Impact of Bovine Diet on Metabolomic Profile of Skim Milk and Whey Protein Ingredients
Abstract
:1. Introduction
2. Results and Discussion
2.1. Nitrogen Composition
2.2. Total Amino Acid Composition
2.3. Metabolomic Profiles of Protein Ingredients
3. Materials and Methods
3.1. Materials
3.2. Experimental Design
3.3. Ingredient Manufacture
3.3.1. Skim Milk Preparation
3.3.2. Sweet Whey Preparation
3.3.3. Acid Whey Preparation
3.3.4. Ideal Whey Preparation
3.4. Determination of Nitrogen Content
3.5. Total Amino Acid Analysis
3.6. Liquid Chromatography–Mass Spectrometry (LC–MS)
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ulber, R.; Plate, K.; Weiss, T.; Demmer, W.; Buchholz, H.; Scheper, T. Downstream Processing of Bovine Lactoferrin from Sweet Whey. Acta Biotechnol. 2001, 21, 27–34. [Google Scholar] [CrossRef]
- Pouliot, Y. Membrane processes in dairy technology—From a simple idea to worldwide panacea. Int. Dairy J. 2008, 18, 735–740. [Google Scholar] [CrossRef]
- Smithers, G.W. Whey and whey proteins—From ‘gutter-to-gold’. Int. Dairy J. 2008, 18, 695–704. [Google Scholar] [CrossRef]
- Kalman, D.S. Amino Acid Composition of an Organic Brown Rice Protein Concentrate and Isolate Compared to Soy and Whey Concentrates and Isolates. Foods 2014, 3, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Michaelidou, A.M. Factors influencing nutritional and health profile of milk and milk products. Small Rumin. Res. 2008, 79, 42–50. [Google Scholar] [CrossRef]
- Canale, C.J.; Muller, L.D.; McCahon, H.A.; Whitsel, T.J.; Varga, G.A.; Lormore, M.J. Dietary Fat and Ruminally Protected Amino Acids for High Producing Dairy Cows1. J. Dairy Sci. 1990, 73, 135–141. [Google Scholar] [CrossRef]
- Swanepoel, N.; Robinson, P.H.; Erasmus, L.J. Amino acid needs of lactating dairy cows: Impact of feeding lysine in a ruminally protected form on productivity of lactating dairy cows. Anim. Feed Sci. Technol. 2010, 157, 79–94. [Google Scholar] [CrossRef]
- Lee, C.; Giallongo, F.; Hristov, A.N.; Lapierre, H.; Cassidy, T.W.; Heyler, K.S.; Varga, G.A.; Parys, C. Effect of dietary protein level and rumen-protected amino acid supplementation on amino acid utilization for milk protein in lactating dairy cows. J. Dairy Sci. 2015, 98, 1885–1902. [Google Scholar] [CrossRef] [Green Version]
- Sajdakowska, M.; Gębski, J.; Gutkowska, K.; Żakowska-Biemans, S. Importance of Health Aspects in Polish Consumer Choices of Dairy Products. Nutrients 2018, 10, 1007. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.W. Recent Trend in the Dairy Industry. J. Adv. Dairy Res. 2018, 6, 134. [Google Scholar] [CrossRef]
- Krohn, C.C. Behaviour of dairy cows kept in extensive (loose housing/pasture) or intensive (tie stall) environments. III. Grooming, exploration and abnormal behaviour. Appl. Anim. Behav. Sci. 1994, 42, 73–86. [Google Scholar] [CrossRef]
- Redbo, I.; Ehrlemark, A.; Redbo-Torstensson, P. Behavioural responses to climatic demands of dairy heifers housed outdoors. Can. J. Anim. Sci. 2001, 81, 9–15. [Google Scholar] [CrossRef]
- Coleman, J.; Pierce, K.M.; Berry, D.P.; Brennan, A.; Horan, B. The influence of genetic selection and feed system on the reproductive performance of spring-calving dairy cows within future pasture-based production systems. J. Dairy Sci. 2009, 92, 5258–5269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United States Department of Agriculture (USDA). Dairy 2014: Dairy Cattle Management Practices in the United States, 2014; USDA: Fort Collins, CO, USA, 2016.
- O’Callaghan, T.; Vázquez-Fresno, R.; Serra-Cayuela, A.; Dong, E.; Mandal, R.; Hennessy, D.; McAuliffe, S.; Dillon, P.; Wishart, D.; Stanton, C.; et al. Pasture Feeding Changes the Bovine Rumen and Milk Metabolome. Metabolites 2018, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- O’Callaghan, T.F.; Hennessy, D.; McAuliffe, S.; Kilcawley, K.N.; O’Donovan, M.; Dillon, P.; Ross, R.P.; Stanton, C. Effect of pasture versus indoor feeding systems on raw milk composition and quality over an entire lactation. J. Dairy Sci. 2016, 99, 9424–9440. [Google Scholar] [CrossRef]
- Magan, J.B.; Tobin, J.T.; O’Callaghan, T.F.; Kelly, A.L.; Fenelon, M.A.; Hennessy, D.; McCarthy, N.A. Physicochemical properties of whole milk powder derived from cows fed pasture or total mixed ration diets. J. Dairy Sci. 2019, 102, 9611–9621. [Google Scholar] [CrossRef]
- Mackle, T.R.; Bryant, A.M.; Petch, S.F.; Hooper, R.J.; Auldist, M.J. Variation in the composition of milk protein from pasture-fed dairy cows in late lactation and the effect of grain and silage supplementation. N. Z. J. Agric. Res. 1999, 42, 147–154. [Google Scholar] [CrossRef]
- Broderick, G.A. Effects of Varying Dietary Protein and Energy Levels on the Production of Lactating Dairy Cows. J. Dairy Sci. 2003, 86, 1370–1381. [Google Scholar] [CrossRef]
- Sinha, S.K.; Chaturvedi, V.B.; Singh, P.; Chaudhary, L.C.; Ghosh, M.; Shivani, S. Effect of high and low roughage total mixed ration diets on rumen metabolites and enzymatic profiles in crossbred cattle and buffaloes. Vet. World 2017, 10, 616–622. [Google Scholar] [CrossRef] [Green Version]
- Neelima; Sharma, R.; Rajput, Y.S.; Mann, B. Chemical and functional properties of glycomacropeptide (GMP) and its role in the detection of cheese whey adulteration in milk: A review. Dairy Sci. Technol. 2013, 93, 21–43. [Google Scholar] [CrossRef] [Green Version]
- de Paz-Lugo, P.; Lupiáñez, J.A.; Meléndez-Hevia, E. High glycine concentration increases collagen synthesis by articular chondrocytes in vitro: Acute glycine deficiency could be an important cause of osteoarthritis. Amino Acids 2018, 50, 1357–1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meléndez-Hevia, E.; de Paz-Lugo, P. Branch-point stoichiometry can generate weak links in metabolism: The case of glycine biosynthesis. J. Biosci. 2008, 33, 771–780. [Google Scholar] [CrossRef] [PubMed]
- Poole, L.B. The basics of thiols and cysteines in redox biology and chemistry. Free Radic. Biol. Med. 2015, 80, 148–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brosnan, J.T.; Brosnan, M.E. Branched-Chain Amino Acids: Enzyme and Substrate Regulation. J. Nutr. 2006, 136, 207–211. [Google Scholar] [CrossRef]
- Manavalan, P.; Ponnuswamy, P.K. A study of the preferred environment of amino acid residues in globular proteins. Arch. Biochem. Biophys. 1977, 184, 476–487. [Google Scholar] [CrossRef]
- Zhang, S.; Zeng, X.; Ren, M.; Mao, X.; Qiao, S. Novel metabolic and physiological functions of branched chain amino acids: A review. J. Anim. Sci. Biotechnol. 2017, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Fernstrom, J.D.; Fernstrom, M.H. Tyrosine, Phenylalanine, and Catecholamine Synthesis and Function in the Brain. J. Nutr. 2007, 137, 1539–1547. [Google Scholar] [CrossRef]
- Vanhatalo, A.; Kuoppala, K.; Ahvenjärvi, S.; Rinne, M. Effects of feeding grass or red clover silage cut at two maturity stages in dairy cows. 1. Nitrogen metabolism and supply of amino acids. J. Dairy Sci. 2009, 92, 5620–5633. [Google Scholar] [CrossRef] [Green Version]
- Gorissen, S.H.M.; Witard, O.C. Characterising the muscle anabolic potential of dairy, meat and plant-based protein sources in older adults. Proc. Nutr. Soc. 2017, 77, 20–31. [Google Scholar] [CrossRef]
- McDermott, A.; Visentin, G.; De Marchi, M.; Berry, D.P.; Fenelon, M.A.; O’Connor, P.M.; Kenny, O.A.; McParland, S. Prediction of individual milk proteins including free amino acids in bovine milk using mid-infrared spectroscopy and their correlations with milk processing characteristics. J. Dairy Sci. 2016, 99, 3171–3182. [Google Scholar] [CrossRef]
- Ferchaud Roucher, V.; Desnots, E.; Naël, C.; Agnoux, A.M.; Alexandre-Gouabau, M.-C.; Darmaun, D.; Boquien, C.-Y. Use of UPLC-ESI-MS/MS to quantitate free amino acid concentrations in micro-samples of mammalian milk. SpringerPlus 2013, 2, 622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, R.J. Glutamine Metabolism and Its Physiologic Importance. J. Parenter. Enter. Nutr. 1990, 14, 40S–44S. [Google Scholar] [CrossRef]
- de Koning, T.J.; Snell, K.; Duran, M.; Berger, R.; Poll-The, B.-T.; Surtees, R. L-serine in disease and development. Biochem. J. 2003, 371, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Ma, E.H.; Bantug, G.; Griss, T.; Condotta, S.; Johnson, R.M.; Samborska, B.; Mainolfi, N.; Suri, V.; Guak, H.; Balmer, M.L.; et al. Serine Is an Essential Metabolite for Effector T Cell Expansion. Cell Metab. 2017, 25, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Wyss, M.; Kaddurah-Daouk, R. Creatine and Creatinine Metabolism. Physiol. Rev. 2000, 80, 1107–1213. [Google Scholar] [CrossRef]
- Guimarães-Ferreira, L. Role of the phosphocreatine system on energetic homeostasis in skeletal and cardiac muscles. Einstein 2014, 12, 126–131. [Google Scholar] [CrossRef] [Green Version]
- Huber, J.T.; Kung, L. Protein and Nonprotein Nitrogen Utilization in Dairy Cattle. J. Dairy Sci. 1981, 64, 1170–1195. [Google Scholar] [CrossRef]
- Sharma, B.K.; Erdman, R.A. Abomasal Infusion of Choline and Methionine with or Without 2-Amino-2-Methyl-1-Propanol for Lactating Dairy Cows1, 2. J. Dairy Sci. 1988, 71, 2406–2411. [Google Scholar] [CrossRef]
- Zeisel, S.H.; da Costa, K.-A. Choline: An essential nutrient for public health. Nutr. Rev. 2009, 67, 615–623. [Google Scholar] [CrossRef] [Green Version]
- Sharma, B.K.; Erdman, R.A. Effects of High Amounts of Dietary Choline Supplementation on Duodenal Choline Flow and Production Responses of Dairy Cows1, 2. J. Dairy Sci. 1988, 71, 2670–2676. [Google Scholar] [CrossRef]
- José, E.; Santos, J.; Lima, F. Feeding Rumen-Protected Choline to Transition Dairy Cows. In Proceedings of the 20th Annual Florida Ruminant Nutrition Symposium, Gainesville, FL, USA, 10–11 February 2009; pp. 149–159. [Google Scholar]
- O’Callaghan, T.F.; Faulkner, H.; McAuliffe, S.; O’Sullivan, M.G.; Hennessy, D.; Dillon, P.; Kilcawley, K.N.; Stanton, C.; Ross, R.P. Quality characteristics, chemical composition, and sensory properties of butter from cows on pasture versus indoor feeding systems. J. Dairy Sci. 2016, 99, 9441–9460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Callaghan, T.F.; Mannion, D.T.; Hennessy, D.; McAuliffe, S.; O’Sullivan, M.G.; Leeuwendaal, N.; Beresford, T.P.; Dillon, P.; Kilcawley, K.N.; Sheehan, J.J.; et al. Effect of pasture versus indoor feeding systems on quality characteristics, nutritional composition, and sensory and volatile properties of full-fat Cheddar cheese. J. Dairy Sci. 2017, 100, 6053–6073. [Google Scholar] [CrossRef] [PubMed]
- Egan, M.; Lynch, M.B.; Hennessy, D. Including white clover in nitrogen fertilized perennial ryegrass swards: Effects on dry matter intake and milk production of spring calving dairy cows. J. Agric. Sci. 2016, 155, 657–668. [Google Scholar] [CrossRef]
- Xia, J.; Wishart, D.S. Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2016, 55, 14.10.1–14.10.91. [Google Scholar] [CrossRef] [PubMed]
Sample Type | Total Protein (% w/w) | Nonprotein Nitrogen (% w/w) | ||||
---|---|---|---|---|---|---|
GRS | CLV | TMR | GRS | CLV | TMR | |
Skim milk powder | 37.2 (±0.57) b | 37.5 (±0.06) d | 36.1 (±0.61) c | 0.27 (±0.01) b,A | 0.32 (±0.06) b,A,B | 0.37 (±0.00) c,B |
Sweet whey powder | 9.27 (±0.29) a | 9.41 (±0.68) b,c | 9.64 (±0.17) b | 0.25 (±0.01) a,b | 0.27 (±0.04) a,b | 0.32 (±0.01) a,b,c |
Ideal whey powder | 8.07 (±0.45) a | 6.98 (±0.61) a | 8.23 (±0.86) a,b | 0.21 (±0.01) a,b | 0.23 (±0.04) a | 0.28 (±0.03) a,b |
Acid whey powder | 7.64 (±0.17) a | 7.98 (±0.17) a,b | 7.50 (±0.47) a | 0.19 (±0.01) a | 0.21 (±0.04) a | 0.25 (±0.01) a |
TAA g/kg Total Protein | Skim Milk Powder | Sweet Whey Powder | Ideal Whey Powder | Acid Whey Powder | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GRS | CLV | TMR | GRS | CLV | TMR | GRS | CLV | TMR | GRS | CLV | TMR | |
Cysteic acid | 11.2 | 11.8 | 10.6 | 29.4 | 29.0 | 28.9 | 34.1 | 31.4 | 32.9 | 34.6 | 32.9 | 34.0 |
Taurine | 9.52 | 8.97 | 9.78 | 32.4 | 36.2 | 35.7 | 38.3 | 50.8 | 35.5 | 35.7 | 41.7 | 41.4 |
Methionine Sulfone | 33.3 | 34.3 | 34.6 | 21.0 | 21.3 | 20.0 | 23.8 | 21.0 | 21.2 | 20.0 | 20.4 | 20.3 |
Asparagine | 73.3 | 73.9 | 74.1 | 97.0 | 96.4 | 94.0 | 99.8 | 93.7 | 96.9 | 101 | 98.1 | 98.6 |
Threonine | 41.1 | 41.0 | 41.2 | 62.0 | 60.4 | 57.5 | 41.5 | 37.7 | 40.1 | 41.4 | 40.2 | 39.2 |
Serine | 50.1 | 49.9 | 49.9 | 41.2 | 39.7 | 37.8 | 35.4 | 31.0 | 33.8 | 34.6 | 33.1 | 32.1 |
Glutamine | 190 | 193 | 189 | 159 | 155 | 142 | 155 | 138 | 143 | 159 | 153 | 139 |
Glycine | 16.3 | 16.7 | 15.6 | 20.2 b | 18.9 b | 15.8 a | 20.6 | 20.0 | 18.2 | 19.6 b | 18.6 a,b | 16.4 a |
Alanine | 28.4 | 28.0 | 27.9 | 39.6 | 41.2 | 36.9 | 38.6 | 32.0 | 31.4 | 38.0 | 35.6 | 34.8 |
Cysteine | 7.13 | 8.14 | 7.88 | 20.7 | 24.4 | 21.5 | 25.7 a,b | 34.6 b | 21.6 a | 22.2 a,b | 30.4 b | 15.4 a |
Valine | 55.3 | 57.8 | 56.2 | 54.6 | 52.9 | 52.0 | 51.8 | 46.6 | 43.3 | 51.3 b | 48.9 a,b | 36.7 a |
Isoleucine | 43.7 | 45.6 | 44.5 | 53.8 | 51.5 | 48.4 | 44.1 | 38.1 | 40.9 | 46.6 | 44.0 | 42.7 |
Leucine | 93.5 | 95.5 | 94.7 | 88.1 | 88.4 | 82.1 | 98.5 | 91.5 | 92.5 | 103 | 100 | 93.7 |
Tyrosine | 30.2 | 34.1 | 32.7 | 8.92 | 9.63 | 12.0 | 13.7 | 12.5 | 13.2 | 8.87 | 10.5 | 8.77 |
Phenylalanine | 42.4 | 42.2 | 40.8 | 24.3 | 22.8 | 23.2 | 31.1 b | 24.5 a | 28.4 a,b | 30.0 | 30.0 | 26.9 |
Histidine | 35.7 | 35.4 | 35.7 | 25.3 | 28.2 | 25.6 | 33.6 | 35.7 | 31.7 | 40.2 | 41.2 | 35.7 |
Lysine | 72.6 | 73.1 | 73.7 | 75.7 | 74.5 | 70.8 | 77.8 | 68.4 | 71.5 | 82.0 | 77.8 | 74.7 |
Arginine | 31.4 | 32.0 | 31.5 | 19.8 | 19.5 | 20.0 | 24.1 | 23.3 | 24.9 | 25.3 | 24.2 | 23.0 |
Proline | 84.2 | 86.1 | 88.7 | 44.0 | 48.0 | 35.0 | 27.2 | 24.2 | 32.9 | 30.3 | 25.1 | 21.9 |
TAA g/kg Total Protein | Sweet Whey Powder | Ideal Whey Powder | Acid Whey Powder |
---|---|---|---|
Cysteic acid | 29.1 (±0.26) a | 32.8 (±1.34) b | 33.8 (±0.89) b |
Taurine | 34.8 (±2.06) | 41.5 (±8.16) | 39.6 (±3.39) |
Methionine Sulfone | 20.8 (±0.65) | 22.0 (±1.55) | 20.2 (±0.24) |
Asparagine | 95.8 (±1.57) | 96.8 (±3.04) | 99.3 (±1.69) |
Threonine | 60.0 (±2.32) b | 39.8 (±1.94) a | 40.3 (±1.08) a |
Serine | 39.6 (±1.67) b | 33.4 (±2.22) a | 33.3 (±1.24) a |
Glutamine | 152 (±8.50) | 145 (±8.61) | 150 (±10.2) |
Glycine | 18.3 (±2.30) a | 19.6 (±1.23) b | 18.2 (±1.65) a |
Alanine | 39.2 (±2.13) b | 34.0 (±3.97) a | 36.1 (±1.63) a,b |
Cysteine | 22.2 (±1.98) a | 27.3 (±6.61) b | 22.7 (±7.52) a |
Valine | 53.2 (±1.36) b | 47.2 (±4.30) a | 45.7 (±7.83) a |
Isoleucine | 51.2 (±2.72) b | 41.0 (±3.02) a | 44.5 (±1.98) a |
Leucine | 86.2 (±3.57) a | 94.2 (±3.77) b | 99.4 (±5.23) b |
Tyrosine | 10.2 (±1.63) a | 13.2 (±0.64) b | 9.38 (±0.97) a |
Phenylalanine | 23.4 (±0.77) a | 28.0 (±3.35) b | 29.0 (±1.80) b |
Histidine | 26.4 (±1.57) a | 33.7 (±1.98) b | 39.0 (±2.96) c |
Lysine | 73.7 (±2.51) | 72.6 (±4.81) | 78.2 (±3.63) |
Arginine | 19.8 (±0.26) a | 24.1 (±0.82) b | 24.2 (±1.13) b |
Proline | 42.3 (±6.69) b | 28.1 (±4.42) a | 25.8 (±4.25) a |
Ingredient | Metabolite (μM) | GRS | CLV | TMR |
---|---|---|---|---|
Skim milk powder | Glutamine | 4.38 (±0.54) a | 4.95 (±1.24) a | 12.4 (±0.28) b |
Phosphocreatine | 8.05 (±1.70) a,b | 6.32 (±0.56) a | 16.3 (±4.45) b | |
Serine | 22.1 (±0.78) b | 18.3 (±1.20) a,b | 10.0 (±0.55) a | |
Valine | 7.49 (±0.12) a | 7.27 (±1.09) a | 11.3 (±1.34) b | |
Sweet whey powder | Glutamine | 1.36 *a | 0.187 (±0.02) a | 7.02 (±3.20) b |
Phosphocreatine | 9.65 (±0.93) a | 6.49 (±0.70) a | 22.6 (±6.01) b | |
Serine | 25.3 (±3.11) b | 18.7 (±2.33) a,b | 9.31 (±0.64) a | |
Ideal whey powder | Glutamine | 4.04 (±0.23) a | 3.19 (±1.77) a | 11.5 (±2.64) b |
Phosphocreatine | 7.21 (±1.64) a | 5.37 (±0.61) a | 17.1 (±1.41) b | |
Serine | 21.9 (±1.13) b | 18.8 (±1.27) a,b | 9.62 (±1.10) a | |
Valine | 7.00 (±0.74) a | 7.92 (±1.43) a,b | 10.6 (±0.07) b | |
Acid whey powder | Glutamine | 2.39 (±1.74) a | 2.97 (±1.07) a | 12.3 (±0.42) b |
Valine | 6.80 (±1.97) a | 7.29 (±0.69) a | 12.0 (±1.63) b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magan, J.B.; O’Callaghan, T.F.; Zheng, J.; Zhang, L.; Mandal, R.; Hennessy, D.; Fenelon, M.A.; Wishart, D.S.; Kelly, A.L.; McCarthy, N.A. Impact of Bovine Diet on Metabolomic Profile of Skim Milk and Whey Protein Ingredients. Metabolites 2019, 9, 305. https://doi.org/10.3390/metabo9120305
Magan JB, O’Callaghan TF, Zheng J, Zhang L, Mandal R, Hennessy D, Fenelon MA, Wishart DS, Kelly AL, McCarthy NA. Impact of Bovine Diet on Metabolomic Profile of Skim Milk and Whey Protein Ingredients. Metabolites. 2019; 9(12):305. https://doi.org/10.3390/metabo9120305
Chicago/Turabian StyleMagan, Jonathan B., Tom F. O’Callaghan, Jiamin Zheng, Lun Zhang, Rupasri Mandal, Deirdre Hennessy, Mark A. Fenelon, David S. Wishart, Alan L. Kelly, and Noel A. McCarthy. 2019. "Impact of Bovine Diet on Metabolomic Profile of Skim Milk and Whey Protein Ingredients" Metabolites 9, no. 12: 305. https://doi.org/10.3390/metabo9120305
APA StyleMagan, J. B., O’Callaghan, T. F., Zheng, J., Zhang, L., Mandal, R., Hennessy, D., Fenelon, M. A., Wishart, D. S., Kelly, A. L., & McCarthy, N. A. (2019). Impact of Bovine Diet on Metabolomic Profile of Skim Milk and Whey Protein Ingredients. Metabolites, 9(12), 305. https://doi.org/10.3390/metabo9120305