Dynamic Changes of Plasma Metabolome in Response to Severe Feed Restriction in Pregnant Ewes
Abstract
:1. Introduction
2. Results
2.1. LC/MS Compound Identification and Quantification
2.2. Principal Component Analysis (PCA) and Partial Least Squares-Discriminate Analysis (PLS-DA)
2.3. Differences in Blood Metabolites between the CON and FR Groups at Day 5, Day 10, and Day 15
2.4. Metabolic Pathways of Differential Metabolites
3. Discussion
3.1. PCA and PLS-DA
3.2. Fatty Acid Metabolism
3.3. Amino Acid Metabolism
3.4. Bile Constituents
3.5. Metabolic Pathway
4. Materials and Methods
4.1. Animals and Experimental Design
4.2. Samples Collection
4.3. Liquid Chromatography-Mass Spectrometry (LC/MS) Analysis
4.4. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Houten, S.M.; Violante, S.; Ventura, F.V.; Wanders, R.J.A. The Biochemistry and Physiology of Mitochondrial Fatty Acid beta-Oxidation and Its Genetic Disorders. Annu. Rev. Physiol. 2016, 78, 23–44. [Google Scholar] [CrossRef] [PubMed]
- Torchon, E.; Ray, R.; Hulver, M.W.; McMillan, R.P.; Voy, B.H. Fasting rapidly increases fatty acid oxidation in white adipose tissue of young broiler chickens. Adipocyte 2017, 6, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Bobe, G.; Young, J.W.; Beitz, D.C. Invited review: Pathology, etiology, prevention, and treatment of fatty liver in dairy cows. J. Dairy Sci. 2004, 87, 3105–3124. [Google Scholar] [CrossRef]
- Xue, Y.F.; Guo, C.Z.; Hu, F.; Sun, D.M.; Liu, J.H.; Mao, S.Y. Molecular mechanisms of lipid metabolism disorder in livers of ewes with pregnancy toxemia. Animal 2018, 13, 992–999. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.F.; Guo, C.Z.; Hu, F.; Liu, J.H.; Mao, S.Y. Hepatic Metabolic Profile Reveals the Adaptive Mechanisms of Ewes to Severe Undernutrition during Late Gestation. Metabolites 2018, 8, 85. [Google Scholar] [CrossRef] [PubMed]
- Funston, R.N.; Larson, D.M.; Vonnahme, K.A. Effects of maternal nutrition on conceptus growth and offspring performance: Implications for beef cattle production. J. Anim. Sci. 2010, 88, E205–E215. [Google Scholar] [CrossRef] [PubMed]
- Kunz, L.H.; King, J.C. Impact of maternal nutrition and metabolism on health of the offspring. Semin. Fetal Neonatal Med. 2007, 12, 71–77. [Google Scholar] [CrossRef]
- Dutra-Tavares, A.C.; Silva, J.O.; Nunes-Freitas, A.L.; Guimaraes, V.M.S.; Araujo, U.C.; Conceicao, E.P.S.; Moura, E.G.; Lisboa, P.C.; Filgueiras, C.C.; Manhaes, A.C.; et al. Maternal undernutrition during lactation alters nicotine reward and DOPAC/dopamine ratio in cerebral cortex in adolescent mice, but does not affect nicotine-induced nAChRs upregulation. Int. J. Dev. Neurosci. 2018, 65, 45–53. [Google Scholar] [CrossRef]
- Dunford, L.J.; Sinclair, K.D.; Kwong, W.Y.; Sturrock, C.; Clifford, B.L.; Giles, T.C.; Gardner, D.S. Maternal protein-energy malnutrition during early pregnancy in sheep impacts the fetal ornithine cycle to reduce fetal kidney microvascular development. FASEB J. 2014, 28, 4880–4892. [Google Scholar] [CrossRef]
- Marteniuk, J.V.; Herdt, T.H. Pregnancy Toxemia and Ketosis of Ewes and Does. Vet. Clin. N. Am.-Food Anim. Pract. 1988, 4, 307–315. [Google Scholar] [CrossRef]
- Gopalakrishnan, G.S.; Gardner, D.S.; Rhind, S.M.; Rae, M.T.; Kyle, C.E.; Brooks, A.N.; Walker, R.M.; Ramsay, M.M.; Keisler, D.H.; Stephenson, T.; et al. Programming of adult cardiovascular function after early maternal undernutrition in sheep. Am. J. Physiol. Reg. 2004, 287, R12–R20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardner, D.S.; Tingey, K.; Van Bon, B.W.M.; Ozanne, S.E.; Wilson, V.; Dandrea, J.; Keisler, D.H.; Stephenson, T.; Symonds, M.E. Programming of glucose-insulin metabolism in adult sheep after maternal undernutrition. Am. J. Physiol. Reg. 2005, 289, R947–R954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, G.Y.; Bazer, F.W.; Cudd, T.A.; Meininger, C.J.; Spencer, T.E. Maternal nutrition and fetal development. J. Nutr. 2004, 134, 2169–2172. [Google Scholar] [CrossRef] [PubMed]
- Beyoglu, D.; Idle, J.R. Metabolomics and its potential in drug development. Biochem. Pharmacol. 2013, 85, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Herdt, T.H. Ruminant adaptation to negative energy balance. Influences on the etiology of ketosis and fatty liver. Vet. Clin. N. Am. Food Anim. Pract 2000, 16, 215–230. [Google Scholar] [CrossRef]
- McCue, M.D. Starvation physiology: Reviewing the different strategies animals use to survive a common challenge. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2010, 156, 1–18. [Google Scholar] [CrossRef]
- Schooneman, M.G.; Vaz, F.M.; Houten, S.M.; Soeters, M.R. Acylcarnitines: Reflecting or inflicting insulin resistance? Diabetes 2013, 62, 1–8. [Google Scholar] [CrossRef]
- Zhang, G.; Dervishi, E.; Dunn, S.M.; Mandal, R.; Liu, P.; Han, B.; Wishart, D.S.; Ametaj, B.N. Metabotyping reveals distinct metabolic alterations in ketotic cows and identifies early predictive serum biomarkers for the risk of disease. Metabolomics 2017, 13, 43. [Google Scholar] [CrossRef]
- Akbar, H.; Bionaz, M.; Carlson, D.B.; Rodriguez-Zas, S.L.; Everts, R.E.; Lewin, H.A.; Drackley, J.K.; Loor, J.J. Feed restriction, but not l-carnitine infusion, alters the liver transcriptome by inhibiting sterol synthesis and mitochondrial oxidative phosphorylation and increasing gluconeogenesis in mid-lactation dairy cows. J. Dairy Sci. 2013, 96, 2201–2213. [Google Scholar] [CrossRef] [Green Version]
- Grum, D.E.; Drackley, J.K.; Younker, R.S.; LaCount, D.W.; Veenhuizen, J.J. Nutrition during the dry period and hepatic lipid metabolism of periparturient dairy cows. J. Dairy Sci. 1996, 79, 1850–1864. [Google Scholar] [CrossRef]
- Kispal, G.; Melegh, B.; Alkonyi, I.; Sandor, A. Enhanced uptake of carnitine by perfused-rat-liver following starvation. Biochim. Biophys. Acta Biomembr. 1987, 896, 96–102. [Google Scholar] [CrossRef]
- Shahsavari, A.; D’Occhio, M.J.; Al Jassim, R. The role of rumen-protected choline in hepatic function and performance of transition dairy cows. Br. J. Nutr. 2016, 116, 35–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruderman, N.B. Muscle amino acid metabolism and gluconeogenesis. Annu. Rev. Med. 1975, 26, 245–258. [Google Scholar] [CrossRef]
- Bergman, E.N.; Kaufman, C.F.; Wolff, J.E.; Williams, H.H. Renal metabolism of amino acids and ammonia in fed and fasted pregnant sheep. Am. J. Physiol. 1974, 226, 833–837. [Google Scholar] [CrossRef] [PubMed]
- Ostrow, J.D.; Pascolo, L.; Brites, D.; Tiribelli, C. Molecular basis of bilirubin-induced neurotoxicity. Trends Mol. Med. 2004, 10, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Cal-Pereyra, L.; Acosta-Dibarrat, J.; Benech, A.; Silva, S.; Martin, A.; González-Montańa, J. Ewe pregnancy toxemia. Review. Rev. Mex. Cienc. Pecu. 2012, 3, 247–264. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, C.; Xue, Y.; Seddik, H.-e.; Yin, Y.; Hu, F.; Mao, S. Dynamic Changes of Plasma Metabolome in Response to Severe Feed Restriction in Pregnant Ewes. Metabolites 2019, 9, 112. https://doi.org/10.3390/metabo9060112
Guo C, Xue Y, Seddik H-e, Yin Y, Hu F, Mao S. Dynamic Changes of Plasma Metabolome in Response to Severe Feed Restriction in Pregnant Ewes. Metabolites. 2019; 9(6):112. https://doi.org/10.3390/metabo9060112
Chicago/Turabian StyleGuo, Changzheng, Yanfeng Xue, Hossam-eldin Seddik, Yuyang Yin, Fan Hu, and Shengyong Mao. 2019. "Dynamic Changes of Plasma Metabolome in Response to Severe Feed Restriction in Pregnant Ewes" Metabolites 9, no. 6: 112. https://doi.org/10.3390/metabo9060112
APA StyleGuo, C., Xue, Y., Seddik, H. -e., Yin, Y., Hu, F., & Mao, S. (2019). Dynamic Changes of Plasma Metabolome in Response to Severe Feed Restriction in Pregnant Ewes. Metabolites, 9(6), 112. https://doi.org/10.3390/metabo9060112