The Time Is Right to Focus on Model Organism Metabolomes
Abstract
:1. The Importance of Model Organisms
2. Growth of ’Omics Research into Model Organisms
3. Launch of the Model Organism Metabolomes Task Group
Kingdom | Latin Name | Common Name |
---|---|---|
Bacteria | Escherichia coli | - |
Fungi | Saccharomyces cerevisiae | yeast |
Animal (invertebrate) | Caenorhabditis elegans | nematode |
Daphnia magna | water flea | |
Drosophila melanogaster * | fruit fly | |
Animal (vertebrate) | Danio rerio | zebrafish |
Mus musculus | mouse | |
Plant | Arabidopsis thaliana ** | thale cress |
Medicago truncatula | barrel medic, model legume | |
Oryza sativa | rice | |
Solanum lycopersicum | tomato |
- To integrate disparate model organism-focused research groups into a model organism metabolomes community, to promote interactions between these groups, and to stimulate joint initiatives.
- To share, discuss and coordinate analytical strategies to progress the annotation and identification of model organism metabolomes (including polar metabolites and lipids), linking with the efforts of the Metabolomics Society’s Metabolite Identification task group, to generate best-practice strategies. In addition, to determine quantifiable ranges of primary and secondary metabolite levels measured in the model organisms under differing conditions, e.g., diet and environment.
- To share, discuss and coordinate bioinformatic strategies, data standards and databases for the curation, analysis and visualization of model organism metabolomes, to generate/best-practice strategies.
- To catalyse the integration of metabolome data with the huge battery of existing information and knowledge of model organisms, thereby linking metabolic data with other data types including other ’omics data.
- To catalyze the integration of phylometabolomic data into a framework for understanding the evolution of metabolic networks and also how these respond to stressors, and to explore linkages between the phenotype(s) induced by these stressors.
- To support the development of quantitative metabolic models for model organisms.
- To promote the use of model organism metabolomes in systems biology education for training future ’omics scientists.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- The Nobel Prize in Physiology or Medicine 2002. Available online: http://www.nobelprize.org/nobel_prizes/medicine/laureates/2002/press.html (accessed on 9 December 2015).
- Colbourne, J.K.; Pfrender, M.E.; Gilbert, D.; Thomas, W.K.; Tucker, A.; Oakley, T.H.; Tokishita, S.; Aerts, A.; Arnold, G.J.; Basu, M.K.; et al. The ecoresponsive genome of Daphnia pulex. Science 2011, 331, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Of Mice and Men—Are Mice Relevant Models for Human Disease? Available online: http://ec.europa.eu/research/health/pdf/summary-report-25082010_en.pdf (accessed on 9 December 2015).
- Kaul, S.; Koo, H.L.; Jenkins, J.; Rizzo, M.; Rooney, T.; Tallon, L.J.; Feldblyum, T.; Nierman, W.; Benito, M.I.; Lin, X.Y.; et al. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000, 408, 796–815. [Google Scholar]
- The Arabidopsis Information Resource. Available online: http://www.arabidopsis.org/ (accessed on 6 February 2016).
- Waterston, R.H.; Lindblad-Toh, K.; Birney, E.; Rogers, J.; Abril, J.F.; Agarwal, P.; Agarwala, R.; Ainscough, R.; Alexandersson, M.; An, P.; et al. Initial sequencing and comparative analysis of the mouse genome. Nature 2002, 420, 520–562. [Google Scholar] [PubMed]
- The C. elegans Genome Consortium; Wilson, R.K. How the worm was won: The C. elegans genome sequencing project. Trends Genet. 1999, 15, 51–58. [Google Scholar]
- The Encode Project: Encyclopedia of DNA Elements. Available online: http://www.genome.gov/encode/ (accessed on 9 December 2015).
- The Modencode Project. Available online: http://www.modencode.org (accessed on 9 December 2015).
- Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013, 496, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M.E.; Aebersold, R.; Ahrens, C.H.; Apweiler, R.; Baerenfaller, K.; Baker, M.; Bendixen, E.; Briggs, S.; Brownridge, P.; Brunner, E.; et al. The HUPO initiative on model organism proteomes, IMOP. Proteomics 2012, 12, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Thiele, I.; Palsson, B.O. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nature Protoc. 2010, 5, 93–121. [Google Scholar] [CrossRef] [PubMed]
- Orth, J.D.; Conrad, T.M.; Na, J.; Lerman, J.A.; Nam, H.; Feist, A.M.; Palsson, B.O. A comprehensive genome-scale reconstruction of Escherichia coli metabolism. Mol. Syst. Biol. 2011. [Google Scholar] [CrossRef]
- Weaver, D.S.; Keseler, I.M.; Mackie, A.; Paulsen, I.T.; Karp, P.D. A genome-scale metabolic flux model of Escherichia coli k-12 derived from the EcoCyc database. BMC Syst. Biol. 2014. [Google Scholar] [CrossRef] [PubMed]
- Heavner, B.D.; Smallbone, K.; Price, N.D.; Walker, L.P. Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance. J. Biol. Databases Curation 2013. [Google Scholar] [CrossRef] [PubMed]
- Thiele, I.; Swainston, N.; Fleming, R.M.T.; Hoppe, A.; Sahoo, S.; Aurich, M.K.; Haraldsdottir, H.; Mo, M.L.; Rolfsson, O.; Stobbe, M.D.; et al. A community-driven global reconstruction of human metabolism. Nat. Biotechnol. 2013, 31, 419–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clayton, T.A.; Lindon, J.C.; Cloarec, O.; Antti, H.; Charuel, C.; Hanton, G.; Provost, J.P.; Le Net, J.L.; Baker, D.; Walley, R.J.; et al. Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature 2006, 440, 1073–1077. [Google Scholar] [CrossRef] [PubMed]
- Schauer, N.; Semel, Y.; Roessner, U.; Gur, A.; Balbo, I.; Carrari, F.; Pleban, T.; Perez-Melis, A.; Bruedigam, C.; Kopka, J.; et al. Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat. Biotechnol. 2006, 24, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Griffin, J.L.; Atherton, H.; Shockcor, J.; Atzori, L. Metabolomics as a tool for cardiac research. Nat. Rev. Cardiol. 2011, 8, 630–643. [Google Scholar] [CrossRef] [PubMed]
- Weiss, R.H.; Kim, K. Metabolomics in the study of kidney diseases. Nat. Rev. Nephrol. 2012, 8, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Taylor, N.S.; Weber, R.J.M.; Southam, A.D.; Payne, T.G.; Hrydziuszko, O.; Arvanitis, T.N.; Viant, M.R. A new approach to toxicity testing in Daphnia magna: Application of high throughput ft-icr mass spectrometry metabolomics. Metabolomics 2009, 5, 44–58. [Google Scholar] [CrossRef]
- Geier, F.M.; Want, E.J.; Leroi, A.M.; Bundy, J.G. Cross-platform comparison of Caenorhabditis elegans tissue extraction strategies for comprehensive metabolome coverage. Anal. Chem. 2011, 83, 3730–3736. [Google Scholar] [CrossRef] [PubMed]
- Dunn, W.B.; Lin, W.C.; Broadhurst, D.; Begley, P.; Brown, M.; Zelena, E.; Vaughan, A.A.; Halsall, A.; Harding, N.; Knowles, J.D.; et al. Molecular phenotyping of a UK population: Defining the human serum metabolome. Metabolomics 2015, 11, 9–26. [Google Scholar] [CrossRef] [PubMed]
- Creek, D.J.; Dunn, W.B.; Fiehn, O.; Griffin, J.L.; Hall, R.D.; Lei, Z.; Mistrik, R.; Neumann, S.; Schymanski, E.L.; Sumner, L.W.; et al. Metabolite identification: Are you sure? And how do your peers gauge your confidence? Metabolomics 2014, 10, 350–353. [Google Scholar] [CrossRef]
- Moco, S.; Bino, R.J.; De Vos, R.C.H.; Vervoort, J. Metabolomics technologies and metabolite identification. Trac-Trends Anal. Chem. 2007, 26, 855–866. [Google Scholar] [CrossRef]
- Dunn, W.B.; Erban, A.; Weber, R.J.M.; Creek, D.J.; Brown, M.; Breitling, R.; Hankemeier, T.; Goodacre, R.; Neumann, S.; Kopka, J.; et al. Mass appeal: Metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics 2013, 9, S44–S66. [Google Scholar] [CrossRef]
- Stupp, G.S.; Clendinen, C.S.; Ajredini, R.; Szewc, M.A.; Garret, T.; Menger, R.F.; Yost, R.A.; Beecher, C.; Edison, A.S. Isotopic ratio outlier analysis global metabolomics of Caenorhabditis elegans. Anal. Chem. 2013, 85, 11858–11865. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.P.; Moir, R.; Willis, I.M.; Beecher, C.; Tsai, Y.H.; Garrett, T.J.; Yost, R.A.; Kurland, I.J. Isotopic Ratio Outlier Analysis (IROA) of the S. cerevisiae metabolome using accurate mass GC-TOF/MS: A new method for discovery. Anal. Chem. 2016. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.M.; Yim, S.H.; Lee, S.G.; Kim, E.B.; Lee, S.R.; Chang, K.T.; Buffenstein, R.; Lewis, K.N.; Park, T.J.; Miller, R.A.; et al. Organization of the mammalian metabolome according to organ function, lineage specialization, and longevity. Cell Metab. 2015, 22, 332–343. [Google Scholar] [CrossRef] [PubMed]
- International Drosophila Metabolomics Curation Consortium. Available online: http://flygxe.ua.edu/metabolomics.html (accessed on 6 February 2016).
- About MASC. Available online: https://www.arabidopsis.org/portals/masc/MASC_Info.jsp (accessed on 6 February 2016).
- MetaboLights. Available online: http://www.ebi.ac.uk/metabolights/ (accessed on 6 February 2016).
- Haug, K.; Salek, R.M.; Conesa, P.; Hastings, J.; de Matos, P.; Rijnbeek, M.; Mahendraker, T.; Williams, M.; Neumann, S.; Rocca-Serra, P.; et al. MetaboLights—An open-access general-purpose repository for metabolomics studies and associated meta-data. Nucl. Acids Res. 2013, 41, D781–D786. [Google Scholar] [CrossRef] [PubMed]
- Sud, M.; Fahy, E.; Cotter, D.; Azam, K.; Vadivelu, I.; Burant, C.; Edison, A.; Fiehn, O.; Higashi, R.; Nair, K.S.; et al. Metabolomics Workbench: An international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucl. Acids Res. 2016, 44, D463–D470. [Google Scholar] [CrossRef] [PubMed]
- Metabolomics Workbench. Available online: http://www.metabolomicsworkbench.org/ (accessed on 6 February 2016).
- Karp, P.D.; Latendresse, M.; Paley, S.M.; Krummenacker, M.; Ong, Q.D.; Billington, R.; Kothari, A.; Weaver, D.; Lee, T.J.; Subhraveti, P.; et al. Pathway tools version 19.0 update: Software for pathway/genome informatics and systems biology. Brief. Bioinform. 2015. [Google Scholar] [CrossRef] [PubMed]
- Caspi, R.; Billington, R.; Ferrer, L.; Foerster, H.; Fulcher, C.A.; Keseler, I.M.; Kothari, A.; Krummenacker, M.; Latendresse, M.; Mueller, L.A.; et al. The Metacyc database of metabolic pathways and enzymes and the biocyc collection of pathway/genome databases. Nucl. Acids Res. 2016, 44, D471–D480. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edison, A.S.; Hall, R.D.; Junot, C.; Karp, P.D.; Kurland, I.J.; Mistrik, R.; Reed, L.K.; Saito, K.; Salek, R.M.; Steinbeck, C.; et al. The Time Is Right to Focus on Model Organism Metabolomes. Metabolites 2016, 6, 8. https://doi.org/10.3390/metabo6010008
Edison AS, Hall RD, Junot C, Karp PD, Kurland IJ, Mistrik R, Reed LK, Saito K, Salek RM, Steinbeck C, et al. The Time Is Right to Focus on Model Organism Metabolomes. Metabolites. 2016; 6(1):8. https://doi.org/10.3390/metabo6010008
Chicago/Turabian StyleEdison, Arthur S., Robert D. Hall, Christophe Junot, Peter D. Karp, Irwin J. Kurland, Robert Mistrik, Laura K. Reed, Kazuki Saito, Reza M. Salek, Christoph Steinbeck, and et al. 2016. "The Time Is Right to Focus on Model Organism Metabolomes" Metabolites 6, no. 1: 8. https://doi.org/10.3390/metabo6010008
APA StyleEdison, A. S., Hall, R. D., Junot, C., Karp, P. D., Kurland, I. J., Mistrik, R., Reed, L. K., Saito, K., Salek, R. M., Steinbeck, C., Sumner, L. W., & Viant, M. R. (2016). The Time Is Right to Focus on Model Organism Metabolomes. Metabolites, 6(1), 8. https://doi.org/10.3390/metabo6010008