scholar]
- Merrill, S.J.; Minucci, S.B. Thyroid autoimmunity: An interplay of factors. Vitam. Horm. 2018, 106, 129–145. [Google Scholar]
- Ragusa, F.; Fallahi, P.; Elia, G.; Gonnella, D.; Paparo, S.R.; Giusti, C.; Churilov, L.P.; Ferrari, S.M.; Antonelli, A. Hashimotos’ thyroiditis: Epidemiology, pathogenesis, clinic and therapy. Best Pract. Res. Clin. Endocrinol. Metab. 2019, 34, 101367. [Google Scholar] [CrossRef] [PubMed]
- Duntas, L.H.; Chiovato, L. Cardiovascular risk in patients with subclinical hypothyroidism. Eur. Endocrinol. 2014, 10, 157–160. [Google Scholar] [PubMed]
- Krysiak, R.; Kowalcze, K.; Okopień, B. Autoimmune thyroiditis attenuates cardiometabolic effects of cabergoline in young women with hyperprolactinemia. J. Clin. Pharmacol. 2023, 63, 886–894. [Google Scholar] [CrossRef]
- Gill, S.K. Cardiovascular risk factors and disease in women. Med. Clin. North Am. 2015, 99, 535–552. [Google Scholar] [CrossRef] [PubMed]
- Uddenberg, E.R.; Safwan, N.; Saadedine, M.; Hurtado, M.D.; Faubion, S.S.; Shufelt, C.L. Menopause transition and cardiovascular disease risk. Maturitas 2024, 185, 107974. [Google Scholar] [CrossRef] [PubMed]
- Barth, J.H.; Lippiatt, C.M.; Gibbons, S.G.; Desborough, R.A. Observational studies on macroprolactin in a routine clinical laboratory. Clin. Chem. Lab. Med. 2018, 56, 1259–1262. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, R.; Szkróbka, W.; Okopień, B. A neutral effect of metformin treatment on macroprolactin content in women with macroprolactinemia. Exp. Clin. Endocrinol. Diabetes 2016, 125, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, R.; Kowalcze, K.; Madej, A.; Okopień, B. The effect of metformin on plasma prolactin levels in young women with autoimmune thyroiditis. J. Clin. Med. 2023, 12, 3769. [Google Scholar] [CrossRef] [PubMed]
- De Bellis, A.; Bizzarro, A.; Pivonello, R.; Lombardi, G.; Bellastella, A. Prolactin and autoimmunity. Pituitary 2005, 8, 25–30. [Google Scholar] [CrossRef]
- Borba, V.V.; Zandman-Goddard, G.; Shoenfeld, Y. Prolactin and autoimmunity. Front. Immunol. 2018, 9, 73. [Google Scholar] [CrossRef]
- Kramer, C.K.; Tourinho, T.F.; de Castro, W.P.; da Costa Oliveira, M. Association between systemic lupus erythematosus, rheumatoid arthritis, hyperprolactinemia and thyroid autoantibodies. Arch. Med. Res. 2005, 36, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Sayki Arslan, M.; Sahin, M.; Topaloglu, O.; Tutal, E.; Karakose, M.; Gungunes, A.; Cakal, E.; Ozbek, M.; Delibasi, T. Hyperprolactinaemia associated with increased thyroid volume and autoimmune thyroiditis in patients with prolactinoma. Clin. Endocrinol. 2013, 79, 882–886. [Google Scholar] [CrossRef] [PubMed]
- Vilar, L.; Vilar, C.F.; Lyra, R.; Freitas, M.D. Pitfalls in the diagnostic evaluation of hyperprolactinemia. Neuroendocrinology 2019, 109, 7–19. [Google Scholar] [CrossRef]
- Herrick, S.; Blanc-Brude, O.; Gray, A.; Laurent, G. Fibrinogen. Int. J. Biochem. Cell Biol. 1999, 31, 741–746. [Google Scholar] [CrossRef]
- Duran-Salgado, M.B.; Rubio-Guerra, A.F. Diabetic nephropathy and inflammation. World J. Diabetes 2014, 5, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Al Mutairi, F. Hyperhomocysteinemia: Clinical Insights. J. Cent. Nerv. Syst. Dis. 2020, 12, 1179573520962230. [Google Scholar] [CrossRef] [PubMed]
- Martinon, F. Update on biology: Uric acid and the activation of immune and inflammatory cells. Curr. Rheumatol. Rep. 2010, 12, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, R.; Kowalcze, K.; Szkróbka, W.; Okopień, B. Sexual function and depressive symptoms in young women with euthyroid Hashimoto thyroiditis receiving vitamin D, selenomethionine and myo-inositol: A pilot study. Nutrients 2023, 15, 2815. [Google Scholar] [CrossRef]
- Rizo-Téllez, S.A.; Sekheri, M.; Filep, J.G. C-reactive protein: A target for therapy to reduce inflammation. Front. Immunol. 2023, 14, 1237729. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, R.; Basiak, M.; Machnik, G.; Okopień, B. Impaired gonadotropin-lowering effects of metformin in postmenopausal women with autoimmune thyroiditis: A pilot study. Pharmaceuticals 2023, 16, 922. [Google Scholar] [CrossRef]
- González, M.C.; Abreu, P.; Barroso-Chinea, P.; Cruz-Muros, I.; González-Hernández, T. Effect of intracerebroventricular injection of lipopolysaccharide on the tuberoinfundibular dopaminergic system of the rat. Neuroscience 2004, 127, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, J.L.; Belin de Chantemèle, E.J. Sex hormones, aging and cardiometabolic syndrome. Biol. Sex Differ. 2019, 10, 30. [Google Scholar] [CrossRef] [PubMed]
- Koniares, K.; Benadiva, C.; Engmann, L.; Nulsen, J.; Grow, D. Macroprolactinemia: A mini-review and update on clinical practice. F. S. Rep. 2023, 4, 245–250. [Google Scholar] [CrossRef]
- Olson, A.L. Regulation of GLUT4 and insulin-dependent glucose flux. ISRN Mol. Biol. 2012, 2012, 856987. [Google Scholar] [CrossRef] [PubMed]
- Tavares, G.; Marques, D.; Barra, C.; Rosendo-Silva, D.; Costa, A.; Rodrigues, T.; Gasparini, P.; Melo, B.F.; Sacramento, J.F.; Seica, R.; et al. Dopamine D2 receptor agonist, bromocriptine, remodels adipose tissue dopaminergic signalling and upregulates catabolic pathways, improving metabolic profile in type 2 diabetes. Mol. Metab. 2021, 51, 101241. [Google Scholar] [CrossRef] [PubMed]
- Jager, J.; Grémeaux, T.; Cormont, M.; Le Marchand-Brustel, Y.; Tanti, J.F. Interleukin-1beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology 2007, 148, 241–251. [Google Scholar] [CrossRef]
- Peraldi, P.; Spiegelman, B. TNF-alpha and insulin resistance: Summary and future prospects. Mol. Cell. Biochem. 1998, 182, 169–175. [Google Scholar] [CrossRef]
- Mormile, R. Induction of GLUT4 by inhibiting IFN-γ: A winning move to halt type 2 diabetes? Int. J. Colorectal Dis. 2016, 31, 1387. [Google Scholar] [CrossRef]
- Vinik, A.I. The metabolic basis of atherogenic dyslipidemia. Clin. Cornerstone 2005, 7, 27–35. [Google Scholar] [CrossRef]
- Streiner, D.L. Regression toward the mean: Its etiology, diagnosis, and treatment. Can. J. Psychiatry 2001, 46, 72–76. [Google Scholar] [CrossRef] [PubMed]
Variable | Group 1 | Group 2 | p-Value |
---|---|---|---|
Number (n) | 25 | 25 | - |
Age (years) | 63 ± 6 | 62 ± 7 | 0.5585 |
Smokers (%)/number of cigarettes a day (n)/duration of smoking (years) | 40/10 ± 6/34 ± 15 | 36/9 ± 6/32 ± 14 | 0.4215 |
Reasons for prolactin excess: drug-induced hyperprolactinemia/prolactinoma/empty sella syndrome/brain injury/idiopathic hyperprolactinemia (%) | 36/16/24/12/12 | 40/12/20/16/12 | 0.7528 |
Prediabetes/type 2 diabetes * (%) | 56/8 | 48/4 | 0.1401 |
BMI (kg/m2) | |||
Baseline | 25.3 ± 4.6 | 24.9 ± 4.3 | 0.7522 |
Follow-up | 25.0 ± 4.8 | 23.6 ± 4.2 | 0.2780 |
p-value (follow-up vs. baseline) | 0.8225 | 0.2829 | - |
Systolic blood pressure (mmHg) | |||
Baseline | 134 ± 15 | 131 ± 17 | 0.5144 |
Follow-up | 130 ± 15 | 125 ± 14 | 0.2290 |
p-value (follow-up vs. baseline) | 0.3505 | 0.1795 | - |
Diastolic blood pressure (mmHg) | |||
Baseline | 81 ± 5 | 80 ± 5 | 0.4829 |
Follow-up | 80 ± 6 | 79 ± 5 | 0.5251 |
p-value (follow-up vs. baseline) | 0.5251 | 0.4829 | - |
Variable | Group 1 | Group 2 | p-Value (1 vs. 2) |
---|---|---|---|
Total prolactin (ng/mL) | |||
Baseline | 68.2 ± 20.0 | 70.1 ± 24.2 | 0.7635 |
Follow-up | 21.9 ± 8.8 | 12.9 ± 6.7 | 0.0002 |
p-value (follow-up vs. baseline) | <0.0001 | <0.0001 | - |
Monomeric prolactin (ng/mL) | |||
Baseline | 64.2 ± 10.8 | 67.1 ± 23.5 | 0.5776 |
Follow-up | 18.1 ± 6.4 | 10.1 ± 5.9 | <0.0001 |
p-value (follow-up vs. baseline) | <0.0001 | <0.0001 | - |
Glucose (mg/dL) | |||
Baseline | 102 ± 15 | 104 ± 14 | 0.6282 |
Follow-up | 98 ± 13 | 97 ± 14 | 0.7950 |
p-value (follow-up vs. baseline) | 0.3187 | 0.0835 | - |
HOMA1-IR | |||
Baseline | 3.5 ± 1.4 | 2.8 ± 1.0 | 0.0475 |
Follow-up | 2.7 ± 1.2 | 1.5 ± 0.8 | 0.0001 |
p-value (follow-up vs. baseline) | 0.0350 | <0.0001 | - |
HbA1c (%) | |||
Baseline | 5.6 ± 0.5 | 5.5 ± 0.5 | 0.4829 |
Follow-up | 5.5 ± 0.6 | 5.3 ± 0.5 | 0.2066 |
p-value (follow-up vs. baseline) | 0.5251 | 0.1638 | - |
Total cholesterol (mg/dL) | |||
Baseline | 192 ± 48 | 198 ± 65 | 0.7121 |
Follow-up | 190 ± 55 | 195 ± 62 | 0.7642 |
p-value (follow-up vs. baseline) | 0.8916 | 0.8681 | - |
HDL-cholesterol (mg/dL) | |||
Baseline | 41 ± 8 | 46 ± 8 | 0.0319 |
Follow-up | 47 ± 9 | 55 ± 9 | 0.0029 |
p-value (follow-up vs. baseline) | 0.0162 | 0.0005 | - |
LDL-cholesterol (mg/dL) | |||
Baseline | 115 ± 34 | 118 ± 24 | 0.7202 |
Follow-up | 112 ± 31 | 113 ± 35 | 0.9153 |
p-value (follow-up vs. baseline) | 0.7458 | 0.5586 | - |
Triglycerides (mg/dL) | |||
Baseline | 164 ± 53 | 171 ± 70 | 0.6918 |
Follow-up | 140 ± 67 | 125 ± 52 | 0.3809 |
p-value (follow-up vs. baseline) | 0.0668 | 0.0112 | - |
TPOAb (U/mL) | |||
Baseline | 832 ± 345 | 14 ± 8 | <0.0001 |
Follow-up | 705 ± 267 | 12 ± 8 | <0.0001 |
p-value (follow-up vs. baseline) | 0.1411 | 0.3812 | - |
TgAb (U/mL) | |||
Baseline | 785 ± 371 | 16 ± 10 | <0.0001 |
Follow-up | 690 ± 288 | 15 ± 12 | <0.0001 |
p-value (follow-up vs. baseline) | 0.3169 | 0.7503 | - |
TSH (mU/L) | |||
Baseline | 3.1 ± 0.7 | 2.9 ± 0.9 | 0.3848 |
Follow-up | 2.9 ± 0.8 | 2.8 ± 1.0 | 0.6970 |
p-value (follow-up vs. baseline) | 0.3516 | 0.7118 | - |
Uric acid (mg/dL) | |||
Baseline | 4.0 ± 1.4 | 4.8 ± 1.2 | 0.0350 |
Follow-up | 3.6 ± 1.3 | 2.9 ± 0.7 | 0.0218 |
p-value (follow-up vs. baseline) | 0.3004 | <0.0001 | - |
hsCRP (mg/L) | |||
Baseline | 3.9 ± 1.2 | 3.0 ± 1.3 | 0.0142 |
Follow-up | 3.4 ± 1.3 | 1.5 ± 0.8 | <0.0001 |
p-value (follow-up vs. baseline) | 0.1641 | <0.0001 | - |
Fibrinogen (mg/dL) | |||
Baseline | 402 ± 80 | 350 ± 101 | 0.0492 |
Follow-up | 416 ± 121 | 281 ± 88 | <0.0001 |
p-value (follow-up vs. baseline) | 0.6316 | 0.0131 | - |
Homocysteine (μmol/L) | |||
Baseline | 30.9 ± 11.0 | 24.7 ± 9.5 | 0.0381 |
Follow-up | 28.6 ± 12.2 | 16.8 ± 8.0 | 0.0002 |
p-value (follow-up vs. baseline) | 0.4873 | 0.0026 | - |
UACR (mg/g) | |||
Baseline | 29.5 ± 10.3 | 23.0 ± 9.2 | 0.0228 |
Follow-up | 22.8 ± 8.5 | 11.9 ± 5.6 | <0.0001 |
p-value (follow-up vs. baseline) | 0.0156 | <0.0001 | - |
FRS (%) | |||
Baseline | 9.6 ± 2.3 | 9.1 ± 2.2 | 0.4360 |
Follow-up | 8.8 ± 2.0 | 7.3 ± 2.0 | 0.0108 |
p-value (follow-up vs. baseline) | 0.1956 | 0.0040 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krysiak, R.; Basiak, M.; Szkróbka, W.; Okopień, B. The Influence of Concurrent Autoimmune Thyroiditis on the Cardiometabolic Consequences of Cabergoline in Postmenopausal Women. Metabolites 2025, 15, 9. https://doi.org/10.3390/metabo15010009
Krysiak R, Basiak M, Szkróbka W, Okopień B. The Influence of Concurrent Autoimmune Thyroiditis on the Cardiometabolic Consequences of Cabergoline in Postmenopausal Women. Metabolites. 2025; 15(1):9. https://doi.org/10.3390/metabo15010009
Chicago/Turabian StyleKrysiak, Robert, Marcin Basiak, Witold Szkróbka, and Bogusław Okopień. 2025. "The Influence of Concurrent Autoimmune Thyroiditis on the Cardiometabolic Consequences of Cabergoline in Postmenopausal Women" Metabolites 15, no. 1: 9. https://doi.org/10.3390/metabo15010009
APA StyleKrysiak, R., Basiak, M., Szkróbka, W., & Okopień, B. (2025). The Influence of Concurrent Autoimmune Thyroiditis on the Cardiometabolic Consequences of Cabergoline in Postmenopausal Women. Metabolites, 15(1), 9. https://doi.org/10.3390/metabo15010009