Revisiting a Core–Jet Laboratory at High Redshift: Analysis of the Radio Jet in the Quasar PKS 2215+020 at z = 3.572
Abstract
:1. Introduction
2. Observations and Data Reduction
Epoch (years) | (GHz) | Stations | t (s) | IF × BW (MHz) | Project |
---|---|---|---|---|---|
1995.535 * | 2.27 | VLBA | 178 | 4 × 4 | BB023 [45] |
8.34 | 184 | 4 × 4 | |||
1996.446 * | 15.36 | VLBA | 15,374 | BK042 [23] | |
1998.426 * | 15.33 | VLBA | 17,888 | BG077 [23] | |
2011.663 * | 8.36 | VLBA (−NL) | 135 | BC196 | |
2013.561 * | 2.31 | VLBA (−BR, −FD, −MK) | 862 | 4 × 8 | RV100 |
8.64 | 862 | 4 × 4 | |||
2015.795 | 1.66 | JB, WB, EF, MC, O8, SH, UR, TR, SV, ZC, BD, HH | 6379 | 1 × 128 | RSF08 [46] |
2016.000 * | 7.62 | VLBA | 242 | 8 × 32 | BP192 [52] |
2016.230 | 8.67 | VLBA | 18,383 | 2 × 107.5 | BM438 [46,47] |
2016.246 | 4.37 | VLBA (−MK) | 18,984 | 1 × 107.5 | BM438 [46,47] |
7.39 | 18,984 | 1 × 107.5 | |||
2016.364 | 15.37 | VLBA | 18,265 | 2 × 107.5 | BM438 [46,47] |
2016.548 * | 7.62 | VLBA | 244 | 8 × 32 | S7104 |
2016.657 * | 7.62 | VLBA (−PT, −SC) | 53 | 8 × 32 | BP192 [52] |
2018.349 * | 2.28 | VLBA | 110 | 4 × 32 | BS264 |
8.65 | 110 | 12 × 32 | |||
2018.617 * | 2.28 | VLBA | 119 | 4 × 32 | BP222 |
8.65 | 119 | 12 × 32 | |||
2020.882 * | 2.32 | VLBA † | 3515 | 4 × 16 | RV144 |
8.64 | 3515 | 4 × 16 |
3. Results
3.1. Core–Jet Structure at Multiple Frequencies
3.2. Inner Jet Component Proper Motion
3.3. Inner Jet Parameters
3.4. Outer Jet Component Proper Motion
4. Discussion
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACIS | Advanced CCD Imaging Spectrometer |
AGN | Active galactic nuclei |
CSS | Compact steep spectrum (radio source) |
EVN | European VLBI Network |
FSRQ | Flat-spectrum radio quasar |
FWHM | Full width at half maximum |
HALCA | Highly Advanced Laboratory for Communications and Astronomy |
ISM | Interstellar medium |
HRI | High-Resolution Imager |
NRAO | National Radio Astronomy Observatory |
ROSAT | Roentgen Satellite |
SMBH | Supermassive black hole |
SNR | Signal-to-noise ratio |
SSC | Synchrotron self-Compton |
VLBA | Very Long Baseline Array |
VLBI | Very Long Baseline Interferometry |
VSOP | VLBI Space Observatory Programme |
Appendix A
Epoch (years) | Comp. | S (mJy) | (mas) | r (mas) | ||
---|---|---|---|---|---|---|
1995.535 | C | … | … | |||
JX | ||||||
2011.663 | C | … | … | |||
JX | ||||||
2013.561 | C | … | … | |||
JX | ||||||
2016.000 | C | … | … | |||
JX | ||||||
2016.230 | C | … | … | |||
JX | ||||||
2016.548 | C | … | … | |||
JX | ||||||
2016.657 | C | … | … | |||
JX | ||||||
2018.349 | C | … | … | |||
JX | ||||||
2018.617 | C | … | … | |||
JX | ||||||
2020.882 | C | … | … | |||
JX |
Epoch (years) | Comp. | S (mJy) | (mas) | r (mas) | |
---|---|---|---|---|---|
1996.446 | C | … | … | ||
JU | |||||
JU2 | |||||
1998.426 | C | … | … | ||
JU | |||||
2016.364 | C | … | … | ||
JU |
Epoch (yr) | Comp. | S (mJy) | (mas) | r (mas) | |
---|---|---|---|---|---|
1995.535 | C | … | … | ||
JS | |||||
2013.561 | C | … | … | ||
JS | |||||
2018.349 | C | … | … | ||
JS | |||||
2018.617 | C | … | … | ||
JS | |||||
2020.882 | C | … | … | ||
JS |
References
- Padovani, P.; Alexander, D.M.; Assef, R.J.; De Marco, B.; Giommi, P.; Hickox, R.C.; Richards, G.T.; Smolčić, V.; Hatziminaoglou, E.; Mainieri, V.; et al. Active galactic nuclei: What’s in a name? Astron. Astrophys. Rev. 2017, 25, 2. [Google Scholar] [CrossRef]
- Kellermann, K.I.; Sramek, R.; Schmidt, M.; Shaffer, D.B.; Green, R. VLA Observations of Objects in the Palomar Bright Quasar Survey. Astron. J. 1989, 98, 1195. [Google Scholar] [CrossRef]
- Padovani, P. On the two main classes of active galactic nuclei. Nat. Astron. 2017, 1, 0194. [Google Scholar] [CrossRef]
- Ivezić, Ž.; Menou, K.; Knapp, G.R.; Strauss, M.A.; Lupton, R.H.; Vanden Berk, D.E.; Richards, G.T.; Tremonti, C.; Weinstein, M.A.; Anderson, S.; et al. Optical and Radio Properties of Extragalactic Sources Observed by the FIRST Survey and the Sloan Digital Sky Survey. Astron. J. 2002, 124, 2364–2400. [Google Scholar] [CrossRef]
- Ulvestad, J.S.; Wong, D.S.; Taylor, G.B.; Gallimore, J.F.; Mundell, C.G. VLBA Identification of the Milliarcsecond Active Nucleus in the Seyfert Galaxy NGC 4151. Astron. J. 2005, 130, 936–944. [Google Scholar] [CrossRef]
- Husemann, B.; Scharwächter, J.; Davis, T.A.; Pérez-Torres, M.; Smirnova-Pinchukova, I.; Tremblay, G.R.; Krumpe, M.; Combes, F.; Baum, S.A.; Busch, G.; et al. The Close AGN Reference Survey (CARS). A massive multi-phase outflow impacting the edge-on galaxy HE 1353-1917. Astron. Astrophys. 2019, 627, A53. [Google Scholar] [CrossRef]
- Berton, M.; Järvelä, E.; Crepaldi, L.; Lähteenmäki, A.; Tornikoski, M.; Congiu, E.; Kharb, P.; Terreran, G.; Vietri, A. Absorbed relativistic jets in radio-quiet narrow-line Seyfert 1 galaxies. Astron. Astrophys. 2020, 636, A64. [Google Scholar] [CrossRef]
- Sbarrato, T.; Ghisellini, G.; Giovannini, G.; Giroletti, M. Jetted radio-quiet quasars at z > 5. Astron. Astrophys. 2021, 655, A95. [Google Scholar] [CrossRef]
- Singha, M.; Winkel, N.; Vaddi, S.; Perez Torres, M.; Gaspari, M.; Smirnova-Pinchukova, I.; O’Dea, C.P.; Combes, F.; Omoruyi, O.; Rose, T.; et al. The Close AGN Reference Survey (CARS): An Interplay between Radio Jets and AGN Radiation in the Radio-quiet AGN HE0040-1105. Astrophys. J. 2023, 959, 107. [Google Scholar] [CrossRef]
- Wang, A.; An, T.; Guo, S.; Ho, L.C.; Baan, W.A.; Braun, R.; Chen, S.; Cheng, X.; Hartley, P.; Yang, J.; et al. Mildly relativistic motion in the radio-quiet quasar PG 1351+640. Mon. Not. R. Astron. Soc. 2023, 523, L30–L34. [Google Scholar] [CrossRef]
- Wang, A.; An, T.; Zhang, Y.; Cheng, X.; Ho, L.C.; Kellermann, K.I.; Baan, W.A. VLBI Observations of a sample of Palomar-Green quasars II: Characterizing the parsec-scale radio emission. Mon. Not. R. Astron. Soc. 2023, 525, 6064–6083. [Google Scholar] [CrossRef]
- Boccardi, B.; Krichbaum, T.P.; Ros, E.; Zensus, J.A. Radio observations of active galactic nuclei with mm-VLBI. Astron. Astrophys. Rev. 2017, 25, 4. [Google Scholar] [CrossRef]
- Janssen, M.; Falcke, H.; Kadler, M.; Ros, E.; Wielgus, M.; Akiyama, K.; Baloković, M.; Blackburn, L.; Bouman, K.L.; Chael, A.; et al. Event Horizon Telescope observations of the jet launching and collimation in Centaurus A. Nat. Astron. 2021, 5, 1017–1028. [Google Scholar] [CrossRef]
- Urry, C.M.; Padovani, P. Unified Schemes for Radio-Loud Active Galactic Nuclei. Publ. Astron. Soc. Pac. 1995, 107, 803. [Google Scholar] [CrossRef]
- Prandini, E.; Ghisellini, G. The Blazar Sequence and Its Physical Understanding. Galaxies 2022, 10, 35. [Google Scholar] [CrossRef]
- Bogdán, Á.; Goulding, A.D.; Natarajan, P.; Kovács, O.E.; Tremblay, G.R.; Chadayammuri, U.; Volonteri, M.; Kraft, R.P.; Forman, W.R.; Jones, C.; et al. Evidence for heavy-seed origin of early supermassive black holes from a z ≈ 10 X-ray quasar. Nat. Astron. 2024, 8, 126–133. [Google Scholar] [CrossRef]
- Bañados, E.; Mazzucchelli, C.; Momjian, E.; Eilers, A.C.; Wang, F.; Schindler, J.T.; Connor, T.; Andika, I.T.; Barth, A.J.; Carilli, C.; et al. The Discovery of a Highly Accreting, Radio-loud Quasar at z = 6.82. Astrophys. J. 2021, 909, 80. [Google Scholar] [CrossRef]
- Perger, K.; Frey, S.; Gabányi, K.É.; Tóth, L.V. A catalogue of active galactic nuclei from the first 1.5 Gyr of the Universe. Front. Astron. Space Sci. 2017, 4, 9. [Google Scholar] [CrossRef]
- Janssen, M.; Radcliffe, J.F.; Wagner, J. Software and Techniques for VLBI Data Processing and Analysis. Universe 2022, 8, 527. [Google Scholar] [CrossRef]
- Britzen, S.; Vermeulen, R.C.; Campbell, R.M.; Taylor, G.B.; Pearson, T.J.; Readhead, A.C.S.; Xu, W.; Browne, I.W.; Henstock, D.R.; Wilkinson, P. A multi-epoch VLBI survey of the kinematics of CFJ sources. II. Analysis of the kinematics. Astron. Astrophys. 2008, 484, 119–142. [Google Scholar] [CrossRef]
- Piner, B.G.; Mahmud, M.; Fey, A.L.; Gospodinova, K. Relativistic Jets in the Radio Reference Frame Image Database. I. Apparent Speeds from the First 5 Years of Data. Astron. J. 2007, 133, 2357–2388. [Google Scholar] [CrossRef]
- Piner, B.G.; Pushkarev, A.B.; Kovalev, Y.Y.; Marvin, C.J.; Arenson, J.G.; Charlot, P.; Fey, A.L.; Collioud, A.; Voitsik, P.A. Relativistic Jets in the Radio Reference Frame Image Database. II. Blazar Jet Accelerations from the First 10 Years of Data (1994–2003). Astrophys. J. 2012, 758, 84. [Google Scholar] [CrossRef]
- Lister, M.L.; Aller, M.F.; Aller, H.D.; Hodge, M.A.; Homan, D.C.; Kovalev, Y.Y.; Pushkarev, A.B.; Savolainen, T. MOJAVE. XV. VLBA 15 GHz Total Intensity and Polarization Maps of 437 Parsec-scale AGN Jets from 1996 to 2017. Astrophys. J. Suppl. Ser. 2018, 234, 12. [Google Scholar] [CrossRef]
- Lister, M.L.; Homan, D.C.; Kellermann, K.I.; Kovalev, Y.Y.; Pushkarev, A.B.; Ros, E.; Savolainen, T. Monitoring Of Jets in Active Galactic Nuclei with VLBA Experiments. XVIII. Kinematics and Inner Jet Evolution of Bright Radio-loud Active Galaxies. Astrophys. J. 2021, 923, 30. [Google Scholar] [CrossRef]
- Gurvits, L.I. Toward Sub-Millijansky Radio Astronomy with Sub-Milliarcsecond Angular Resolution (or SKA as Seen from Space). In Proceedings of the Perspectives on Radio Astronomy: Science with Large Antenna Arrays; van Haarlem, M.P., Ed.; Netherlands Foundation for Research in Astronomy: Dwingeloo, The Netherlands, 2000; p. 183. [Google Scholar]
- Veres, P.; Frey, S.; Paragi, Z.; Gurvits, L.I. Physical parameters of a relativistic jet at very high redshift: The case of the blazar J1430+4204. Astron. Astrophys. 2010, 521, A6. [Google Scholar] [CrossRef]
- Frey, S.; Paragi, Z.; Fogasy, J.O.; Gurvits, L.I. The first estimate of radio jet proper motion at z > 5. Mon. Not. R. Astron. Soc. 2015, 446, 2921–2928. [Google Scholar] [CrossRef]
- Perger, K.; Frey, S.; Gabányi, K.É.; An, T.; Britzen, S.; Cao, H.M.; Cseh, D.; Dennett-Thorpe, J.; Gurvits, L.I.; Hong, X.Y.; et al. Constraining the radio jet proper motion of the high-redshift quasar J2134-0419 at z = 4.3. Mon. Not. R. Astron. Soc. 2018, 477, 1065–1070. [Google Scholar] [CrossRef]
- Zhang, Y.; An, T.; Frey, S. Fast jet proper motion discovered in a blazar at z=4.72. Sci. Bull. 2020, 65, 525–530. [Google Scholar] [CrossRef]
- Zhang, Y.; An, T.; Frey, S.; Gabányi, K.É.; Sotnikova, Y. Radio Jet Proper-motion Analysis of Nine Distant Quasars above Redshift 3.5. Astrophys. J. 2022, 937, 19. [Google Scholar] [CrossRef]
- Vermeulen, R.C.; Cohen, M.H. Superluminal Motion Statistics and Cosmology. Astrophys. J. 1994, 430, 467. [Google Scholar] [CrossRef]
- Kellermann, K.I.; Vermeulen, R.C.; Zensus, J.A.; Cohen, M.H.; West, A. Kinematics of quasars and AGN. New Astron. Rev. 1999, 43, 757–760. [Google Scholar] [CrossRef]
- Kellermann, K.I.; Lister, M.L.; Homan, D.C.; Vermeulen, R.C.; Cohen, M.H.; Ros, E.; Kadler, M.; Zensus, J.A.; Kovalev, Y.Y. Sub-Milliarcsecond Imaging of Quasars and Active Galactic Nuclei. III. Kinematics of Parsec-scale Radio Jets. Astrophys. J. 2004, 609, 539–563. [Google Scholar] [CrossRef]
- An, T.; Zhang, Y.; Frey, S. A method for checking high-redshift identification of radio AGNs. Mon. Not. R. Astron. Soc. 2020, 497, 2260–2264. [Google Scholar] [CrossRef]
- Drinkwater, M.J.; Webster, R.L.; Francis, P.J.; Condon, J.J.; Ellison, S.L.; Jauncey, D.L.; Lovell, J.; Peterson, B.A.; Savage, A. The Parkes Half-Jansky Flat-Spectrum Sample. Mon. Not. R. Astron. Soc. 1997, 284, 85–125. [Google Scholar] [CrossRef]
- Abdurro’uf; Accetta, K.; Aerts, C.; Silva Aguirre, V.; Ahumada, R.; Ajgaonkar, N.; Filiz Ak, N.; Alam, S.; Allende Prieto, C.; Almeida, A.; et al. The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar, and APOGEE-2 Data. Astrophys. J. Suppl. Ser. 2022, 259, 35. [Google Scholar] [CrossRef]
- Francis, P.J.; Whiting, M.T.; Webster, R.L. The Optical/Near-IR Colours of Red Quasars. Publ. Astron. Soc. Aust. 2000, 17, 56–71. [Google Scholar] [CrossRef]
- Charlot, P.; Jacobs, C.S.; Gordon, D.; Lambert, S.; de Witt, A.; Böhm, J.; Fey, A.L.; Heinkelmann, R.; Skurikhina, E.; Titov, O.; et al. The third realization of the International Celestial Reference Frame by very long baseline interferometry. Astron. Astrophys. 2020, 644, A159. [Google Scholar] [CrossRef]
- Lobanov, A.P.; Gurvits, L.I.; Frey, S.; Schilizzi, R.T.; Kawaguchi, N.; Pauliny-Toth, I.I.K. VLBI Space Observatory Programme Observation of the Quasar PKS 2215+020: A New Laboratory for Core-Jet Physics at z = 3.572. Astrophys. J. 2001, 547, 714–721. [Google Scholar] [CrossRef]
- Wright, E.L. A Cosmology Calculator for the World Wide Web. Publ. Astron. Soc. Pac. 2006, 118, 1711–1715. [Google Scholar] [CrossRef]
- O’Sullivan, S.P.; Gabuzda, D.C.; Gurvits, L.I. Multifrequency polarization properties of 10 quasars on decaparsec scales at z > 3. Mon. Not. R. Astron. Soc. 2011, 415, 3049–3064. [Google Scholar] [CrossRef]
- Ellison, S.L.; Hall, P.B.; Lira, P. The Optical-Infrared Colors of CORALS QSOs: Searching for Dust Reddening Associated with High-Redshift Damped Lyα Systems. Astron. J. 2005, 130, 1345–1357. [Google Scholar] [CrossRef]
- Siebert, J.; Brinkmann, W. ROSAT HRI observations of seven high redshift quasars. Astron. Astrophys. 1998, 333, 63–69. [Google Scholar] [CrossRef]
- Schwartz, D.A. A Chandra Search for an X-ray Jet in the z=3.572 Quasar PKS 2215+020. Bull. Am. Astron. Soc. 2002, 34, 1322. [Google Scholar]
- Beasley, A.J.; Gordon, D.; Peck, A.B.; Petrov, L.; MacMillan, D.S.; Fomalont, E.B.; Ma, C. The VLBA Calibrator Survey-VCS1. Astrophys. J. Suppl. Ser. 2002, 141, 13–21. [Google Scholar] [CrossRef]
- Benke, P.; Gabányi, K.É.; Frey, S.; An, T.; Gurvits, L.I.; Kun, E.; Mohan, P.; Paragi, Z.; Ros, E. From binary to singular: The AGN PSO J334.2028+1.4075 under the high-resolution scope. Astron. Astrophys. 2023, 677, A1. [Google Scholar] [CrossRef]
- Mooley, K.P.; Wrobel, J.M.; Anderson, M.M.; Hallinan, G. The twisted radio structure of PSO J334.2028+01.4075, still a supermassive binary black hole candidate. Mon. Not. R. Astron. Soc. 2018, 473, 1388–1393. [Google Scholar] [CrossRef]
- Högbom, J.A. Aperture Synthesis with a Non-Regular Distribution of Interferometer Baselines. Astron. Astrophys. Suppl. 1974, 15, 417. [Google Scholar]
- Pearson, T.J.; Readhead, A.C.S. Image Formation by Self-Calibration in Radio Astronomy. Annu. Rev. Astron. Astrophys. 1984, 22, 97–130. [Google Scholar] [CrossRef]
- Shepherd, M.C. Difmap: An Interactive Program for Synthesis Imaging. In Proceedings of the Astronomical Data Analysis Software and Systems VI; Hunt, G., Payne, H., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 1997; Volume 125, p. 77. [Google Scholar]
- Pearson, T.J. Non-Imaging Data Analysis. In Proceedings of the Very Long Baseline Interferometry and the VLBA; Zensus, J.A., Diamond, P.J., Napier, P.J., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 1995; Volume 82, p. 267. [Google Scholar]
- Petrov, L. The Wide-field VLBA Calibrator Survey: WFCS. Astron. J. 2021, 161, 14. [Google Scholar] [CrossRef]
- An, T.; Baan, W.A. The Dynamic Evolution of Young Extragalactic Radio Sources. Astrophys. J. 2012, 760, 77. [Google Scholar] [CrossRef]
- Condon, J.J.; Condon, M.A.; Gisler, G.; Puschell, J.J. Strong radio sources in bright spiral galaxies. II. Rapid star formation and galaxy-galaxy interactions. Astrophys. J. 1982, 252, 102–124. [Google Scholar] [CrossRef]
- Kovalev, Y.Y.; Kellermann, K.I.; Lister, M.L.; Homan, D.C.; Vermeulen, R.C.; Cohen, M.H.; Ros, E.; Kadler, M.; Lobanov, A.P.; Zensus, J.A.; et al. Sub-Milliarcsecond Imaging of Quasars and Active Galactic Nuclei. IV. Fine-Scale Structure. Astron. J. 2005, 130, 2473–2505. [Google Scholar] [CrossRef]
- Readhead, A.C.S. Equipartition Brightness Temperature and the Inverse Compton Catastrophe. Astrophys. J. 1994, 426, 51. [Google Scholar] [CrossRef]
- Homan, D.C.; Cohen, M.H.; Hovatta, T.; Kellermann, K.I.; Kovalev, Y.Y.; Lister, M.L.; Popkov, A.V.; Pushkarev, A.B.; Ros, E.; Savolainen, T. MOJAVE. XIX. Brightness Temperatures and Intrinsic Properties of Blazar Jets. Astrophys. J. 2021, 923, 67. [Google Scholar] [CrossRef]
- Homan, D.C.; Kovalev, Y.Y.; Lister, M.L.; Ros, E.; Kellermann, K.I.; Cohen, M.H.; Vermeulen, R.C.; Zensus, J.A.; Kadler, M. Intrinsic Brightness Temperatures of AGN Jets. Astrophys. J. Lett. 2006, 642, L115–L118. [Google Scholar] [CrossRef]
- Sotnikova, Y.V.; Mufakharov, T.V.; Mingaliev, M.G.; Udovitskiy, R.Y.; Semenova, T.A.; Erkenov, A.K.; Bursov, N.N.; Mikhailov, A.G.; Cherepkova, Y.V. The RATAN-600 Multi-Frequency Catalogue of Blazars—BLcat. Astrophys. Bull. 2022, 77, 361–371. [Google Scholar] [CrossRef]
- Sotnikova, Y.; Mikhailov, A.; Mufakharov, T.; Mingaliev, M.; Bursov, N.; Semenova, T.; Stolyarov, V.; Udovitskiy, R.; Kudryashova, A.; Erkenov, A. High-redshift quasars at z ≥ 3 - I. Radio spectra. Mon. Not. R. Astron. Soc. 2021, 508, 2798–2814. [Google Scholar] [CrossRef]
- Gurvits, L.I.; Schilizzi, R.T.; Miley, G.K.; Peck, A.; Bremer, M.N.; Roettgering, H.; van Breugel, W. A compact radio component in 4C 41.17 at z = 3.8: A massive clump in a forming galaxy? Astron. Astrophys. 1997, 318, 11–14. [Google Scholar]
- An, T.; Mohan, P.; Zhang, Y.; Frey, S.; Yang, J.; Gabányi, K.É.; Gurvits, L.I.; Paragi, Z.; Perger, K.; Zheng, Z. Evolving parsec-scale radio structure in the most distant blazar known. Nat. Commun. 2020, 11, 143. [Google Scholar] [CrossRef]
- O’Dea, C.P.; Saikia, D.J. Compact steep-spectrum and peaked-spectrum radio sources. Astron. Astrophys. Rev. 2021, 29, 3. [Google Scholar] [CrossRef]
- Fanti, C.; Fanti, R.; Dallacasa, D.; Schilizzi, R.T.; Spencer, R.E.; Stanghellini, C. Are compact steep-spectrum sources young? Astron. Astrophys. 1995, 302, 317. [Google Scholar]
- Potter, W.J.; Cotter, G. New constraints on the structure and dynamics of black hole jets. Mon. Not. R. Astron. Soc. 2015, 453, 4070–4088. [Google Scholar] [CrossRef]
- Coppejans, R.; Frey, S.; Cseh, D.; Müller, C.; Paragi, Z.; Falcke, H.; Gabányi, K.É.; Gurvits, L.I.; An, T.; Titov, O. On the nature of bright compact radio sources at z > 4.5. Mon. Not. R. Astron. Soc. 2016, 463, 3260–3275. [Google Scholar] [CrossRef]
- Krezinger, M.; Perger, K.; Gabányi, K.É.; Frey, S.; Gurvits, L.I.; Paragi, Z.; An, T.; Zhang, Y.; Cao, H.; Sbarrato, T. Radio-loud Quasars above Redshift 4: Very Long Baseline Interferometry (VLBI) Imaging of an Extended Sample. Astrophys. J. Suppl. Ser. 2022, 260, 49. [Google Scholar] [CrossRef]
- Spingola, C.; Dallacasa, D.; Belladitta, S.; Caccianiga, A.; Giroletti, M.; Moretti, A.; Orienti, M. Parsec-scale properties of the radio brightest jetted AGN at z > 6. Astron. Astrophys. 2020, 643, L12. [Google Scholar] [CrossRef]
- Molnár, L.; Kiss, L.L.; Szabó, R. Kutatásra oktatva: A Csillagászati és Földtudományi Kutatóközpont Csillagászati Intézete hallgatói mentorprogramjának első öt éve. Magy. Tudomány 2023, 184, 110–120. [Google Scholar] [CrossRef]
- Lee, S.S.; Lobanov, A.P.; Krichbaum, T.P.; Witzel, A.; Zensus, A.; Bremer, M.; Greve, A.; Grewing, M. A Global 86 GHz VLBI Survey of Compact Radio Sources. Astron. J. 2008, 136, 159–180. [Google Scholar] [CrossRef]
- Cao, H.M.; Frey, S.; Gabányi, K.É.; Paragi, Z.; Yang, J.; Cseh, D.; Hong, X.Y.; An, T. VLBI observations of four radio quasars at z > 4: Blazars or not? Mon. Not. R. Astron. Soc. 2017, 467, 950–960. [Google Scholar] [CrossRef]
(GHz) | (mJy beam−1) | (mJy beam−1) | (mas) | (mas) | PA (°) |
---|---|---|---|---|---|
130 | |||||
123 | |||||
131 | |||||
152 | |||||
204 | |||||
186 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frey, S.; Fogasy, J.; Perger, K.; Kulish, K.; Benke, P.; Koller, D.; Gabányi, K.É. Revisiting a Core–Jet Laboratory at High Redshift: Analysis of the Radio Jet in the Quasar PKS 2215+020 at z = 3.572. Universe 2024, 10, 97. https://doi.org/10.3390/universe10020097
Frey S, Fogasy J, Perger K, Kulish K, Benke P, Koller D, Gabányi KÉ. Revisiting a Core–Jet Laboratory at High Redshift: Analysis of the Radio Jet in the Quasar PKS 2215+020 at z = 3.572. Universe. 2024; 10(2):97. https://doi.org/10.3390/universe10020097
Chicago/Turabian StyleFrey, Sándor, Judit Fogasy, Krisztina Perger, Kateryna Kulish, Petra Benke, Dávid Koller, and Krisztina Éva Gabányi. 2024. "Revisiting a Core–Jet Laboratory at High Redshift: Analysis of the Radio Jet in the Quasar PKS 2215+020 at z = 3.572" Universe 10, no. 2: 97. https://doi.org/10.3390/universe10020097
APA StyleFrey, S., Fogasy, J., Perger, K., Kulish, K., Benke, P., Koller, D., & Gabányi, K. É. (2024). Revisiting a Core–Jet Laboratory at High Redshift: Analysis of the Radio Jet in the Quasar PKS 2215+020 at z = 3.572. Universe, 10(2), 97. https://doi.org/10.3390/universe10020097