Polar Metabolite Profiles Distinguish Between Early and Severe Sub-Maintenance Nutritional States of Wild Bighorn Sheep
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Capture and Handling
2.2. Experimental Design and Study Animals
2.3. Dataset Curation and Exploratory Analysis
2.4. Polar Metabolite Extraction and NMR Data Acquisition
2.5. Spectral Analysis and Statistical Analyses
2.6. Multivariate Statistics and Machine Learning
2.6.1. Principal Component Analysis
2.6.2. Partial Least Squares Discriminant Analysis
2.6.3. Univariate
2.6.4. ANOVA (2-Way)
3. Results
3.1. Multiclass PCA and PLS-DA Analysis of Early, Moderate, and Severe Sub-Maintenance
3.2. Unbalanced Sample Size Considerations
3.3. PCA and PLS-DA Analysis of Early vs. Severe Sub-Maintenance
3.4. Variable Importance in Projection (VIP) Scores for Metabolites
3.5. Heatmap of Metabolite Levels
3.6. Univariate Analysis Results
3.7. Volcano Plot Analysis
3.8. Multiple Factor Analysis: Two-Way ANOVA
4. Discussion
4.1. Wild Bighorn Sheep in Early-SM Versus Severe-SM Nutritional States Can Be Distinguished Based on Alterations in Levels of Metabolites Involved in One-Carbon Metabolism
4.2. Alterations in Amino Acid Metabolism Reflect Nutritional Stress and Possible Energy Deficits in Wild Bighorn Sheep
4.3. Severe Nutritional Stress Possibly Alters Choline Metabolism, TCA Cycle Activity, Nucleotide Metabolism, and Nitrogen Detoxification in Wild Bighorn Sheep
4.4. Differences in the Metabolic Response of Early-SM and Severe-SM Wild Bighorn Sheep Are Distinguished by the Capture Environment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Festa-Bianchet, M. Seasonal range selection in bighorn sheep: Conflicts between forage quality, forage quantity, and predator avoidance. Oecologia 1988, 75, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Buechner, H.K. Mountain Sheep. A Study in Behavior and Evolution. Valerius Geist. Q. Rev. Biol. 1974, 49, 168–169. [Google Scholar] [CrossRef]
- Proffitt, K.M.; Courtemanch, A.B.; Dewey, S.R.; Lowrey, B.; McWhirter, D.E.; Monteith, K.L.; Paterson, J.T.; Rotella, J.; White, P.J.; Garrott, R.A. Regional variability in pregnancy and survival rates of Rocky Mountain bighorn sheep. Ecosphere 2021, 12, e03410. [Google Scholar] [CrossRef]
- Whiting, J.C.; Bleich, V.C.; Bowyer, R.T.; Epps, C.W. Restoration of bighorn sheep: History, successes, and remaining conservation issues. Front. Ecol. Evol. 2023, 11, 1083350. [Google Scholar] [CrossRef]
- Blaxter, K.L.; Boyne, A.W. Fasting and maintenance metabolism of sheep. J. Agric. Sci. 1982, 99, 611–620. [Google Scholar] [CrossRef]
- Goodson, N.J.; Stevens, D.R.; Bailey, J.A. Effects of Snow on Foraging Ecology and Nutrition of Bighorn Sheep. J. Wildl. Manag. 1991, 55, 214–222. [Google Scholar] [CrossRef]
- Monteith, K.L.; Stephenson, T.R.; Bleich, V.C.; Conner, M.M.; Pierce, B.M.; Bowyer, R.T. Risk-sensitive allocation in seasonal dynamics of fat and protein reserves in a long-lived mammal. J. Anim. Ecol. 2013, 82, 377–388. [Google Scholar] [CrossRef]
- Torbit, S.C.; Carpenter, L.H.; Swift, D.M.; Alldredge, A.W. Differential Loss of Fat and Protein by Mule Deer during Winter. J. Wildl. Manag. 1985, 49, 80–85. [Google Scholar] [CrossRef]
- Bundy, J.G.; Davey, M.P.; Viant, M.R. Environmental metabolomics: A critical review and future perspectives. Metabolomics 2008, 5, 3–21. [Google Scholar] [CrossRef]
- O’Shea-Stone, G.; Lambert, R.; Tripet, B.; Berardinelli, J.; Thomson, J.; Copié, V.; Garrott, R. 1H NMR based metabolic profiling distinguishes the differential impact of capture techniques on wild bighorn sheep. Sci. Rep. 2021, 11, 11308. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S. Metabolomics: Applications to food science and nutrition research. Trends Food Sci. Technol. 2008, 19, 482–493. [Google Scholar] [CrossRef]
- Goldansaz, S.A.; Guo, A.C.; Sajed, T.; Steele, M.A.; Plastow, G.S.; Wishart, D.S. Livestock metabolomics and the livestock metabolome: A systematic review. PLoS ONE 2017, 12, e0177675. [Google Scholar] [CrossRef]
- Button, K.S.; Ioannidis, J.P.A.; Mokrysz, C.; Nosek, B.A.; Flint, J.; Robinson, E.S.J.; Munafò, M.R. Power failure: Why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 2013, 14, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Smilde, A.K.; van der Werf, M.J.; Bijlsma, S.; van der Werff-van der Vat, B.J.C.; Jellema, R.H. Fusion of Mass Spectrometry-Based Metabolomics Data. Anal. Chem. 2005, 77, 6729–6736. [Google Scholar] [CrossRef]
- Davis, T.J.; Firzli, T.R.; Higgins Keppler, E.A.; Richardson, M.; Bean, H.D. Addressing Missing Data in GC × GC Metabolomics: Identifying Missingness Type and Evaluating the Impact of Imputation Methods on Experimental Replication. Anal. Chem. 2022, 94, 10912–10920. [Google Scholar] [CrossRef]
- Massey, F.J. The Kolmogorov-Smirnov Test for Goodness of Fit. J. Am. Stat. Assoc. 1951, 46, 68–78. [Google Scholar] [CrossRef]
- Rubner, Y.; Tomasi, C. The Earth Mover’s Distance. In Perceptual Metrics for Image Database Navigation; Rubner, Y., Tomasi, C., Eds.; Springer: Boston, MA, USA, 2001; pp. 13–28. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Kempa, J.; O’Shea-Stone, G.; Moss, C.E.; Peters, T.; Marcotte, T.K.; Tripet, B.; Eilers, B.; Bothner, B.; Copié, V.; Pincus, S.H. Distinct Metabolic States Are Observed in Hypoglycemia Induced in Mice by Ricin Toxin or by Fasting. Toxins 2022, 14, 815. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, A.L.; Schiller, S.M.; Keegan, W.J.; Ammons, M.C.B.; Eilers, B.; Tripet, B.; Copie, V. Quantitative (1)H NMR Metabolomics Reveal Distinct Metabolic Adaptations in Human Macrophages Following Differential Activation. Metabolites 2019, 9, 248. [Google Scholar] [CrossRef]
- Xia, J.; Psychogios, N.; Young, N.; Wishart, D.S. MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009, 37, W652–W660. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, R.A.; Hoefsloot, H.C.; Westerhuis, J.A.; Smilde, A.K.; van der Werf, M.J. Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genom. 2006, 7, 142. [Google Scholar] [CrossRef]
- Rossum, G.V.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Sydney, NSW, Australia, 2009. [Google Scholar]
- The pandas development team. Pandas (v2.2.0); Zenodo: Genève, Switzerland, 2024. [Google Scholar]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Louppe, G.; Prettenhofer, P.; Weiss, R.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Ruiz-Perez, D.; Guan, H.; Madhivanan, P.; Mathee, K.; Narasimhan, G. So you think you can PLS-DA? BMC Bioinform. 2020, 21, 2. [Google Scholar] [CrossRef] [PubMed]
- Szymanska, E.; Saccenti, E.; Smilde, A.K.; Westerhuis, J.A. Double-check: Validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics 2012, 8, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Triba, M.N.; Le Moyec, L.; Amathieu, R.; Goossens, C.; Bouchemal, N.; Nahon, P.; Rutledge, D.N.; Savarin, P. PLS/OPLS models in metabolomics: The impact of permutation of dataset rows on the K-fold cross-validation quality parameters. Mol. Biosyst. 2015, 11, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Mann, H.B.; Whitney, D.R. On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Sundjaja, J.H.; Shrestha, R.; Krishan, K. McNemar And Mann-Whitney U Tests. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Korthauer, K.; Kimes, P.K.; Duvallet, C.; Reyes, A.; Subramanian, A.; Teng, M.; Shukla, C.; Alm, E.J.; Hicks, S.C. A practical guide to methods controlling false discoveries in computational biology. Genome Biol. 2019, 20, 118. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018, 46, W486–W494. [Google Scholar] [CrossRef]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.-É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef]
- Bartel, J.; Krumsiek, J.; Theis, F.J. Statistical Methods for the Analysis of High-Throughput Metabolomics Data. Comput. Struct. Biotechnol. J. 2013, 4, e201301009. [Google Scholar] [CrossRef] [PubMed]
- Baird, G.D.; Heitzman, R.J.; Hibbitt, K.G. Effects of starvation on intermediary metabolism in the lactating cow. A comparison with metabolic changes occurring during bovine ketosis. Biochem. J. 1972, 128, 1311–1318. [Google Scholar] [CrossRef] [PubMed]
- Clare, C.E.; Brassington, A.H.; Kwong, W.Y.; Sinclair, K.D. One-Carbon Metabolism: Linking Nutritional Biochemistry to Epigenetic Programming of Long-Term Development. Annu. Rev. Anim. Biosci. 2019, 7, 263–287. [Google Scholar] [CrossRef] [PubMed]
- Coleman, D.N.; Alharthi, A.S.; Liang, Y.; Lopes, M.G.; Lopreiato, V.; Vailati-Riboni, M.; Loor, J.J. Multifaceted role of one-carbon metabolism on immunometabolic control and growth during pregnancy, lactation and the neonatal period in dairy cattle. J. Anim. Sci. Biotechnol. 2021, 12, 27. [Google Scholar] [CrossRef] [PubMed]
- Stover, P.J. One-carbon metabolism-genome interactions in folate-associated pathologies. J. Nutr. 2009, 139, 2402–2405. [Google Scholar] [CrossRef]
- Wu, G. Recent Advances in Animal Nutrition and Metabolism; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Drackley, J.K. Biology of Dairy Cows During the Transition Period: The Final Frontier? J. Dairy Sci. 1999, 82, 2259–2273. [Google Scholar] [CrossRef]
- Celi, P. Oxidative Stress in Ruminants. In Studies on Veterinary Medicine; Mandelker, L., Vajdovich, P., Eds.; Humana Press: Totowa, NJ, USA, 2011; pp. 191–231. [Google Scholar]
- Ungerfeld, E.M. Metabolic Hydrogen Flows in Rumen Fermentation: Principles and Possibilities of Interventions. Front. Microbiol. 2020, 11, 589. [Google Scholar] [CrossRef] [PubMed]
- Rulquin, H.; Graulet, B.; Delaby, L.; Robert, J.C. Effect of Different Forms of Methionine on Lactational Performance of Dairy Cows. J. Dairy Sci. 2006, 89, 4387–4394. [Google Scholar] [CrossRef] [PubMed]
- Rulquin, H.; Delaby, L. Effects of the energy balance of dairy cows on lactational responses to rumen-protected methionine. J. Dairy Sci. 1997, 80, 2513–2522. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wei, J.; Dou, M.; Liu, S.; Yan, B.; Li, C.; Khan, M.Z.; Zhang, Y.; Xiao, J. Effects of rumen-protected methionine supplementation on production performance, apparent digestibility, blood parameters, and ruminal fermentation of lactating Holstein dairy cows. Front. Vet. Sci. 2022, 9, 981757. [Google Scholar] [CrossRef]
- Madsen, T.G.; Nielsen, L.; Nielsen, M.O. Mammary nutrient uptake in response to dietary supplementation of rumen protected lysine and methionine in late and early lactating dairy goats. Small Rumin. Res. 2005, 56, 151–164. [Google Scholar] [CrossRef]
- Sinclair, K.D.; Allegrucci, C.; Singh, R.; Gardner, D.S.; Sebastian, S.; Bispham, J.; Thurston, A.; Huntley, J.F.; Rees, W.D.; Maloney, C.A.; et al. DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc. Natl. Acad. Sci. USA 2007, 104, 19351–19356. [Google Scholar] [CrossRef] [PubMed]
- Lobley, G.E. Control of the metabolic fate of amino acids in ruminants: A review. J. Anim. Sci. 1992, 70, 3264–3275. [Google Scholar] [CrossRef]
- Cruzat, V.; Macedo Rogero, M.; Noel Keane, K.; Curi, R.; Newsholme, P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients 2018, 10, 1564. [Google Scholar] [CrossRef] [PubMed]
- Newsholme, P.; Diniz, V.L.S.; Dodd, G.T.; Cruzat, V. Glutamine metabolism and optimal immune and CNS function. Proc. Nutr. Soc. 2023, 82, 22–31. [Google Scholar] [CrossRef]
- Wagler, B.L.; Smiley, R.A.; Courtemanch, A.B.; Lutz, D.; McWhirter, D.; Brimeyer, D.; Hnilicka, P.; Robinson, T.J.; Monteith, K.L. Implications of forage quality for population recovery of bighorn sheep following a pneumonia epizootic. J. Wildl. Manag. 2023, 87, e22452. [Google Scholar] [CrossRef]
- Smiley, R.A.; Wagler, B.L.; Edwards, W.H.; Jennings-Gaines, J.; Luukkonen, K.; Robbins, K.; Johnson, M.; Courtemanch, A.B.; Mong, T.W.; Lutz, D.; et al. Infection–nutrition feedbacks: Fat supports pathogen clearance but pathogens reduce fat in a wild mammal. Proc. R. Soc. B Biol. Sci. 2024, 291, 20240636. [Google Scholar] [CrossRef]
- Lindsay, D.B. Relationships between amino acid catabolism and protein anabolism in the ruminant. Fed. Proc. 1982, 41, 2550–2554. [Google Scholar]
- Macrae, J.C.; Egan†, A.R. Threonine metabolism in sheep: 2. Threonine catabolism and gluconeogenesis in pregnant ewes. Br. J. Nutr. 1983, 49, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Asahi, R.; Tanaka, K.; Fujimi, T.J.; Kanzawa, N.; Nakajima, S. Proline Decreases the Suppressive Effect of Histidine on Food Intake and Fat Accumulation. J. Nutr. Sci. Vitaminol. 2016, 62, 277–280. [Google Scholar] [CrossRef]
- An, J.; He, H.; Lan, X.; Liu, L.; Wang, Z.; Ge, Y.; Shen, W.; Cheng, A.; Wan, F. Branched-chain amino acids in ruminant nutrition: Function effects and summary of recent advances. Anim. Feed Sci. Technol. 2024, 312, 115972. [Google Scholar] [CrossRef]
- Wohlt, J.E.; Clark, J.H.; Derrig, R.G.; Davis, C.L. Valine, leucine, and isoleucine metabolism by lactating bovine mammary tissue. J. Dairy Sci. 1977, 60, 1875–1882. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Batistel, F.; Parys, C.; Loor, J.J. Methionine supply during the periparturient period enhances insulin signaling, amino acid transporters, and mechanistic target of rapamycin pathway proteins in adipose tissue of Holstein cows. J. Dairy Sci. 2019, 102, 4403–4414. [Google Scholar] [CrossRef] [PubMed]
- Webb, L.A.; Sadri, H.; Schuh, K.; Egert, S.; Stehle, P.; Meyer, I.; Koch, C.; Dusel, G.; Sauerwein, H. Branched-chain amino acids: Abundance of their transporters and metabolizing enzymes in adipose tissue, skeletal muscle, and liver of dairy cows at high or normal body condition. J. Dairy Sci. 2020, 103, 2847–2863. [Google Scholar] [CrossRef] [PubMed]
- Yaman Fırıncıoğlu, S.; Irshad, N. Role of choline in ruminant nutrition: A detailed review. J. Hell. Vet. Med. Soc. 2022, 73. [Google Scholar] [CrossRef]
- Pinotti, L.; Baldi, A.; Dell’Orto, V. Comparative mammalian choline metabolism with emphasis on the high-yielding dairy cow. Nutr. Res. Rev. 2002, 15, 315–332. [Google Scholar] [CrossRef]
- Fujihara, T.; Shem, M.N. Metabolism of microbial nitrogen in ruminants with special reference to nucleic acids. Anim. Sci. J. 2011, 82, 198–208. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, M.; Zhu, W.; Yu, J.; Wang, Q.; Zhang, J.; Cui, Y.; Pan, X.; Gao, X.; Sun, H. Succinate accumulation induces mitochondrial reactive oxygen species generation and promotes status epilepticus in the kainic acid rat model. Redox Biol. 2020, 28, 101365. [Google Scholar] [CrossRef]
- Goddard, M.E.; Whitelaw, E. The use of epigenetic phenomena for the improvement of sheep and cattle. Front. Genet. 2014, 5, 247. [Google Scholar] [CrossRef] [PubMed]
Metabolite | FC | log2(FC) | p.ajusted | −log10(p) |
---|---|---|---|---|
Formate | 5.1 | 2.3 | 1.33e-17 | 16.9 |
Glucose | 2.8 | 1.5 | 2.34e-17 | 16.6 |
Thymine | 0.3 | −1.9 | 1.25e-15 | 14.9 |
Valine | 3.2 | 1.7 | 2.40e-11 | 10.6 |
Creatinine | 0.3 | −1.6 | 4.65e-11 | 10.3 |
Choline | 0.4 | −1.4 | 1.05e-10 | 10 |
Threonine | 2.5 | 1.3 | 2.61e-10 | 9.6 |
Betaine | 2 | 1 | 2.86e-06 | 5.5 |
Dimethyl sulfone | 2 | 1 | 3.26e-06 | 5.5 |
2-Oxoisocaproate | 2.2 | 1.2 | 2.04e-04 | 3.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Shea-Stone, G.; Tripet, B.; Thomson, J.; Garrott, R.; Copié, V. Polar Metabolite Profiles Distinguish Between Early and Severe Sub-Maintenance Nutritional States of Wild Bighorn Sheep. Metabolites 2025, 15, 154. https://doi.org/10.3390/metabo15030154
O’Shea-Stone G, Tripet B, Thomson J, Garrott R, Copié V. Polar Metabolite Profiles Distinguish Between Early and Severe Sub-Maintenance Nutritional States of Wild Bighorn Sheep. Metabolites. 2025; 15(3):154. https://doi.org/10.3390/metabo15030154
Chicago/Turabian StyleO’Shea-Stone, Galen, Brian Tripet, Jennifer Thomson, Robert Garrott, and Valérie Copié. 2025. "Polar Metabolite Profiles Distinguish Between Early and Severe Sub-Maintenance Nutritional States of Wild Bighorn Sheep" Metabolites 15, no. 3: 154. https://doi.org/10.3390/metabo15030154
APA StyleO’Shea-Stone, G., Tripet, B., Thomson, J., Garrott, R., & Copié, V. (2025). Polar Metabolite Profiles Distinguish Between Early and Severe Sub-Maintenance Nutritional States of Wild Bighorn Sheep. Metabolites, 15(3), 154. https://doi.org/10.3390/metabo15030154