Association Between Alpha-1-Acid Glycoprotein and Non-Alcoholic Fatty Liver Disease and Liver Fibrosis in Adult Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Laboratory Analysis
2.3. Hepatic Assessment
2.4. Covariates
2.5. Statistical Methodology
3. Results
3.1. Baseline Characteristics of Participants
3.2. Association Between AGP and NAFLD
3.3. Association Between AGP and LF
3.4. Non-Linear Relationship Between AGP and CAP
3.5. Subgroup Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AFP | Alpha-fetoprotein |
AGP | Alpha-1-acid glycoprotein |
BMI | Body mass index |
CAP | Controlled attenuation parameter |
CVD | Cardiovascular disease |
HCC | Hepatocellular carcinoma |
LF | Liver fibrosis |
LSM | Liver stiffness measurement |
NAFLD | Nonalcoholic fatty liver disease |
NASH | Non-alcoholic steatohepatitis |
NHANES | National Health and Nutrition Examination Survey |
PIR | Ratio of family income to poverty |
SREBP1c | Sterol regulatory element binding protein 1c |
VCTE | Vibration-controlled transient elastography |
References
- Piras, C.; Noto, A.; Ibba, L.; Deidda, M.; Fanos, V.; Muntoni, S.; Leoni, V.P.; Atzori, L. Contribution of Metabolomics to the Understanding of NAFLD and NASH Syndromes: A Systematic Review. Metabolites 2021, 11, 694. [Google Scholar] [CrossRef] [PubMed]
- Polyzos, S.A.; Goulis, D.G. Menopause and metabolic dysfunction-associated steatotic liver disease. Maturitas 2024, 186, 8024. [Google Scholar] [CrossRef] [PubMed]
- Demirel, M.; Köktaşoğlu, F.; Özkan, E.; Dulun Ağaç, H.; Gül, A.Z.; Sharifov, R.; Sarıkaya, U.; Başaranoğlu, M.; Selek, Ş. Mass spectrometry-based untargeted metabolomics study of non-obese individuals with non-alcoholic fatty liver disease. Scand J. Gastroenterol. 2023, 58, 1344–1350. [Google Scholar] [CrossRef]
- Pafili, K.; Roden, M. Nonalcoholic fatty liver disease (NAFLD) from pathogenesis to treatment concepts in humans. Mol. Metab. 2021, 50, 1122. [Google Scholar] [CrossRef]
- Syed-Abdul, M.M. Lipid Metabolism in Metabolic-Associated Steatotic Liver Disease (MASLD). Metabolites 2023, 14, 12. [Google Scholar] [CrossRef]
- Castera, L.; Friedrich-Rust, M.; Loomba, R. Noninvasive Assessment of Liver Disease in Patients with Nonalcoholic Fatty Liver Disease. Gastroenterology 2019, 156, 1264–1281.e4. [Google Scholar] [CrossRef]
- Loomba, R.; Friedman, S.L.; Shulman, G.I. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 2021, 184, 2537–2564. [Google Scholar] [CrossRef]
- Jiang, W.; Liu, M.; Su, T.; Jin, Y.; Ling, Y.; Liu, C.H.; Tang, H.; Wu, D.; Zhang, Y. GlycoPCT: Pressure Cycling Technology-Based Quantitative Glycoproteomics Reveals Distinctive N-Glycosylation in Human Liver Biopsy Samples of Nonalcoholic Fatty Liver Disease. J. Proteome. Res. 2024, 24, 202–209. [Google Scholar] [CrossRef]
- Porez, G.; Gross, B.; Prawitt, J.; Gheeraert, C.; Berrabah, W.; Alexandre, J.; Staels, B.; Lefebvre, P. The hepatic orosomucoid/α1-acid glycoprotein gene cluster is regulated by the nuclear bile acid receptor FXR. Endocrinology 2013, 154, 3690–3701. [Google Scholar] [CrossRef]
- Luo, Z.; Lei, H.; Sun, Y.; Liu, X.; Su, D.F. Orosomucoid, an acute response protein with multiple modulating activities. J. Physiol. Biochem. 2015, 71, 329–340. [Google Scholar] [CrossRef]
- Wigmore, S.J.; Fearon, K.C.; Maingay, J.P.; Lai, P.B.; Ross, J.A. Interleukin-8 can mediate acute-phase protein production by isolated human hepatocytes. Am. J. Physiol. 1997, 273, E720–E726. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Luo, Y.; Ji, N.; Hu, C.; Lu, Y. Orosomucoid 2 maintains hepatic lipid homeostasis through suppression of de novo lipogenesis. Nat. Metab. 2022, 4, 1185–1201. [Google Scholar] [CrossRef] [PubMed]
- Fournier, T.; Medjoubi, N.N.; Porquet, D. Alpha-1-acid glycoprotein. Biochim. Biophys. Acta 2000, 1482, 157–171. [Google Scholar] [CrossRef] [PubMed]
- Theilgaard-Mönch, K.; Jacobsen, L.C.; Rasmussen, T.; Niemann, C.U.; Udby, L.; Borup, R.; Gharib, M.; Arkwright, P.D.; Gombart, A.F.; Calafat, J.; et al. Highly glycosylated alpha1-acid glycoprotein is synthesized in myelocytes, stored in secondary granules, and released by activated neutrophils. J. Leukoc. Biol. 2005, 78, 462–470. [Google Scholar] [CrossRef]
- Lee, S.H.; Choi, J.M.; Jung, S.Y.; Cox, A.R.; Hartig, S.M.; Moore, D.D.; Kim, K.H. The bile acid induced hepatokine orosomucoid suppresses adipocyte differentiation. Biochem. Biophys. Res. Commun. 2021, 534, 864–870. [Google Scholar] [CrossRef]
- Brown, K.E.; Broadhurst, K.A.; Mathahs, M.M.; Weydert, J. Differential expression of stress-inducible proteins in chronic hepatic iron overload. Toxicol. Appl. Pharmacol. 2007, 223, 180–186. [Google Scholar] [CrossRef]
- Kuno, A.; Ikehara, Y.; Tanaka, Y.; Angata, T.; Unno, S.; Sogabe, M.; Ozaki, H.; Ito, K.; Hirabayashi, J.; Mizokami, M.; et al. Multilectin assay for detecting fibrosis-specific glyco-alteration by means of lectin microarray. Clin. Chem. 2011, 57, 48–56. [Google Scholar] [CrossRef]
- Song, E.Y.; Kim, K.A.; Kim, Y.D.; Lee, E.Y.; Lee, H.S.; Kim, H.J.; Ahn, B.M.; Choe, Y.K.; Kim, C.H.; Chung, T.W. Elevation of serum asialo-alpha(1) acid glycoprotein concentration in patients with hepatic cirrhosis and hepatocellular carcinoma as measured by antibody-lectin sandwich assay. Hepatol. Res. 2003, 26, 311–317. [Google Scholar] [CrossRef]
- Kim, K.A.; Lee, E.Y.; Kang, J.H.; Lee, H.G.; Kim, J.W.; Kwon, D.H.; Jang, Y.J.; Yeom, Y.I.; Chung, T.W.; Kim, Y.D.; et al. Diagnostic accuracy of serum asialo-alpha1-acid glycoprotein concentration for the differential diagnosis of liver cirrhosis and hepatocellular carcinoma. Clin. Chim. Acta 2006, 369, 46–51. [Google Scholar] [CrossRef]
- Mooney, P.; Hayes, P.; Smith, K. The putative use of alpha-1-acid glycoprotein as a non-invasive marker of fibrosis. Biomed Chromatogr. 2006, 20, 1351–1358. [Google Scholar] [CrossRef]
- Ozeki, T.; Kan, M.; Iwaki, K.; Ohuchi, K. Orosomucoid as the accelerator of hepatic fibrosis. Br. J. Exp. Pathol. 1986, 67, 731–736. [Google Scholar] [PubMed]
- Ozeki, T.; Imanishi, K.; Uchiyama, T.; Sanefuji, H.; Fujiwara, H.; Mizuno, S.; Tanaka, N.; Suzuki, I. Alpha 1-acid glycoprotein and hepatic fibrosis. Br. J. Exp. Pathol. 1988, 69, 589–595. [Google Scholar] [PubMed]
- Gannon, B.M.; Glesby, M.J.; Finkelstein, J.L.; Raj, T.; Erickson, D.; Mehta, S. A point-of-care assay for alpha-1-acid glycoprotein as a diagnostic tool for rapid, mobile-based determination of inflammation. Curr. Res. Biotechnol. 2019, 1, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.H.; Kim, M.; Jun, D.W.; Kwak, M.J.; Yoon, J.H.; Lee, K.N.; Lee, H.L.; Lee, O.Y.; Yoon, B.C.; Choi, H.S.; et al. Diagnostic Performance of Serum Asialo α(1)-Acid Glycoprotein Levels to Predict Liver Cirrhosis. Gut Liver 2021, 15, 109–116. [Google Scholar] [CrossRef]
- Kim, S.U.; Jeon, M.Y.; Lim, T.S. Diagnostic Performance of Serum Asialo-α1-acid Glycoprotein for Advanced Liver Fibrosis or Cirrhosis in Patients with Chronic Hepatitis B or Nonalcoholic Fatty Liver Disease. Korean J. Gastroenterol. 2019, 74, 341–348. [Google Scholar] [CrossRef]
- Liang, J.; Zhu, J.; Wang, M.; Singal, A.G.; Odewole, M.; Kagan, S.; Renteria, V.; Liu, S.; Parikh, N.D.; Lubman, D.M. Evaluation of AGP Fucosylation as a Marker for Hepatocellular Carcinoma of Three Different Etiologies. Sci. Rep. 2019, 9, 11580. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, J.; Luo, D.; Feng, X.; Liu, Y.; Liu, Y. Glycosylation change of alpha-1-acid glycoprotein as a serum biomarker for hepatocellular carcinoma and cirrhosis. Biomark. Med. 2017, 11, 423–430. [Google Scholar] [CrossRef]
- Bachtiar, I.; Santoso, J.M.; Atmanegara, B.; Gani, R.A.; Hasan, I.; Lesmana, L.A.; Sulaiman, A.; Gu, J.; Tai, S. Combination of alpha-1-acid glycoprotein and alpha-fetoprotein as an improved diagnostic tool for hepatocellular carcinoma. Clin. Chim. Acta 2009, 399, 97–101. [Google Scholar] [CrossRef]
- Kang, X.; Sun, L.; Guo, K.; Shu, H.; Yao, J.; Qin, X.; Liu, Y. Serum protein biomarkers screening in HCC patients with liver cirrhosis by ICAT-LC-MS/MS. J. Cancer Res. Clin. Oncol. 2010, 136, 1151–1159. [Google Scholar] [CrossRef]
- Forlano, R.; Sigon, G.; Mullish, B.H.; Yee, M.; Manousou, P. Screening for NAFLD-Current Knowledge and Challenges. Metabolites 2023, 13, 536. [Google Scholar] [CrossRef]
- Ciardullo, S.; Monti, T.; Grassi, G.; Mancia, G.; Perseghin, G. Blood pressure, glycemic status and advanced liver fibrosis assessed by transient elastography in the general United States population. J. Hypertens. 2021, 39, 1621–1627. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Ma, X.; Pan, W.; Xie, Y. Comparing similarities and differences between NAFLD, MAFLD, and MASLD in the general U.S. population. Front. Nutr. 2024, 11, 1411802. [Google Scholar] [CrossRef] [PubMed]
- Stebbins, R.C.; Noppert, G.A.; Aiello, A.E.; Cordoba, E.; Ward, J.B.; Feinstein, L. Persistent socioeconomic and racial and ethnic disparities in pathogen burden in the United States, 1999–2014. Epidemiol. Infect. 2019, 147, e301. [Google Scholar] [CrossRef]
- Doycheva, I.; Watt, K.D.; Alkhouri, N. Nonalcoholic fatty liver disease in adolescents and young adults: The next frontier in the epidemic. Hepatology 2017, 65, 2100–2109. [Google Scholar] [CrossRef]
- Morán-Costoya, A.; Proenza, A.M.; Gianotti, M.; Lladó, I.; Valle, A. Sex Differences in Nonalcoholic Fatty Liver Disease: Estrogen Influence on the Liver-Adipose Tissue Crosstalk. Antioxid. Redox Signal. 2021, 35, 753–774. [Google Scholar] [CrossRef]
- DiStefano, J.K. NAFLD and NASH in Postmenopausal Women: Implications for Diagnosis and Treatment. Endocrinology 2020, 161, bqaa134. [Google Scholar] [CrossRef]
- Villa, A.; Rizzi, N.; Vegeto, E.; Ciana, P.; Maggi, A. Estrogen accelerates the resolution of inflammation in macrophagic cells. Sci. Rep. 2015, 5, 15224. [Google Scholar] [CrossRef]
- Trenti, A.; Tedesco, S.; Boscaro, C.; Trevisi, L.; Bolego, C.; Cignarella, A. Estrogen, Angiogenesis, Immunity and Cell Metabolism: Solving the Puzzle. Int. J. Mol. Sci. 2018, 19, 859. [Google Scholar] [CrossRef]
- Brinkman-Van der Linden, C.M.; Havenaar, E.C.; Van Ommen, C.R.; Van Kamp, G.J.; Gooren, L.J.; Van Dijk, W. Oral estrogen treatment induces a decrease in expression of sialyl Lewis x on alpha 1-acid glycoprotein in females and male-to-female transsexuals. Glycobiology 1996, 6, 407–412. [Google Scholar] [CrossRef]
- Gerhardt, F.; Petroff, D.; Blank, V.; Böhlig, A.; van Bömmel, F.; Wittekind, C.; Berg, T.; Karlas, T.; Wiegand, J. Biopsy rate and nonalcoholic steatohepatitis (NASH) in patients with nonalcoholic fatty liver disease (NAFLD). Scand. J. Gastroenterol. 2020, 55, 706–711. [Google Scholar] [CrossRef]
- Gîlcă-Blanariu, G.E.; Budur, D.S.; Mitrică, D.E.; Gologan, E.; Timofte, O.; Bălan, G.G.; Olteanu, V.A.; Ștefănescu, G. Advances in Noninvasive Biomarkers for Nonalcoholic Fatty Liver Disease. Metabolites 2023, 13, 1115. [Google Scholar] [CrossRef] [PubMed]
- Hagström, H.; Bu, D.; Nasr, P.; Ekstedt, M.; Hegmar, H.; Kechagias, S.; Zhang, N.; An, Z.; Stål, P.; Scherer, P.E. Serum levels of endotrophin are associated with nonalcoholic steatohepatitis. Scand. J. Gastroenterol. 2021, 56, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Petrescu, M.; Vlaicu, S.I.; Ciumărnean, L.; Milaciu, M.V.; Mărginean, C.; Florea, M.; Vesa, Ș.C.; Popa, M. Chronic Inflammation-A Link between Nonalcoholic Fatty Liver Disease (NAFLD) and Dysfunctional Adipose Tissue. Medicina 2022, 58, 641. [Google Scholar] [CrossRef] [PubMed]
- Haukeland, J.W.; Damås, J.K.; Konopski, Z.; Løberg, E.M.; Haaland, T.; Goverud, I.; Torjesen, P.A.; Birkeland, K.; Bjøro, K.; Aukrust, P. Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2. J. Hepatol. 2006, 44, 1167–1174. [Google Scholar] [CrossRef]
- Wu, S.; Teng, Y.; Lan, Y.; Wang, M.; Zhang, T.; Wang, D.; Qi, F. The association between fat distribution and α1-acid glycoprotein levels among adult females in the United States. Lipids Health Dis. 2024, 23, 235. [Google Scholar] [CrossRef]
- Baumann, H.; Gauldie, J. Regulation of hepatic acute phase plasma protein genes by hepatocyte stimulating factors and other mediators of inflammation. Mol. Biol. Med. 1990, 7, 147–159. [Google Scholar]
- Lee, Y.S.; Choi, J.W.; Hwang, I.; Lee, J.W.; Lee, J.H.; Kim, A.Y.; Huh, J.Y.; Koh, Y.J.; Koh, G.Y.; Son, H.J.; et al. Adipocytokine orosomucoid integrates inflammatory and metabolic signals to preserve energy homeostasis by resolving immoderate inflammation. J. Biol. Chem. 2010, 285, 22174–22185. [Google Scholar] [CrossRef]
- Wang, P.Y.; Feng, J.Y.; Zhang, Z.; Chen, Y.; Qin, Z.; Dai, X.M.; Wei, J.; Hu, B.H.; Zhang, W.D.; Sun, Y.; et al. The adipokine orosomucoid alleviates adipose tissue fibrosis via the AMPK pathway. Acta Pharmacol. Sin. 2022, 43, 367–375. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, Z.; Qin, H. Examining the Pathogenesis of MAFLD and the Medicinal Properties of Natural Products from a Metabolic Perspective. Metabolites 2024, 14, 218. [Google Scholar] [CrossRef]
- Ballestri, S.; Zona, S.; Targher, G.; Romagnoli, D.; Baldelli, E.; Nascimbeni, F.; Roverato, A.; Guaraldi, G.; Lonardo, A. Nonalcoholic fatty liver disease is associated with an almost twofold increased risk of incident type 2 diabetes and metabolic syndrome. Evidence from a systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2016, 31, 936–944. [Google Scholar] [CrossRef]
- Arab, J.P.; Arrese, M.; Trauner, M. Recent Insights into the Pathogenesis of Nonalcoholic Fatty Liver Disease. Annu. Rev. Pathol. 2018, 13, 321–350. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care 2018, 41, S13–S27. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.I.; Shankaran, M.; Yoshino, M.; Schweitzer, G.G.; Chondronikola, M.; Beals, J.W.; Okunade, A.L.; Patterson, B.W.; Nyangau, E.; Field, T.; et al. Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease. J. Clin. Investig. 2020, 130, 1453–1460. [Google Scholar] [CrossRef] [PubMed]
- Honda, M.; Tsuboi, A.; Minato-Inokawa, S.; Takeuchi, M.; Kurata, M.; Takayoshi, T.; Hirota, Y.; Wu, B.; Kazumi, T.; Fukuo, K. Serum Orosomucoid Is Associated with Serum Adiponectin, Adipose Tissue Insulin Resistance Index, and a Family History of Type 2 Diabetes in Young Normal Weight Japanese Women. J. Diabetes Res. 2022, 2022, 7153238. [Google Scholar] [CrossRef]
- Xia, J.Y.; Holland, W.L.; Kusminski, C.M.; Sun, K.; Sharma, A.X.; Pearson, M.J.; Sifuentes, A.J.; McDonald, J.G.; Gordillo, R.; Scherer, P.E. Targeted Induction of Ceramide Degradation Leads to Improved Systemic Metabolism and Reduced Hepatic Steatosis. Cell Metab. 2015, 22, 266–278. [Google Scholar] [CrossRef]
- Shen, M.; Lee, A.; Lefkowitch, J.H.; Worman, H.J. Vibration-controlled Transient Elastography for Assessment of Liver Fibrosis at a USA Academic Medical Center. J. Clin. Transl. Hepatol. 2022, 10, 197–206. [Google Scholar] [CrossRef]
- Argalia, G.; Ventura, C.; Tosi, N.; Campioni, D.; Tagliati, C.; Tufillaro, M.; Cucco, M.; Svegliati Baroni, G.; Giovagnoni, A. Comparison of point shear wave elastography and transient elastography in the evaluation of patients with NAFLD. Radiol. Med. 2022, 127, 571–576. [Google Scholar] [CrossRef]
Non-NAFLD (CAP < 274, n = 1563) | NAFLD (CAP ≥ 274, n = 707) | p Value | Normal Group (LSM < 8.0, n = 2121) | LF (LSM ≥ 8.0, n = 149) | p Value | |
---|---|---|---|---|---|---|
Age (years) | 34.43 (33.84, 35.01) | 34.28 (33.23, 35.33) | 0.807 | 34.32 (33.78, 34.87) | 35.11 (33.17, 37.06) | 0.432 |
Race/Ethnicity (%) | 0.988 | 0.745 | ||||
Non-Hispanic White | 601 (56.17%) | 275 (55.17%) | 816 (55.64%) | 60 (58.72%) | ||
Non-Hispanic Black | 302 (10.73%) | 138 (10.95%) | 406 (10.73%) | 34 (11.65%) | ||
Mexican American | 197 (9.88%) | 94 (10.21%) | 273 (10.01%) | 18 (9.68%) | ||
Other Race | 463 (23.22%) | 200 (23.67%) | 626 (23.62%) | 37 (19.95%) | ||
Education level (%) | 0.064 | 0.711 | ||||
<High school | 211 (9.60%) | 78 (6.17%) | 275 (8.66%) | 14 (6.71%) | ||
High school | 284 (20.41%) | 116 (18.98%) | 368 (19.74%) | 32 (22.88%) | ||
College or above | 1068 (69.99%) | 513 (74.85%) | 1478 (71.60%) | 103 (70.41%) | ||
Marital status | 0.631 | 0.533 | ||||
Married/Living with partner | 857 (61.21%) | 404 (63.30%) | 1189 (61.48%) | 90 (66.85%) | ||
Widowed/Divorced/Separated | 200 (9.63%) | 88 (10.01%) | 273 (9.89%) | 15 (7.94%) | ||
Never married | 488 (29.17%) | 215 (26.69%) | 659 (28.63%) | 44 (25.21%) | ||
PIR | 2.89 (2.77, 3.01) | 2.91 (2.74, 3.07) | 0.828 | 2.88 (2.76, 2.99) | 3.09 (2.83, 3.36) | 0.127 |
BMI, kg/m2 | 29.26 (28.72, 29.80) | 30.37 (29.35, 31.40) | 0.056 | 29.42 (28.94, 29.91) | 32.03 (29.93, 34.14) | 0.017 |
Smoked at least 100 cigarettes (%) | 377 (24.54%) | 223 (31.53%) | 0.008 | 551 (26.14%) | 49 (34.48%) | 0.141 |
Diabetes (%) | 41 (2.46%) | 128 (19.55%) | <0.001 | 126 (5.99%) | 43 (31.83%) | <0.001 |
Hypertension (%) | 382 (23.79%) | 258 (35.93%) | <0.001 | 578 (26.61%) | 62 (40.57%) | 0.007 |
History of CVD (%) | 22 (0.91%) | 23 (3.79%) | <0.001 | 36 (1.39%) | 9 (7.37%) | <0.001 |
Laboratory data | ||||||
Total Cholesterol (mmol/L) | 4.72 (4.66, 4.79) | 4.70 (4.60, 4.79) | 0.565 | 4.70 (4.64, 4.75) | 4.95 (4.76, 5.14) | 0.010 |
LSM (kPa) | 4.52 (4.44, 4.61) | 6.16 (5.73, 6.58) | <0.001 | - | - | - |
CAP (dB/m) | - | - | - | 241.47 (238.13, 244.81) | 311.79 (298.61, 324.96) | <0.001 |
AGP (g/L) | <0.001 | 0.027 | ||||
Tertile 1 (<0.673) | 650 (43.04%) | 107 (15.60%) | 728 (35.45%) | 29 (21.28%) | ||
Tertile 2 (0.673–0.879) | 524 (31.50%) | 231 (34.06%) | 715 (32.49%) | 40 (29.76%) | ||
Tertile 3 (>0.879) | 389 (25.46%) | 369 (50.33%) | 678 (32.06%) | 80 (48.97%) |
Model 1 OR (95% CI) | p Value | Model 2 OR (95% CI) | p Value | Model 3 OR (95% CI) | p Value | |
---|---|---|---|---|---|---|
AGP, continuous | 14.95 (8.42, 26.53) | <0.001 | 15.08 (8.46, 26.88) | <0.001 | 12.00 (6.73, 21.39) | <0.001 |
AGP, in tertiles | ||||||
Tertile 1 (<0.673) | reference | reference | reference | |||
Tertile 2 (0.673–0.879) | 2.98 (2.11, 4.21) | <0.001 | 2.98 (2.12, 4.20) | <0.001 | 2.76 (1.98, 3.84) | <0.001 |
Tertile 3 (>0.879) | 5.45 (4.05, 7.33) | <0.001 | 5.49 (4.07, 7.41) | <0.001 | 4.87 (3.67, 6.45) | <0.001 |
p for trend | <0.001 | <0.001 | <0.001 |
Model 1 OR (95% CI) | p Value | Model 2 OR (95% CI) | p Value | Model 3 OR (95% CI) | p Value | |
---|---|---|---|---|---|---|
AGP, continuous | 3.62 (1.67, 7.85) | 0.002 | 3.64 (1.68, 7.89) | 0.002 | 2.20 (1.07, 4.50) | 0.042 |
AGP, in tertiles | ||||||
Tertile 1 | reference | reference | reference | |||
Tertile 2 | 1.53 (0.66, 3.52) | 0.329 | 1.52 (0.66, 3.52) | 0.334 | 1.27 (0.56, 2.89) | 0.580 |
Tertile 3 | 2.54 (1.25, 5.19) | 0.014 | 2.56 (1.25, 5.28) | 0.015 | 1.90 (0.97, 3.72) | 0.075 |
p for trend | <0.001 | <0.001 | <0.001 |
AGP | CAP Adjusted β (95% CI) | p Value |
---|---|---|
Fitting by the standard linear model | 82.69 (73.10, 92.28) | <0.001 |
Fitting by the two-piecewise linear model | ||
Inflection point | 1.20 | |
<K segment effect | 102.26 (91.46, 113.06) | <0.001 |
>K segment effect | −60.07 (−99.09, −21.05) | 0.003 |
Log likelihood ratio | <0.001 |
Subgroup | NAFLD OR (95% CI) | p for Interaction | LF OR (95% CI) | p for Interaction |
---|---|---|---|---|
Race | 0.535 | 0.649 | ||
Non-Hispanic White | 10.06 (3.60, 28.10) | 2.92 (1.17, 7.29) | ||
Non-Hispanic Black | 16.56 (4.20, 65.21) | 0.75 (0.11, 5.16) | ||
Mexican American | 7.07 (1.62, 30.82) | 1.81 (0.54, 6.08) | ||
Other Race | 20.37 (9.24, 44.88) | 1.67 (0.22, 12.51) | ||
Education level (%) | 0.331 | 0.036 | ||
<High school | 3.66 (0.82, 16.45) | 1.35 (0.21, 8.67) | ||
High school | 11.36 (2.84, 45.43) | 0.43 (0.08, 2.28) | ||
College or above | 13.60 (6.59, 28.03) | 3.43 (1.68, 7.01) | ||
Marital status | 0.942 | 0.020 | ||
Married/Living with partner | 11.06 (4.69, 26.09) | 1.83 (0.86, 3.92) | ||
Widowed/Divorced/Separated | 14.88 (2.90, 76.39) | 18.17 (4.81, 68.61) | ||
Never married | 13.51 (6.13, 29.80) | 2.04 (0.35, 11.88) | ||
PIR | 0.546 | 0.147 | ||
PIR ≤ 1.3 | 21.01 (8.41, 52.45) | 10.00 (1.51, 66.19) | ||
1.3 < PIR ≤ 3.5 | 10.07 (3.74, 27.14) | 2.39 (0.84, 6.83) | ||
PIR > 3.5 | 11.35 (3.46, 37.24) | 1.21 (0.38, 3.86) | ||
BMI, kg/m2 | 0.056 | 0.492 | ||
BMI < 25 | 8.18 (2.67, 25.04) | 1.61 (0.52, 4.98) | ||
25 ≤ BMI < 30 | 39.39 (13.68, 113.41) | 6.83 (0.69, 67.87) | ||
BMI ≥ 30 | 8.58 (3.91, 18.81) | 1.75 (0.73, 4.20) | ||
Smoked at least 100 cigarettes (%) | 0.188 | 0.538 | ||
Yes | 21.24 (8.84, 51.04) | 1.53 (0.43, 5.41) | ||
No | 9.79 (4.77, 20.07) | 2.49 (1.06, 5.85) | ||
Diabetes (%) | 0.011 | 0.349 | ||
Yes | 0.75 (0.10, 5.85) | 0.86 (0.09, 8.20) | ||
No | 14.41 (7.50, 27.70) | 2.76 (1.27, 5.99) | ||
Hypertension (%) | 0.235 | 0.547 | ||
Yes | 6.97 (2.35, 20.73) | 1.53 (0.40, 5.90) | ||
No | 15.09 (7.64, 29.79) | 2.54 (1.08, 5.94) | ||
History of CVD (%) | 0.736 | 0.658 | ||
Yes | 43.20 (0.02, 78,603.52) | 3.45 (0.56, 21.37) | ||
No | 11.73 (6.53, 21.09) | 2.09 (0.90, 4.85) | ||
Total Cholesterol (mmol/L) | 0.852 | 0.220 | ||
≤6 | 11.99 (6.56, 21.93) | 2.79 (1.35, 5.78) | ||
>6 | 10.37 (2.36, 45.57) | 0.76 (0.12, 4.88) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Zhang, S.; Zeng, X.; Qin, H. Association Between Alpha-1-Acid Glycoprotein and Non-Alcoholic Fatty Liver Disease and Liver Fibrosis in Adult Women. Metabolites 2025, 15, 280. https://doi.org/10.3390/metabo15040280
Fu Y, Zhang S, Zeng X, Qin H. Association Between Alpha-1-Acid Glycoprotein and Non-Alcoholic Fatty Liver Disease and Liver Fibrosis in Adult Women. Metabolites. 2025; 15(4):280. https://doi.org/10.3390/metabo15040280
Chicago/Turabian StyleFu, Yansong, Siyi Zhang, Xin Zeng, and Hong Qin. 2025. "Association Between Alpha-1-Acid Glycoprotein and Non-Alcoholic Fatty Liver Disease and Liver Fibrosis in Adult Women" Metabolites 15, no. 4: 280. https://doi.org/10.3390/metabo15040280
APA StyleFu, Y., Zhang, S., Zeng, X., & Qin, H. (2025). Association Between Alpha-1-Acid Glycoprotein and Non-Alcoholic Fatty Liver Disease and Liver Fibrosis in Adult Women. Metabolites, 15(4), 280. https://doi.org/10.3390/metabo15040280