Regular Friedmann Universes and Matter Transformations
Abstract
:1. Introduction
2. Regular Friedmann Universes and Scalar Fields
3. Regular Friedmann Universes and Tachyons
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Robertson, H.P. Relativistic Cosmology. Rev. Mod. Phys. 1933, 5, 62–90. [Google Scholar] [CrossRef]
- Lifshitz, E.M.; Khalatnikov, I.M. Investigations in relativistic cosmology. Adv. Phys. 1963, 12, 185–249. [Google Scholar] [CrossRef]
- Penrose, R. Structure of Space-Time; W.A. Benjamin: New York, NY, USA; Amsterdam, The Netherlands, 1968. [Google Scholar]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge, MA, USA; New York, NY, USA, 1973. [Google Scholar]
- Hawking, S.W.; Penrose, R. The Singularities of gravitational collapse and cosmology. Proc. R. Soc. Lond. Ser. A 1970, 314, 529–548. [Google Scholar]
- Belinsky, V.A.; Khalatnikov, I.M.; Lifshitz, E.M. Oscillatory approach to a singular point in the relativistic cosmology. Adv. Phys. 1970, 19, 525–573. [Google Scholar] [CrossRef]
- Misner, C.W. Mixmaster universe. Phys. Rev. Lett. 1969, 22, 1071–1074. [Google Scholar] [CrossRef]
- Barrow, J.D.; Galloway, G.J.; Tipler, F.J. The closed-universe recollapse conjecture. Mon. Not. R. Astron. Soc. 1986, 223, 835–844. [Google Scholar] [CrossRef]
- Barrow, J.D. Sudden Future Singularities. Class. Quantum Gravity 2004, 21, L79–L82. [Google Scholar] [CrossRef]
- Barrow, J.D. More General Sudden Singularities. Class. Quantum Gravity 2004, 21, 5619–5622. [Google Scholar] [CrossRef]
- Barrow, J.D.; Tsagas, C.G. New Isotropic and Anisotropic Sudden Singularities. Class. Quantum Gravity 2005, 22, 1563–1571. [Google Scholar] [CrossRef]
- Gorini, V.; Kamenshchik, A.Y.; Moschella, U.; Pasquier, V. Tachyons, scalar fields and cosmology. Phys. Rev. D 2004, 69, 123512. [Google Scholar] [CrossRef]
- Shtanov, Y.; Sahni, V. Unusual cosmological singularities in brane world models. Class. Quantum Gravity 2002, 19, L101–L107. [Google Scholar] [CrossRef]
- Kamenshchik, A.Y. Quantum cosmology and late-time singularities. Class. Quantum Gravity 2013, 30, 173001. [Google Scholar] [CrossRef]
- Fernandez-Jambrina, L.; Lazkoz, R. Geodesic behaviour of sudden future singularities. Phys. Rev. D 2004, 70, 121503. [Google Scholar] [CrossRef]
- Keresztes, Z.; Gergely, L.; Kamenshchik, A.Y.; Gorini, V.; Polarski, D. Soft singularity crossing and transformation of matter properties. Phys. Rev. D 2013, 88, 023535. [Google Scholar] [CrossRef]
- Gasperini, M.; Veneziano, G. Pre-big bang in string cosmology. Astropart. Phys. 1993, 1, 317–339. [Google Scholar] [CrossRef]
- Lidsey, J.E.; Wands, D.; Copeland, E.J. Superstring cosmology. Phys. Rep. 2000, 337, 343–492. [Google Scholar] [CrossRef]
- Gasperini, M.; Veneziano, G. The Pre-big bang scenario in string cosmology. Phys. Rep. 2003, 373, 1–212. [Google Scholar] [CrossRef]
- Khoury, J.; Ovrut, B.A.; Steinhardt, P.J.; Turok, N. The Ekpyrotic universe: Colliding branes and the origin of the hot big bang. Phys. Rev. D 2001, 64, 123522. [Google Scholar] [CrossRef]
- Khoury, J.; Ovrut, B.A.; Seiberg, N.; Steinhardt, P.J.; Turok, N. From big crunch to big bang. Phys. Rev. D 2002, 65, 086007. [Google Scholar] [CrossRef]
- Khoury, J.; Steinhardt, P.J.; Turok, N. Designing cyclic universe models. Phys. Rev. Lett. 2004, 92, 031302. [Google Scholar] [CrossRef] [PubMed]
- Kamenshchik, A.Y.; Pozdeeva, E.O.; Vernov, S.Y.; Tronconi, A.; Venturi, G. Transformations between Jordan and Einstein frames: Bounces, antigravity, and crossing singularities. Phys. Rev. D 2016, 94, 063510. [Google Scholar] [CrossRef]
- Kamenshchik, A.Y.; Pozdeeva, E.O.; Vernov, S.Y.; Starobinsky, A.A.; Tronconi, A.; Venturi, G. Induced gravity and minimally and conformally coupled scalar fields in Bianchi-I cosmological models. Phys. Rev. D 2017, 97, 023536. [Google Scholar] [CrossRef]
- Kamenshchik, A.Y.; Pozdeeva, E.O.; Starobinsky, A.A.; Tronconi, A.; Vardanyan, T.; Venturi, G.; Vernov, S.Y. Duality between static spherically or hyperbolically symmetric solutions and cosmological solutions in scalar-tensor gravity. Phys. Rev. D 2018, 98, 124028. [Google Scholar] [CrossRef]
- Bars, I.; Chen, P.J.; Steinhardt, P.J.; Turok, N. Antigravity and the Big Crunch/Big Bang Transition. Phys. Lett. B 2012, 715, 278–281. [Google Scholar] [CrossRef]
- Bars, I.; Steinhardt, P.J.; Turok, N. Sailing through the big crunch-big bang transition. Phys. Rev. D 2014, 89, 061302. [Google Scholar] [CrossRef]
- Wetterich, C. Variable gravity Universe. Phys. Rev. D 2014, 89, 024005. [Google Scholar] [CrossRef]
- Wetterich, C. Eternal Universe. Phys. Rev. D 2014, 90, 043520. [Google Scholar] [CrossRef]
- Creminelli, P.; Nicolis, A.; Trincherini, E. Galilean Genesis: An Alternative to inflation. JCAP 2010, 1011, 021. [Google Scholar] [CrossRef]
- Easson, D.; Sawicki, I.; Vikman, A. G-Bounce. JCAP 2011, 11, 021. [Google Scholar] [CrossRef]
- Volkova, V.A.; Mironov, S.A.; Rubakov, V.A. Cosmological Scenarios with Bounce and Genesis in Horndeski Theory and Beyond. JETP 2019, 129, 553–565. [Google Scholar] [CrossRef]
- Bardeen, J.M. Non-singular general-relativistic gravitational collapse. In Proceedings of the International Conference GR5, Tbilisi, Georgia, 9–16 September 1968; p. 174. [Google Scholar]
- Spallucci, E.; Smailagic, A. Regular black holes from from semi-classical down to Planckian size. Int. J. Mod. Phys. D 2017, 26, 1730013. [Google Scholar] [CrossRef]
- Sebastiani, L.; Zerbini, S. Some remarks on non-singular spherically symmetric space-times. Astronomy 2022, 1, 99–125. [Google Scholar] [CrossRef]
- Simpson, A.; Visser, M. Black bounce to traversable wormhole. JCAP 2019, 2, 042. [Google Scholar] [CrossRef]
- Simpson, A.; Martin-Moruno, P.; Visser, M. Vaidya spacetimes, black-bounces, and traversable wormholes. Class. Quantum Gravity 2019, 36, 145007. [Google Scholar] [CrossRef]
- Franzin, E.; Liberati, S.; Mazza, J.; Simpson, A.; Visser, M. Charged black-bounce spacetimes. JCAP 2021, 7, 036. [Google Scholar] [CrossRef]
- Simpson, A.; Visser, M. The eye of the storm: A regular Kerr black hole. JCAP 2022, 3, 011. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Walia, R.K. Field sources for Simpson-Visser spacetimes. Phys. Rev. D 2022, 105, 044039. [Google Scholar] [CrossRef]
- Synge, J.L. Relativity: The General Theory; North-Holland Company: Amsterdam, The Netherlands, 1960. [Google Scholar]
- Ellis, G.F.R.; Garfinkle, D. The Synge G-Method: Cosmology, wormholes, firewalls, geometry. arXiv 2023, arXiv:2311.06881. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Fabris, J.C. Regular phantom black holes. Phys. Rev. Lett. 2006, 96, 251101. [Google Scholar] [CrossRef] [PubMed]
- Chataignier, L.; Kamenshchik, A.Y.; Tronconi, A.; Venturi, G. Regular black holes, universes without singularities, and phantom-scalar field transitions. Phys. Rev. D 2023, 107, 023508. [Google Scholar] [CrossRef]
- Kamenshchik, A.; Petriakova, P. Newman-Janis algorithm’s application to regular black hole models. Phys. Rev. D 2023, 107, 124020. [Google Scholar] [CrossRef]
- Bronnikov, K.A. Black bounces, wormholes, and partly phantom scalar fields. Phys. Rev. D 2022, 106, 064029. [Google Scholar] [CrossRef]
- Fisher, I.Z. Scalar mesostatic field with regard for gravitational effects. Zh. Eksp. Teor. Fiz. 1948, 18, 636–640. [Google Scholar]
- Bergmann, O.; Leipnik, R. Space-Time Structure of a Static Spherically Symmetric Scalar Field. Phys. Rev. 1957, 107, 1157–1161. [Google Scholar] [CrossRef]
- Buchdahl, H.A. Reciprocal Static Metrics and Scalar Fields in the General Theory of Relativity. Phys. Rev. 1959, 115, 1325–1328. [Google Scholar] [CrossRef]
- Janis, A.I.; Newman, E.T.; Winicour, J. Reality of the Schwarzschild Singularity. Phys. Rev. Lett. 1968, 20, 878–880. [Google Scholar] [CrossRef]
- Janis, A.I.; Robinson, D.C.; Winicour, J. Comments on Einstein scalar solutions. Phys. Rev. 1969, 186, 1729–1731. [Google Scholar] [CrossRef]
- Wyman, M. Static Spherically Symmetric Scalar Fields in General Relativity. Phys. Rev. D 1981, 24, 839–841. [Google Scholar] [CrossRef]
- Agnese, A.G.; La Camera, M. Gravitation without black holes. Phys. Rev. D 1985, 31, 1280–1286. [Google Scholar] [CrossRef]
- Xanthopoulos, B.C.; Zannias, T. Einstein Gravity Coupled to a Massless Scalar Field in Arbitrary Space-time Dimensions. Phys. Rev. D 1989, 40, 2564–2567. [Google Scholar] [CrossRef]
- Gaudin, M.; Gorini, V.; Kamenshchik, A.; Moschella, U.; Pasquier, V. Gravity of a static massless scalar field and a limiting Schwarzschild-like geometry. Int. J. Mod. Phys. D 2006, 15, 1387–1406. [Google Scholar] [CrossRef]
- Andrianov, A.A.; Cannata, F.; Kamenshchik, A.Y. Smooth dynamical crossing of the phantom divide line of a scalar field in simple cosmological models. Phys. Rev. D 2005, 72, 043531. [Google Scholar] [CrossRef]
- Cannata, F.; Kamenshchik, A.Y. Networks of cosmological histories, crossing of the phantom divide line and potentials with cusps. Int. J. Mod. Phys. D 2007, 16, 1683–1704. [Google Scholar] [CrossRef]
- Sen, A. Rolling tachyon. JHEP 2002, 4, 048. [Google Scholar] [CrossRef]
- Padmanabhan, T. Accelerated expansion of the universe driven by tachyonic matter. Phys. Rev. D 2002, 66, 021301. [Google Scholar] [CrossRef]
- Feinstein, A. Power law inflation from the rolling tachyon. Phys. Rev. D 2002, 66, 063511. [Google Scholar] [CrossRef]
- Frolov, A.V.; Kofman, L.; Starobinsky, A.A. Prospects and problems of tachyon matter cosmology. Phys. Lett. B 2002, 545, 8–16. [Google Scholar] [CrossRef]
- Gibbons, G.W. Cosmological evolution of the rolling tachyon. Phys. Lett. B 2002, 537, 1–4. [Google Scholar] [CrossRef]
- Feinberg, G. Possibility of faster-than-light particles. Phys. Rev. 1967, 159, 1089–1105. [Google Scholar] [CrossRef]
- Born, M.; Infeld, L. Foundations of the new field theory. Proc. Roy. Soc. Lond. A 1934, 144, 425–451. [Google Scholar] [CrossRef]
- Ketov, S.V. Many faces of Born-Infeld theory. arXiv 2001, arXiv:hep-th/0108189. [Google Scholar]
- Ketov, S.V. A Manifestly N = 2 supersymmetric Born-Infeld action. Mod. Phys. Lett. A 1999, 14, 501–510. [Google Scholar] [CrossRef]
- Ketov, S.V. N = 1 and N = 2 supersymmetric non-Abelian Born-Infeld actions from superspace. Phys. Lett. B 2000, 491, 207–213. [Google Scholar] [CrossRef]
- Seiberg, N.; Witten, E. String theory and noncommutative geometry. JHEP 1999, 9, 032. [Google Scholar] [CrossRef]
- Jimenez, J.B.; Heisenberg, L.; Olmo, G.J.; Rubiera-Garcia, D. Born-Infeld inspired modifications of gravity. Phys. Rep. 2018, 727, 1–129. [Google Scholar] [CrossRef]
- Parker, L.; Fulling, S.A. Quantized matter fields and the avoidance of singularities in general relativity. Phys. Rev. D 1973, 7, 2357–2374. [Google Scholar] [CrossRef]
- Starobinskii, A.A. On a nonsingular isotropic cosmological model. Sov. Astron. Lett. 1978, 4, 82–84. [Google Scholar]
- Hawking, S.W. Quantum Cosmology. Presented at the Les Houches Summer School on Theoretical Physics: Relativity, Groups and Topology, Les Houches, France, 27 June–4 August 1983; pp. 333–379. [Google Scholar]
- Page, D.N. A Fractal Set of Perpetually Bounces Universes? Class. Quantum Gravity 1984, 1, 417–427. [Google Scholar] [CrossRef]
- Belinskii, V.A.; Grishchuk, L.P.; Zeldovich, Y.B.; Khalatnikov, I.M. Inflationary stages in cosmological models with a scalar field. Sov. Phys. JETP 1985, 62, 195–203. [Google Scholar] [CrossRef]
- Belinskii, V.A.; Khalatnikov, I.M. On the generality of inflationary solutions in cosmological models with a scalar field. Sov. Phys. JETP 1987, 66, 441–449. [Google Scholar]
- Belinsky, V.A.; Ishihara, H.; Khalatnikov, I.M.; Sato, H. On the degree of generality of inflation in Friedmann cosmological models with a massive scalar field. Prog. Theor. Phys. 1988, 79, 676–684. [Google Scholar] [CrossRef]
- Kamenshchik, A.Y.; Khalatnikov, I.M.; Toporensky, A.V. Simplest cosmological model with the scalar field. Int. J. Mod. Phys. D 1997, 6, 673–692. [Google Scholar] [CrossRef]
- Vikman, A. Can dark energy evolve to the phantom? Phys. Rev. D 2005, 71, 023515. [Google Scholar] [CrossRef]
- Yurov, A. Phantom scalar fields result in inflation rather than Big Rip. arXiv 2003, arXiv:astro-ph/0305019. [Google Scholar] [CrossRef]
- Kamenshchik, A.Y.; Moschella, U.; Pasquier, V. An alternative to quintessence. Phys. Lett. B 2001, 511, 265–268. [Google Scholar] [CrossRef]
- Fabris, J.C.; Goncalves, S.V.B.; de Souza, P.E. Density perturbations in an Universe dominated by the Chaplygin gas. Gen. Relativ. Gravit. 2002, 34, 53–63. [Google Scholar] [CrossRef]
- Bilic, N.; Tupper, G.B.; Viollier, R.D. Unification of Dark Matter and Dark Energy: The Inhomogeneous Chaplygin Gas. Phys. Lett. B 2002, 535, 17–21. [Google Scholar] [CrossRef]
- Bento, M.C.; Bertolami, O.; Sen, A.A. Generalized Chaplygin gas, accelerated expansion and dark energy matter unification. Phys. Rev. D 2002, 66, 043507. [Google Scholar] [CrossRef]
- Carter, B. Duality Relation Between Charged Elastic Strings And Superconducting Cosmic Strings. Phys. Lett. B 1989, 224, 61–66. [Google Scholar] [CrossRef]
- Vilenkin, A. Effect of Small Scale Structure on the Dynamics of Cosmic Strings. Phys. Rev. D 1990, 41, 3038–3040. [Google Scholar] [CrossRef]
- Misner, C.W. Absolute zero of time. Phys. Rev. 1969, 186, 1328–1333. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamenshchik, A.; Petriakova, P. Regular Friedmann Universes and Matter Transformations. Universe 2024, 10, 137. https://doi.org/10.3390/universe10030137
Kamenshchik A, Petriakova P. Regular Friedmann Universes and Matter Transformations. Universe. 2024; 10(3):137. https://doi.org/10.3390/universe10030137
Chicago/Turabian StyleKamenshchik, Alexander, and Polina Petriakova. 2024. "Regular Friedmann Universes and Matter Transformations" Universe 10, no. 3: 137. https://doi.org/10.3390/universe10030137
APA StyleKamenshchik, A., & Petriakova, P. (2024). Regular Friedmann Universes and Matter Transformations. Universe, 10(3), 137. https://doi.org/10.3390/universe10030137