Argan Fruit Polyphenols Regulate Lipid Homeostasis, Prevent Liver Fat Accumulation, and Improve Antioxidant Defense in High-Calorie Diet Fed Mice: In Vivo Study and In Silico Prediction of Possible Underlying Mechanisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Drugs
2.2. Preparation of the Argan Pulp Extract (AAPE) and Its Fractions
2.2.1. Preparation of the AAPE
2.2.2. Fractionation of the AAPE by Liquid-Liquid Extraction
2.3. Determination of Total Polyphenols, Flavonoids, and Total Tannin Contents
2.3.1. Total Polyphenol Content of the AAPE and Its Fractions
2.3.2. Flavonoids Content of the AAPE and Its Fractions
2.3.3. Total Tannins Content of the AAPE and Its Fractions
2.4. HPLC-DAD Analysis of the AAPE and Its Fractions
2.5. Animals and Treatments
2.5.1. Preparation of the Hypercaloric Diet (HCD)
2.5.2. Experimental Schedule
2.5.3. Plasma Biochemical Analyses
2.5.4. Liver, Fecal, and Biliary Lipid Analysis
2.5.5. Measurement of Hepatic Oxidative Stress
2.5.6. Histology of the Liver
2.6. Study of the Anti-Lipoprotein-Rich Plasma Oxidation In Vitro
- Normal control: lipoprotein-rich plasma incubated with normal saline only;
- Oxidized control: lipoprotein-rich plasma incubated with CuSO4 solution;
- AAPE: lipoprotein-rich plasma incubated with CuSO4 and AAPE at increasing concentrations (2–200 µg mL−1);
- AF: lipoprotein-rich plasma incubated with CuSO4 and AF at increasing concentrations (2–200 µg mL−1);
- EF: lipoprotein-rich plasma incubated with CuSO4 and EF at increasing concentrations (2–200 µg mL−1);
- BHA: lipoprotein-rich plasma incubated with CuSO4 and BHA (standard antioxidant) at increasing concentrations (2–200 µg mL−1).
2.7. Measurement of Anti-Lipoperoxyl Radical Activity
2.8. Oral Acute Toxicity of the AAPE and Its Fractions
2.9. Molecular Docking Analysis
2.10. Statistical Analysis
3. Results
3.1. Phenolic Composition of the AAPE and Its Fractions
3.1.1. Total Polyphenols, Tannins, and Flavonoids Content
3.1.2. HPLC Analysis
3.2. Metabolic Disturbances Induced by the High-Calorie Diet in Mice
3.3. Metabolic Restoration Exerted by the AAPE and Its Fractions in Comparison with Fenofibrate
3.3.1. Effect on Food Intake, Body Weight, Relative Liver Weight, and Abdominal Fat Accumulation
3.3.2. Effect on Plasma Lipid and Glucose
3.3.3. Effect on Hepatic, Biliary, and Fecal Lipids
3.4. Effect of the AAPE, Its Fractions, and Fenofibrate on Hepatic Steatosis and Oxidative Stress Markers
3.4.1. Hepatic Tissue Histology and Morphology
3.4.2. Hepatic MDA, Glutathione, SOD, and Catalase
3.4.3. Effect on Transaminases and Alkaline Phosphatase Enzymes
3.5. In Vitro Inhibition of Plasma Lipid Peroxidation and Anti-Lipoperoxyle Radical Scavenging Activity
3.6. In Silico Interaction of Argan Fruit Pulp Phenolic Compounds with Key Proteins Involved in Lipid Metabolism and Oxidative Stress
3.7. Acute Toxicity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABCA1 | ATP-binding cassette A1 |
AF | Aqueous fraction |
BHA | Butylated hydroxyanisole |
CVD | Cardiovascular disease |
Cyp7A1 | Cytochrome P450. Family 7. subfamily a. polypeptide 1 |
EF | Ethyl acetate fraction |
FAS | Fatty acid synthase |
FEG | Fenofibrate-treated group |
FXR | Farnesoid X receptor |
HCG | Hyperlipidemic control group |
HDL-c | High-density lipoprotein cholesterol |
HCD | High-calorie diet |
HMG-CoA-R | β-hydroxy β-methylglutaryl-CoA reductase |
HPLC-DAD | High-performance liquid chromatography–diode array detection |
LDL-c | Low-density lipoprotein cholesterol |
LPL | Lipoprotein lipase |
LXR | Liver X receptor |
MDA | Malondialdehyde |
NAFLD | Non-alcoholic fatty liver disease |
QUE | Quercetin |
HYP | Hyporoside |
RUT | Rutin |
ECA | Epicatechin |
CA | Catechin |
GA | Gallic acid |
Glu | Glucose |
PCA | Protocatechuic acid |
CYP2E1 | Cytochrome P450 2E1 |
CAT | Catalase |
PCSK-9 | Proprotein convertase subtilisin/kexin type 9 |
EATG | Ethyl acetate fraction-treated group |
AFTG | Aqueous fraction-treated group |
TG | Triglyceride |
TCHO | Total cholesterol |
SOD | Superoxide dismutase |
PVP | Polyvinylpyrrolidone |
RCT | Reverse cholesterol transport |
AAPEG | Aqueous Argan pulp extract-treated group |
PPAR | Peroxisome proliferator-activated receptor |
NCG | Normal control group |
References
- Azizi, S.; Dalli, M.; Berrichi, A.; Gseyra, N. Quantification of Secondary Metabolites and the Evaluation of the in Vitro Antioxidant Activity of the Argan Tree of Eastern Morocco. Mater. Today Proc. 2021, 45, 7314–7320. [Google Scholar] [CrossRef]
- El Yamani, M.; Ijjouk, R.; Kahime, K.; Rharrabti, Y. Ethnopharmacological Knowledge and Antioxidant Propensities of Argania spinosa L. from Morocco. Adv. Pharmacol. Pharm. Sci. 2024, 2024, 6795451. [Google Scholar]
- Guillaume, D.; Charrouf, Z. Argan Oil and Other Argan Products: Use in Dermocosmetology. Eur. J. Lipid Sci. Technol. 2011, 113, 403–408. [Google Scholar]
- Mechqoq, H.; El Yaagoubi, M.; El Hamdaoui, A.; Momchilova, S.; Guedes da Silva Almeida, J.R.; Msanda, F.; El Aouad, N. Ethnobotany, Phytochemistry and Biological Properties of Argan Tree (Argania Spinosa (L.) Skeels) (Sapotaceae)—A Review. J. Ethnopharmacol. 2021, 281, 114528. [Google Scholar] [PubMed]
- Martínez, R.; Guzmán, A.; Kapravelou, G.; Melguizo, C.; Bermúdez, F.; Prados, J.; López-Jurado, M.; Porres, J.M. Argan Pulp as a Novel Functional Ingredient with Beneficial Effects on Multiple Metabolism Biomarkers. J. Funct. Foods 2023, 110, 105864. [Google Scholar]
- Charrouf, Z.; Hilali, M.; Jauregui, O.; Soufiaoui, M.; Guillaume, D. Separation and Characterization of Phenolic Compounds in Argan Fruit Pulp Using Liquid Chromatography–Negative Electrospray Ionization Tandem Mass Spectroscopy. Food Chem. 2007, 100, 1398–1401. [Google Scholar]
- Chambers, K.F.; Day, P.E.; Aboufarrag, H.T.; Kroon, P.A. Polyphenol Effects on Cholesterol Metabolism via Bile Acid Biosynthesis, CYP7A1: A Review. Nutrients 2019, 11, 2588. [Google Scholar] [CrossRef]
- Luo, K.; Ma, C.; Xing, S.; An, Y.; Feng, J.; Dang, H.; Huang, W.; Qiao, L.; Cheng, J.; Xie, L. White Tea and Its Active Polyphenols Lower Cholesterol through Reduction of Very-Low-Density Lipoprotein Production and Induction of LDLR Expression. Biomed. Pharmacother. 2020, 127, 110146. [Google Scholar] [CrossRef]
- Hebi, M.; Khallouki, F.; Haidani, A.; Eddouks, M. Aqueous Extract of Argania Spinosa L. Fruits Ameliorates Diabetes in Streptozotocin-Induced Diabetic Rats. Cardiovasc. Hematol. Agents Med. Chem. 2018, 16, 56–65. [Google Scholar] [CrossRef]
- Bellahcen, S.; Mekhfi, H.; Ziyyat, A.; Legssyer, A.; Hakkou, A.; Aziz, M.; Bnouham, M. Prevention of Chemically Induced Diabetes Mellitus in Experimental Animals by Virgin Argan Oil. Phytother. Res. 2012, 26, 180–185. [Google Scholar] [CrossRef]
- Daoudi, N.E.; El Assri, S.; Aziz, M.; Choukri, M.; Mekhfi, H.; Legssyer, A.; Ziyyat, A.; Bnouham, M. The Effect of Argania Spinosa Seed Oil on Diabetic Nephropathy in Streptozotocin-Induced Diabetes in Wistar Rats. J. Ethnopharmacol. 2024, 328, 118083. [Google Scholar] [CrossRef] [PubMed]
- Azizi, S.E.; Dalli, M.; Roubi, M.; Moon, S.; Berrichi, A.; Maleb, A.; Kim, B. Insights on phytochemistry and pharmacological properties of Argania spinosa L. skeels: A comprehensive review. ACS Omega 2024, 9, 36043–36065. [Google Scholar] [CrossRef]
- El Monfalouti, H.; Charrouf, Z.; Belviso, S.; Ghirardello, D.; Scursatone, B.; Guillaume, D.; Zeppa, G. Analysis and antioxidant capacity of the phenolic compounds from argan fruit (Argania spinosa (L.) Skeels). Eur. J. Lipid Sci. Technol. 2012, 114, 446–452. [Google Scholar] [CrossRef]
- Bruzzese, V.; Palermo, G.; Ridola, L.; Lorenzetti, R.; Hassan, C.; Izzo, A.; Zullo, A. Preclinical Atherosclerosis in Patients with Inflammatory Bowel Diseases: A Case-Control Study. Ann. Transl. Med. 2017, 5, 158. [Google Scholar] [CrossRef]
- Angelico, F.; Baratta, F.; Coronati, M.; Ferro, D.; Del Ben, M. Diet and Metabolic Syndrome: A Narrative Review. Intern. Emerg. Med. 2023, 18, 1007–1017. [Google Scholar] [CrossRef]
- Dhibi, M.; Brahmi, F.; Mnari, A.; Houas, Z.; Chargui, I.; Bchir, L.; Gazzah, N.; Alsaif, M.A.; Hammami, M. The Intake of High Fat Diet with Different Trans Fatty Acid Levels Differentially Induces Oxidative Stress and Non Alcoholic Fatty Liver Disease (NAFLD) in Rats. Nutr. Metab. 2011, 8, 65. [Google Scholar] [CrossRef]
- Harnafi, M.; Bekkouch, O.; Touiss, I.; Khatib, S.; Mokhtari, I.; Milenkovic, D.; Harnafi, H.; Amrani, S. Phenolic-Rich Extract from Almond (Prunus Dulcis) Hulls Improves Lipid Metabolism in Triton WR-1339 and High-Fat Diet-Induced Hyperlipidemic Mice and Prevents Lipoprotein Oxidation: A Comparison with Fenofibrate and Butylated Hydroxyanisole. Prev. Nutr. Food Sci. 2020, 25, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, I.; Mokhtari, C.; Moumou, M.; Harnafi, M.; Milenkovic, D.; Amrani, S.; Hakmaoui, A.; Harnafi, H. Polyphenol-Rich Extract from Loquat Fruit Peel Prevents Hyperlipidemia and Hepato-Nephrotoxicity in Mice: In Vivo Study and in Silico Prediction of Possible Mechanisms Involving Identified Polyphenols and/or Their Circulating Metabolites. Food Funct. 2023, 14, 7489–7505. [Google Scholar]
- Mokhtari, I.; Moumou, M.; Harnafi, M.; Milenkovic, D.; Amrani, S.; Harnafi, H. Loquat Fruit Peel Extract Regulates Lipid Metabolism and Liver Oxidative Stress in Mice: In Vivo and in Silico Approaches. J. Ethnopharmacol. 2023, 310, 116376. [Google Scholar]
- Moumou, M.; Mokhtari, I.; Tayebi, A.; Milenkovic, D.; Amrani, S.; Harnafi, H. Immature Carob Pods Extract and Its Fractions Prevent Lipid Metabolism Disorders and Lipoprotein-Rich Plasma Oxidation in Mice: A Phytochemical and Pharmacological Study. J. Ethnopharmacol. 2024, 322, 117557. [Google Scholar] [CrossRef]
- Ellman, G.L. Tissue Sulfhydryl Groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Sazuka, Y.; Tanizawa, H.; Takino, Y. Effect of Adriamycin on the Activities of Superoxide Dismutase, Glutathione Peroxidase and Catalase in Tissues of Mice. Jpn. J. Cancer Res. 1989, 80, 89–94. [Google Scholar] [PubMed]
- Yaribeygi, H.; Mohammadi, M.T.; Butler, A.E.; Sahebkar, A. PPAR-α Agonist Fenofibrate Potentiates Antioxidative Elements and Improves Oxidative Stress of Hepatic Cells in Streptozotocin-Induced Diabetic Animals. Comp. Clin. Pathol. 2019, 28, 203–209. [Google Scholar]
- Hussain, A.; Cho, J.S.; Kim, J.-S.; Lee, Y.I. Protective Effects of Polyphenol Enriched Complex Plants Extract on Metabolic Dysfunctions Associated with Obesity and Related Non-alcoholic Fatty Liver Diseases in High Fat Diet-Induced C57BL/6 Mice. Molecules 2021, 26, 302. [Google Scholar] [CrossRef] [PubMed]
- Touiss, I.; Khatib, S.; Bekkouch, O.; Amrani, S.; Harnafi, H. Phenolic Extract from Ocimum Basilicum Restores Lipid Metabolism in Triton WR-1339-Induced Hyperlipidemic Mice and Prevents Lipoprotein-Rich Plasma Oxidation. Food Sci. Hum. Wellness 2017, 6, 28–33. [Google Scholar]
- Benchagra, L.; Berrougui, H.; Islam, M.O.; Ramchoun, M.; Boulbaroud, S.; Hajjaji, A.; Fulop, T.; Ferretti, G.; Khalil, A. Antioxidant Effect of Moroccan Pomegranate (Punica Granatum L. Sefri Variety) Extracts Rich in Punicalagin against the Oxidative Stress Process. Foods 2021, 10, 2219. [Google Scholar] [CrossRef]
- OECD. Test No. 425: Acute Oral Toxicity: Up-and-Down Procedure; Organisation for Economic Co-Operation and Development: Paris, France, 2008. [Google Scholar]
- Rouhi-Boroujeni, H.; Heidarian, E.; Rouhi-Boroujeni, H.; Deris, F.; Rafieian-Kopaei, M. Medicinal Plants with Multiple Effects on Cardiovascular Diseases: A Systematic Review. Curr. Pharm. Des. 2017, 23, 999–1015. [Google Scholar]
- Chaachouay, N.; Azeroual, A.; Bencharki, B.; Zidane, L. Herbal Medicine Used in the Treatment of Cardiovascular Diseases in the Rif, North of Morocco. Front. Pharmacol. 2022, 13, 921918. [Google Scholar]
- Zhou, W.; Du, Z. Oleuropein Mitigates Non-Alcoholic Fatty Liver Disease (NAFLD) and Modulates Liver Metabolites in High-Fat Diet-Induced Obese Mice via Activating PPARα. J. Sci. Food Agric. 2024, 104, 8634–8645. [Google Scholar] [CrossRef]
- Cedó, L.; Fernández-Castillejo, S.; Rubió, L.; Metso, J.; Santos, D.; Muñoz-Aguayo, D.; Rivas-Urbina, A.; Tondo, M.; Méndez-Lara, K.A.; Farràs, M.; et al. Phenol-Enriched Virgin Olive Oil Promotes Macrophage-Specific Reverse Cholesterol Transport In Vivo. Biomedicines 2020, 8, 266. [Google Scholar] [CrossRef]
- Millar, C.L.; Duclos, D.Q.; Blesso, C.N. Effects of Dietary Flavonoids on Reverse Cholesterol Transport, HDL Metabolism, and HDL Function. Adv. Nutr. 2017, 8, 226–239. [Google Scholar]
- Tan, M.; Ye, J.; Zhao, M.; Ke, X.; Huang, K.; Liu, H. Recent Developments in the Regulation of Cholesterol Transport by Natural Molecules. Phytother. Res. 2021, 35, 5623–5633. [Google Scholar] [CrossRef]
- Grande, F.; Occhiuzzi, M.A.; Perri, M.R.; Ioele, G.; Rizzuti, B.; Statti, G.; Garofalo, A. Polyphenols from Citrus Tacle® Extract Endowed with HMGCR Inhibitory Activity: An Antihypercholesterolemia Natural Remedy. Molecules 2021, 26, 5718. [Google Scholar] [CrossRef] [PubMed]
- Mahdavi, A.; Bagherniya, M.; Fakheran, O.; Reiner, Ž.; Xu, S.; Sahebkar, A. Medicinal Plants and Bioactive Natural Compounds as Inhibitors of HMG-CoA Reductase: A Literature Review. Biofactors 2020, 46, 906–926. [Google Scholar] [PubMed]
- Adorni, M.P.; Zimetti, F.; Lupo, M.G.; Ruscica, M.; Ferri, N. Naturally Occurring PCSK9 Inhibitors. Nutrients 2020, 12, 1440. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.-J.; Jin, J.-L.; Guo, L.-N.; Sun, J.; Wu, N.-Q.; Guo, Y.-L.; Liu, G.; Dong, Q.; Li, J.-J. Beneficial Impact of Epigallocatechingallate on LDL-C through PCSK9/LDLR Pathway by Blocking HNF1α and Activating FoxO3a. J. Transl. Med. 2020, 18, 195. [Google Scholar] [CrossRef]
- Momtazi, A.A.; Banach, M.; Pirro, M.; Katsiki, N.; Sahebkar, A. Regulation of PCSK9 by Nutraceuticals. Pharmacol. Res. 2017, 120, 157–169. [Google Scholar]
- Sakboonyarat, B.; Poovieng, J.; Jongcherdchootrakul, K.; Srisawat, P.; Hatthachote, P.; Mungthin, M.; Rangsin, R. Prevalence of Hypertriglyceridemia among Royal Thai Army Personnel and Its Related Cardiometabolic Risk Factors, from 2017 to 2021. BMC Public Health 2022, 2, 1569. [Google Scholar]
- Rodriguez-Ramiro, I.; Vauzour, D.; Minihane, A.M. Polyphenols and Non-Alcoholic Fatty Liver Disease: Impact and Mechanisms. Proc. Nutr. Soc. 2016, 75, 47–60. [Google Scholar] [CrossRef]
- Cao, H.; Ou, J.; Chen, L.; Zhang, Y.; Szkudelski, T.; Delmas, D.; Daglia, M.; Xiao, J. Dietary Polyphenols and Type 2 Diabetes: Human Study and Clinical Trial. Crit. Rev. Food Sci. Nutr. 2019, 59, 3371–3379. [Google Scholar] [CrossRef]
- Behera, P.K.; Devi, S.; Mittal, N. Therapeutic Potential of Gallic Acid in Obesity: Considerable Shift! Obes. Med. 2023, 37, 100473. [Google Scholar] [CrossRef]
- Oogai, S.; Hamashima, H.; Yamasaki, K.; Nagata, Y.; Yanagita, T. New Insights into Polyphenols in Plants as Potential Modulators of Atherosclerosis by Acting on Lipoprotein Lipase: In Silico Molecular Docking and In Vitro Studies. ACS Food Sci. Technol. 2022, 2, 476–483. [Google Scholar] [CrossRef]
- Xu, H.; Gao, H.; Liu, F.; Gong, L. Red-Skin Extracts of Lotus Seeds Alleviate High-Fat-Diet Induced Obesity via Regulating Lipoprotein Lipase Activity. Foods 2022, 11, 2085. [Google Scholar] [CrossRef]
- Hu, P.; Li, K.; Peng, X.; Kan, Y.; Li, H.; Zhu, Y.; Wang, Z.; Li, Z.; Liu, H.-Y.; Cai, D. Nuclear Receptor PPARα as a Therapeutic Target in Diseases Associated with Lipid Metabolism Disorders. Nutrients 2023, 15, 4772. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Wang, H.; Vijg, J. New Insights into Bioactive Compounds of Traditional Chinese Medicines for Insulin Resistance Based on Signaling Pathways. Chem. Biodivers. 2019, 16, e1900176. [Google Scholar] [CrossRef]
- Ore, A.; Akinloye, O.A. Oxidative Stress and Antioxidant Biomarkers in Clinical and Experimental Models of Non-Alcoholic Fatty Liver Disease. Medicina 2019, 55, 26. [Google Scholar] [CrossRef]
- Martín-Fernández, M.; Arroyo, V.; Carnicero, C.; Sigüenza, R.; Busta, R.; Mora, N.; Antolín, B.; Tamayo, E.; Aspichueta, P.; Carnicero-Frutos, I.; et al. Role of Oxidative Stress and Lipid Peroxidation in the Pathophysiology of NAFLD. Antioxidants 2022, 11, 2217. [Google Scholar] [CrossRef]
- Vairetti, M.; Di Pasqua, L.G.; Cagna, M.; Richelmi, P.; Ferrigno, A.; Berardo, C. Changes in Glutathione Content in Liver Diseases: An Update. Antioxidants 2021, 10, 364. [Google Scholar] [CrossRef]
- Dang, T.T.H.; Yun, J.W. Cytochrome P450 2E1 (CYP2E1) Positively Regulates Lipid Catabolism and Induces Browning in 3T3-L1 White Adipocytes. Life Sci. 2021, 278, 119648. [Google Scholar] [CrossRef]
- Wang, R.; Wang, L.; Wu, H.; Zhang, L.; Hu, X.; Li, C.; Liu, S. Noni (Morinda Citrifolia L.) Fruit Phenolic Extract Supplementation Ameliorates NAFLD by Modulating Insulin Resistance, Oxidative Stress, Inflammation, Liver Metabolism and Gut Microbiota. Food Res. Int. 2022, 160, 111732. [Google Scholar] [CrossRef]
- Li, L.; Qin, Y.; Xin, X.; Wang, S.; Liu, Z.; Feng, X. The Great Potential of Flavonoids as Candidate Drugs for NAFLD. Biomed. Pharmacother. 2023, 164, 114991. [Google Scholar]
- Forcheron, F.; Cachefo, A.; Thevenon, S.; Pinteur, C.; Beylot, M. Mechanisms of the Triglyceride- and Cholesterol-Lowering Effect of Fenofibrate in Hyperlipidemic Type 2 Diabetic Patients. Diabetes 2002, 51, 3486–3491. [Google Scholar] [CrossRef] [PubMed]
- Kasai, S.; Inoue, T.; Yoshitomi, H.; Hihara, T.; Matsuura, F.; Harada, H.; Shinoda, M.; Tanaka, I. Antidiabetic and Hypolipidemic Effects of a Novel Dual Peroxisome Proliferator-Activated Receptor (PPAR) Alpha/Gamma Agonist, E3030, in Db/Db Mice and Beagle Dogs. J. Pharmacol. Sci. 2008, 108, 40–48. [Google Scholar] [PubMed]
Yield (%) | Total Phenols (mg g−1) | Flavonoids (mg g−1) | Tannins (mg g−1) | |
---|---|---|---|---|
AAPE | 21% | 403.12 ± 2.22 | 220.65 ± 2.37 | 90.71 ± 1.96 |
AF | 69% | 147.18 ± 1.36 a | 18.04 ± 1.11 a | 40.33 ± 1.54 a |
EF | 26% | 232.94 ± 1.13 ab | 195.88 ± 1.54 ab | 5.41 ± 1.03 ab |
Phenolics | mg g−1 | |||||||
---|---|---|---|---|---|---|---|---|
Gallic Acid | Protocatechuic Acid | Catechin | Epicatechin | Rutin | Hyperoside | Quercetin | Luteolin | |
RT (min) | 1.43 | 2.66 | 6.06 | 9.36 | 12.27 | 15.33 | 21.72 | 23.06 |
AAPE | 23.17 | 62.65 | 19.20 | 86.10 | 7.21 | 77.18 | 12.30 | 4.41 |
AF | 21.98 | 59.19 | ND | ND | ND | ND | ND | ND |
EF | ND | ND | 15.45 | 82.36 | 5.12 | 73.44 | 8.29 | 3.58 |
PCA | GA | CA | ECA | RUT | HYP | QUE | LUT | |
---|---|---|---|---|---|---|---|---|
ABCA-1 | −9.67 | −9.51 | −6.52 | −6.46 | −5.98 | −6.13 | −6.89 | −7.01 |
LXR | −10.15 | −9.43 | −6.71 | −6.66 | −6.22 | −6.70 | −5.40 | −6.70 |
CYP7A1 | −8.98 | −9.91 | −6.54 | −5.07 | −6.17 | −5.89 | −6.70 | −6.14 |
FXR | −7.88 | −8.89 | −6.33 | −6.13 | −6.55 | −5.41 | −7.08 | −5.80 |
HMG-CoA-R | −9.43 | −8.92 | −7.15 | −7.06 | −7.13 | −6.60 | −7.02 | −6.89 |
PCSK-9 | −10.11 | −9.89 | −6.42 | −6.96 | −7.10 | −5.90 | −6.50 | −6.33 |
LPL | −8.69 | −9.75 | −5.90 | −6.11 | −5.33 | −7.02 | −7.11 | −7.20 |
FAS | −7.92 | −8.31 | −6.72 | −5.43 | −7.14 | −6.93 | −6.89 | −6.47 |
PPARα | −9.55 | −8.99 | −6.66 | −4.22 | −6.71 | −6.55 | −6.44 | −6.80 |
PPARγ | −9.33 | −8.86 | −6.81 | −5.66 | −6.81 | −6.14 | −5.99 | −5.47 |
SOD2 | −7.10 | −7.23 | −8.98 | −9.56 | −8.51 | −8.11 | −7.22 | −8.12 |
CAT | −7.88 | −6.92 | −8.02 | −7.81 | −8.63 | −9.34 | −8.14 | −8.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moumou, M.; Mokhtari, I.; Harnafi, M.; Alrugaibah, M.; Aljutaily, T.; Alharbi, H.F.; Alhuwaymil, A.; Almutairi, A.S.; Barakat, H.; Milenkovic, D.; et al. Argan Fruit Polyphenols Regulate Lipid Homeostasis, Prevent Liver Fat Accumulation, and Improve Antioxidant Defense in High-Calorie Diet Fed Mice: In Vivo Study and In Silico Prediction of Possible Underlying Mechanisms. Metabolites 2025, 15, 234. https://doi.org/10.3390/metabo15040234
Moumou M, Mokhtari I, Harnafi M, Alrugaibah M, Aljutaily T, Alharbi HF, Alhuwaymil A, Almutairi AS, Barakat H, Milenkovic D, et al. Argan Fruit Polyphenols Regulate Lipid Homeostasis, Prevent Liver Fat Accumulation, and Improve Antioxidant Defense in High-Calorie Diet Fed Mice: In Vivo Study and In Silico Prediction of Possible Underlying Mechanisms. Metabolites. 2025; 15(4):234. https://doi.org/10.3390/metabo15040234
Chicago/Turabian StyleMoumou, Mohammadine, Imane Mokhtari, Mohamed Harnafi, Mohammed Alrugaibah, Thamer Aljutaily, Hend F. Alharbi, Abdulmalik Alhuwaymil, Abdulkarim S. Almutairi, Hassan Barakat, Dragan Milenkovic, and et al. 2025. "Argan Fruit Polyphenols Regulate Lipid Homeostasis, Prevent Liver Fat Accumulation, and Improve Antioxidant Defense in High-Calorie Diet Fed Mice: In Vivo Study and In Silico Prediction of Possible Underlying Mechanisms" Metabolites 15, no. 4: 234. https://doi.org/10.3390/metabo15040234
APA StyleMoumou, M., Mokhtari, I., Harnafi, M., Alrugaibah, M., Aljutaily, T., Alharbi, H. F., Alhuwaymil, A., Almutairi, A. S., Barakat, H., Milenkovic, D., Amrani, S., & Harnafi, H. (2025). Argan Fruit Polyphenols Regulate Lipid Homeostasis, Prevent Liver Fat Accumulation, and Improve Antioxidant Defense in High-Calorie Diet Fed Mice: In Vivo Study and In Silico Prediction of Possible Underlying Mechanisms. Metabolites, 15(4), 234. https://doi.org/10.3390/metabo15040234