Search for R-Parity-Violation-Induced Charged Lepton Flavor Violation at Future Lepton Colliders
Abstract
:1. Introduction
2. R-Parity Violating MSSM
3. Simulation and Analysis Framework
3.1. Event Simulation
3.2. Event Selection and Analysis Method
4. Results
4.1. CEPC
4.2. Muon Collider
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CLFV | Charged Lepton Flavor Violation |
SM | Standard Model |
BSM | Beyond the Standard Model |
RPV | R-parity Violation |
MSSM | Minimal Supersymmetric Standard Model |
CEPC | Circular Electron Positron Collider |
SUSY | Supersymmetry |
QBH | Quantum Black Hole |
2HDM | Two-Higgs-Doublet Model |
NP | New Physics |
FCC | Future Circular Collider |
ILC | International Linear Collider |
CLIC | Compact Linear Collider |
ISR | Initial-state Radiation |
A.U. | Arbitrary Unit |
C.L. | Confidence Level |
References
- Gonzalez-Garcia, M.C.; Nir, Y. Neutrino Masses and Mixing: Evidence and Implications. Rev. Mod. Phys. 2003, 75, 345–402. [Google Scholar] [CrossRef]
- De Gouvea, A.; Vogel, P. Lepton Flavor and Number Conservation, and Physics Beyond the Standard Model. Prog. Part. Nucl. Phys. 2013, 71, 75–92. [Google Scholar] [CrossRef]
- Davidson, S.; Echenard, B.; Bernstein, R.H.; Heeck, J.; Hitlin, D.G. Charged Lepton Flavor Violation. arXiv 2022, arXiv:2209.00142v1. [Google Scholar]
- Bernstein, R.H.; Cooper, P.S. Charged Lepton Flavor Violation: An Experimenter’s Guide. Phys. Rept. 2013, 532, 27–64. [Google Scholar] [CrossRef]
- Lee, I.H. Lepton Number Violation in Softly Broken Supersymmetry. Phys. Lett. B 1984, 138, 121–127. [Google Scholar] [CrossRef]
- Lee, I.H. Lepton Number Violation in Softly Broken Supersymmetry. 2. Nucl. Phys. B 1984, 246, 120–142. [Google Scholar] [CrossRef]
- Langacker, P. The Physics of Heavy Z′ Gauge Bosons. Rev. Mod. Phys. 2009, 81, 1199–1228. [Google Scholar] [CrossRef]
- Doršner, I.; Fajfer, S.; Greljo, A.; Kamenik, J.F.; Košnik, N. Physics of leptoquarks in precision experiments and at particle colliders. Phys. Rept. 2016, 641, 1–68. [Google Scholar] [CrossRef]
- Gingrich, D.M. Quantum black holes with charge, colour, and spin at the LHC. J. Phys. G 2010, 37, 105008. [Google Scholar] [CrossRef]
- Branco, G.C.; Ferreira, P.M.; Lavoura, L.; Rebelo, M.N.; Sher, M.; Silva, J.P. Theory and phenomenology of two-Higgs-doublet models. Phys. Rep. 2012, 516, 1–102. [Google Scholar] [CrossRef]
- Choudhury, A.; Mondal, A.; Mondal, S. Status of R-parity violating SUSY. Eur. Phys. J. Spec. Top. 2024, 1–22. [Google Scholar] [CrossRef]
- Chemtob, M. Phenomenological constraints on broken R parity symmetry in supersymmetry models. Prog. Part. Nucl. Phys. 2005, 54, 71–191. [Google Scholar] [CrossRef]
- Bartoszek, L. Mu2e Technical Design Report; U.S. Department of Energy Office of Scientific and Technical Information: Oak Ridge, TN, USA, 2014. [Google Scholar] [CrossRef]
- Mu2e Collaboration. Mu2e Run I Sensitivity Projections for the Neutrinoless μ−→e− Conversion Search in Aluminum. Universe 2023, 9, 54. [Google Scholar] [CrossRef]
- Abramishvili, R.; Adamov, G.; Akhmetshin, R.R.; Allin, A.; Angélique, J.C.; Anishchik, V.; Aoki, M.; Aznabayev, D.; Bagaturia, I.; Ban, G.; et al. COMET Phase-I Technical Design Report. PTEP Prog. Theor. Exp. Phys. 2020, 2020, 033C01. [Google Scholar] [CrossRef]
- Renga, F. [MEG-II Collaboration]. The search for lepton flavour violation with the MEG II experiment. PoS 2022, ICHEP2022, 708. [Google Scholar] [CrossRef]
- Baldini, A.M.; Baranov, V.; Biasotti, M.; Boca, G.; Cattaneo, P.W.; Cavoto, G.; Cei, F.; Chiappini, M.; Chiarello, G.; Corvaglia, A.; et al. The Search for μ+ → e+γ with 10–14 Sensitivity: The Upgrade of the MEG Experiment. Symmetry 2021, 13, 1591. [Google Scholar] [CrossRef]
- Arndt, K.; Augustin, H.; Baesso, P.; Berger, N.; Berg, F.; Betancourt, C.; Bortoletto, D.; Bravar, A.; Briggl, K.; vom Bruch, D.; et al. Technical design of the phase I Mu3e experiment. Nucl. Instrum. Methods A 2021, 1014, 165679. [Google Scholar] [CrossRef]
- Dittmeier, S. Searching for cLFV with the Mu3e experiment. PoS 2022, ICHEP2022, 692. [Google Scholar] [CrossRef]
- Love, W.; Savinov, V.; Lopez, A.; Mehrabyan, S.; Mendez, H.; Ramirez, J.; Huang, G.S.; Miller, D.H.; Pavlunin, V.; Sanghi, B.; et al. Search for Lepton Flavor Violation in Upsilon Decays. Phys. Rev. Lett. 2008, 101, 201601. [Google Scholar] [CrossRef]
- Lees, J.P.; Poireau, V.; Tisser, V.; Grauges, E.; Palano, A.; Eigen, G.; Brown, D.N.; Kolomensky, Y.G.; Fritsch, M.; Koch, H.; et al. Search for Lepton Flavor Violation in Υ(3S)→e±μ∓. Phys. Rev. Lett. 2022, 128, 091804. [Google Scholar] [CrossRef]
- Ablikim, M. et al. [BESIII Collaboration] Search for the lepton flavor violating decay J/ψ→eμ. Sci. China Phys. Mech. Astron. 2023, 66, 221011. [Google Scholar] [CrossRef]
- Achasov, M.N.; Beloborodov, K.I.; Bergyugin, A.V.; Bogdanchikov, A.G.; Bukin, A.D.; Bukin, D.A.; Dimova, T.V.; Druzhinin, V.P.; Golubev, V.B.; Koop, I.A.; et al. Search for Lepton Flavor Violation Process e+e−→eμ in the Energy Region s=984-1060 MeV and ϕ→eμ Decay. Phys. Rev. D 2010, 81, 057102. [Google Scholar] [CrossRef]
- Aubert, B.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisser, V.; Tico, J.G.; Grauges, E.; Martinelli, M.; et al. Searches for Lepton Flavor Violation in the Decays tau+- —> e+- gamma and tau+- —> mu+- gamma. Phys. Rev. Lett. 2010, 104, 021802. [Google Scholar] [CrossRef] [PubMed]
- Aad, G.; Abbott, B.; Abdallah, J.; Khalek, S.A.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O.S.; Abramowicz, H.; Abreu, H.; et al. Search for the lepton flavor violating decay Z→eμ in pp collisions at s TeV with the ATLAS detector. Phys. Rev. D 2014, 90, 072010. [Google Scholar] [CrossRef]
- Akers, R. et al. [OPAL Collaboration] A Search for lepton flavor violating Z0 decays. Z. Phys. C 1995, 67, 555–564. [Google Scholar] [CrossRef]
- Abreu, P. [DELPHI Collaboration]. Search for lepton flavor number violating Z0 decays. Z. Phys. C 1997, 73, 243–251. [Google Scholar] [CrossRef]
- Aad, G.; Abbott, B.; Abbott, D.C.; Abud, A.A.; Abeling, K.; Abhayasinghe, D.K.; Abidi, S.H.; AbouZeid, O.S.; Abraham, N.L.; Abramowicz, H.; et al. Searches for lepton-flavour-violating decays of the Higgs boson in s=13 TeV pp collisions with the ATLAS detector. Phys. Lett. B 2020, 800, 135069. [Google Scholar] [CrossRef]
- Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; et al. Search for lepton flavour violating decays of the Higgs boson to μτ and eτ in proton-proton collisions at s= 13 TeV. J. High Energy Phys. 2018, 6, 1–54. [Google Scholar] [CrossRef]
- Franconi, L.; Haug, S.; Anders, J.K.; Fehr, A.; Ereditato, A. Search for the Higgs boson decays H→ee and H→eμ in pp collisions at s=13 TeV with the ATLAS detector. Phys. Lett. B 2020, 801, 135148. [Google Scholar] [CrossRef]
- Group, C.S. CEPC Conceptual Design Report: Volume 1—Accelerator. arXiv 2018, arXiv:1809.00285. [Google Scholar]
- CERN FCC Web Site. Available online: https://fcc.web.cern.ch (accessed on 30 May 2024).
- Barklow, T.; Brau, J.; Fujii, K.; Gao, J.; List, J.; Walker, N.; Yokoya, K. ILC Operating Scenarios. arXiv 2015, arXiv:1506.07830. [Google Scholar]
- Charles, T.K.; Giansiracusa, P.J.; Lucas, T.G.; Rassool, R.P.; Volpi, M.; Balazs, C.; Afanaciev, K.; Makarenko, V.; Patapenka, A.; Zhuk, I.; et al. The Compact Linear Collider (CLIC)—2018 Summary Report; 2/2018. arXiv 2018, arXiv:1812.06018. [Google Scholar] [CrossRef]
- Delahaye, J.P.; Diemoz, M.; Long, K.; Mansoulié, B.; Pastrone, N.; Rivkin, L.; Schulte, D.; Skrinsky, A.; Wulzer, A. Muon Colliders. arXiv 2019, arXiv:1901.06150. [Google Scholar]
- Li, T.; Schmidt, M.A. Sensitivity of future lepton colliders to the search for charged lepton flavor violation. Phys. Rev. D 2019, 99, 055038. [Google Scholar] [CrossRef]
- Li, T.; Schmidt, M.A.; Yao, C.Y.; Yuan, M. Charged lepton flavor violation in light of the muon magnetic moment anomaly and colliders. Eur. Phys. J. C 2021, 81, 811. [Google Scholar] [CrossRef]
- Homiller, S.; Lu, Q.; Reece, M. Complementary signals of lepton flavor violation at a high-energy muon collider. J. High Energy Phys. 2022, 7, 36. [Google Scholar] [CrossRef]
- Bossi, F.; Ciafaloni, P. Lepton Flavor Violation at muon-electron colliders. J. High Energy Phys. 2020, 10, 33. [Google Scholar] [CrossRef]
- Cirigliano, V.; Fuyuto, K.; Lee, C.; Mereghetti, E.; Yan, B. Charged Lepton Flavor Violation at the EIC. JHEP 2021, 3, 256. [Google Scholar] [CrossRef]
- Li, J.; Wang, W.; Cai, X.; Yang, C.; Lu, M.; You, Z.; Qian, S.; Li, Q. A Comparative Study of Z′ mediated Charged Lepton Flavor Violation at future lepton colliders. JHEP 2023, 3, 190. [Google Scholar] [CrossRef]
- Barbier, R.; Bérat, C.; Besançon, M.; Chemtob, M.; Deandrea, A.; Dudas, E.; Fayet, P.; Lavignac, S.; Moreau, G.; Perez, E.; et al. R-parity violating supersymmetry. Phys. Rep. 2005, 420, 1–202. [Google Scholar] [CrossRef]
- Kumar Barman, R.; Belanger, G.; Godbole, R.M. Status of low mass LSP in SUSY. Eur. Phys. J. ST 2020, 229, 3159–3185. [Google Scholar] [CrossRef]
- Barman, R.K.; Bélanger, G.; Bhattacherjee, B.; Godbole, R.M.; Sengupta, R. Is Light Neutralino Thermal Dark Matter in the Phenomenological Minimal Supersymmetric Standard Model Ruled Out? Phys. Rev. Lett. 2023, 131, 011802. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, D.; Patel, K.M.; Tata, X.; Vempati, S.K. Indirect Searches of the Degenerate MSSM. Phys. Rev. D 2017, 95, 075025. [Google Scholar] [CrossRef]
- Aad, G. et al. [ATLAS Collaboration] Search for direct pair production of sleptons and charginos decaying to two leptons and neutralinos with mass splittings near the W-boson mass in s = 13 TeV pp collisions with the ATLAS detector. JHEP 2023, 6, 031. [Google Scholar] [CrossRef]
- Aad, G. et al. [ATLAS Collaboration] Search for new phenomena in final states with photons, jets and missing transverse momentum in pp collisions at s = 13 TeV with the ATLAS detector. J. High Energy Phys. 2023, 7, 21. [Google Scholar] [CrossRef]
- Aad, G. et al. [ATLAS Collaboration] Searches for new phenomena in events with two leptons, jets, and missing transverse momentum in 139 fb−1 of s=13 TeV pp collisions with the ATLAS detector. Eur. Phys. J. C 2023, 83, 515. [Google Scholar] [CrossRef]
- Tumasyan, A. et al. [The CMS Collaboration] Search for chargino-neutralino production in events with Higgs and W bosons using 137 fb−1 of proton-proton collisions at s = 13 TeV. J. High Energy Phys. 2021, 10, 45. [Google Scholar] [CrossRef]
- Tumasyan, A. et al. [The CMS Collaboration] Search for higgsinos decaying to two Higgs bosons and missing transverse momentum in proton-proton collisions at s = 13 TeV. J. High Energy Phys. 2022, 5, 14. [Google Scholar] [CrossRef]
- Tumasyan, A.; Adam, W.; Andrejkovic, J.W.; Bergauer, T.; Chatterjee, S.; Damanakis, K.; Dragicevic, M.; Del Valle, A.E.; Fruehwirth, R.; Jeitler, M.; et al. Search for electroweak production of charginos and neutralinos at s = 13TeV in final states containing hadronic decays of WW, WZ, or WH and missing transverse momentum. Phys. Lett. B 2023, 842, 137460. [Google Scholar] [CrossRef]
- Martin, S.P.; Wells, J.D. Muon Anomalous Magnetic Dipole Moment in Supersymmetric Theories. Phys. Rev. D 2001, 64, 035003. [Google Scholar] [CrossRef]
- Moroi, T. The Muon anomalous magnetic dipole moment in the minimal supersymmetric standard model. Phys. Rev. D 1996, 53, 6565–6575, Erratum in Phys. Rev. D 1997, 56, 4424. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, A.; Chakraborty, S. Probing (g-2)μ at the LHC in the paradigm of R-parity violating MSSM. Phys. Rev. D 2016, 93, 075035. [Google Scholar] [CrossRef]
- Köhler, D. Various Phenomenological Aspects of the R-Parity Violating MSSM. Ph.D. Thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany, 2024. [Google Scholar]
- Calibbi, L.; D’Eramo, F.; Junius, S.; Lopez-Honorez, L.; Mariotti, A. Displaced new physics at colliders and the early universe before its first second. J. High Energy Phys. 2021, 5, 234. [Google Scholar] [CrossRef]
- Hu, Q.Y.; Li, X.Q.; Muramatsu, Y.; Yang, Y.D. R-parity violating solutions to the RD(*) anomaly and their GUT-scale unifications. Phys. Rev. D 2019, 99, 015008. [Google Scholar] [CrossRef]
- Bardhan, D.; Ghosh, D.; Sachdeva, D. RK(⁎) from RPV-SUSY s-neutrinos. Nucl. Phys. B 2023, 986, 116059. [Google Scholar] [CrossRef]
- Zheng, M.D.; Chen, F.Z.; Zhang, H.H. Explaining anomalies of B-physics, muon g-2 and W mass in R-parity violating MSSM with seesaw mechanism. Eur. Phys. J. C 2022, 82, 895. [Google Scholar] [CrossRef]
- Zheng, M.D.; Chen, F.Z.; Zhang, H.H. The Wℓν-vertex corrections to W-boson mass in the R-parity violating MSSM. AAPPS Bull. 2023, 33, 16. [Google Scholar] [CrossRef]
- Zheng, M.D.; Zhang, H.H. Studying the b→sℓ+ℓ− anomalies and (g-2)μ in R-parity violating MSSM framework with the inverse seesaw mechanism. Phys. Rev. D 2021, 104, 115023. [Google Scholar] [CrossRef]
- Hu, Q.Y.; Yang, Y.D.; Zheng, M.D. Revisiting the B-physics anomalies in R-parity violating MSSM. Eur. Phys. J. C 2020, 80, 365. [Google Scholar] [CrossRef]
- Karmakar, S. Searches for RPV SUSY in ATLAS, CMS and LHCb. Proc. Sci. 2023, LHCP2022, 73. [Google Scholar] [CrossRef]
- Aad, G. et al. [ATLAS Collaboration] A search for an unexpected asymmetry in the production of e+μ− and e−μ+ pairs in proton-proton collisions recorded by the ATLAS detector at s=13TeV. Phys. Lett. B 2022, 830, 137106. [Google Scholar] [CrossRef]
- Dercks, D.; Dreiner, H.; Krauss, M.E.; Opferkuch, T.; Reinert, A. R-Parity Violation at the LHC. Eur. Phys. J. C 2017, 77, 856. [Google Scholar] [CrossRef]
- Yamanaka, M. Search for R-parity violation from J-PARC and LHC. JPS Conf. Proc. 2015, 8, 025001. [Google Scholar] [CrossRef]
- Aaboud, M.; Aad, G.; Abbott, B.; Abeloos, B.; Abhayasinghe, D.K.; Abidi, S.H.; AbouZeid, O.S.; Abraham, N.L.; Abramowicz, H.; Abreu, H.; et al. Search for lepton-flavor violation in different-flavor, high-mass final states in pp collisions at s=13 TeV with the ATLAS detector. Phys. Rev. D 2018, 98, 092008. [Google Scholar] [CrossRef]
- Sato, J.; Yamanaka, M. A way to crosscheck μ-e conversion in the case of no signals of μ→eγ and μ→3e. Phys. Rev. D 2015, 91, 055018. [Google Scholar] [CrossRef]
- Dreiner, H.K.; Kramer, M.; O’Leary, B. Bounds on R-parity violating supersymmetric couplings from leptonic and semi-leptonic meson decays. Phys. Rev. D 2007, 75, 114016. [Google Scholar] [CrossRef]
- Choudhury, D.; Roy, P. New constraints on lepton nonconserving R-parity violating couplings. Phys. Lett. B 1996, 378, 153–158. [Google Scholar] [CrossRef]
- Huitu, K.; Maalampi, J.; Raidal, M.; Santamaria, A. New constraints on R-parity violation from mu e conversion in nuclei. Phys. Lett. B 1998, 430, 355–362. [Google Scholar] [CrossRef]
- Kim, J.E.; Ko, P.; Lee, D.G. More on R-parity and lepton family number violating couplings from muon(ium) conversion, and tau and pi0 decays. Phys. Rev. D 1997, 56, 100–106. [Google Scholar] [CrossRef]
- Dreiner, H.K.; Polesello, G.; Thormeier, M. Bounds on broken R parity from leptonic meson decays. Phys. Rev. D 2002, 65, 115006. [Google Scholar] [CrossRef]
- Littenberg, L.S.; Shrock, R. Implications of improved upper bounds on |Delta L| = 2 processes. Phys. Lett. B 2000, 491, 285–290. [Google Scholar] [CrossRef]
- Degrande, C.; Duhr, C.; Fuks, B.; Grellscheid, D.; Mattelaer, O.; Reiter, T. UFO—The Universal FeynRules Output. Comput. Phys. Commun. 2012, 183, 1201–1214. [Google Scholar] [CrossRef]
- Fuks, B. Beyond the Minimal Supersymmetric Standard Model: From theory to phenomenology. Int. J. Mod. Phys. A 2012, 27, 1230007. [Google Scholar] [CrossRef]
- Alwall, J.; Herquet, M.; Maltoni, F.; Mattelaer, O.; Stelzer, T. MadGraph 5: Going Beyond. J. High Energy Phys. 2011, 6, 128. [Google Scholar] [CrossRef]
- Alwall, J.; Frederix, R.; Frixione, S.; Hirschi, V.; Maltoni, F.; Mattelaer, O.; Shao, H.S.; Stelzer, T.; Torrielli, P.; Zaro, M. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. J. High Energy Phys. 2014, 7, 79. [Google Scholar] [CrossRef]
- Sjöstrand, T.; Ask, S.; Christiansen, J.R.; Corke, R.; Desai, N.; Ilten, P.; Mrenna, S.; Prestel, S.; Rasmussen, C.O.; Skands, P.Z. An introduction to PYTHIA 8.2. Comput. Phys. Commun. 2015, 191, 159–177. [Google Scholar] [CrossRef]
- Frixione, S.; Mattelaer, O.; Zaro, M.; Zhao, X. Lepton collisions in MadGraph5_aMC@NLO. arXiv 2021, arXiv:2108.10261. [Google Scholar]
- De Favereau, J.; Delaere, C.; Demin, P.; Giammanco, A.; Lemaître, V.; Mertens, A.; Selvaggi, M. DELPHES 3, A modular framework for fast simulation of a generic collider experiment. J. High Energy Phys. 2014, 2, 57. [Google Scholar] [CrossRef]
- Wald, A. Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans. Am. Math. Soc. 1943, 54, 426–482. [Google Scholar] [CrossRef]
- Cowan, G.; Cranmer, K.; Gross, E.; Vitells, O. Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C 2011, 71, 1554, Erratum in Eur. Phys. J. C 2013, 73, 2501. [Google Scholar] [CrossRef]
- Bellgardt, U.; Otter, G.; Eichler, R.; Felawka, L.; Niebuhr, C.; Walter, H.K.; Bertl, W.; Lordong, N.; Martino, J.; Egli, S. Search for the Decay μ+→e+e+e−. Nucl. Phys. B 1988, 299, 1–6. [Google Scholar] [CrossRef]
- Hayasaka, K.; Inami, K.; Miyazaki, Y.; Arinstein, K.; Aulchenko, V.; Aushev, T.; Bakich, A.M.; Bay, A.; Belous, K.; Bhardwaj, V.; et al. Search for Lepton Flavor Violating Tau Decays into Three Leptons with 719 Million Produced Tau+Tau- Pairs. Phys. Lett. B 2010, 687, 139–143. [Google Scholar] [CrossRef]
Signal Process | Background Processes |
---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, X.; Li, J.; Ding, R.; Lu, M.; You, Z.; Li, Q. Search for R-Parity-Violation-Induced Charged Lepton Flavor Violation at Future Lepton Colliders. Universe 2024, 10, 243. https://doi.org/10.3390/universe10060243
Cai X, Li J, Ding R, Lu M, You Z, Li Q. Search for R-Parity-Violation-Induced Charged Lepton Flavor Violation at Future Lepton Colliders. Universe. 2024; 10(6):243. https://doi.org/10.3390/universe10060243
Chicago/Turabian StyleCai, Xunye, Jingshu Li, Ran Ding, Meng Lu, Zhengyun You, and Qiang Li. 2024. "Search for R-Parity-Violation-Induced Charged Lepton Flavor Violation at Future Lepton Colliders" Universe 10, no. 6: 243. https://doi.org/10.3390/universe10060243
APA StyleCai, X., Li, J., Ding, R., Lu, M., You, Z., & Li, Q. (2024). Search for R-Parity-Violation-Induced Charged Lepton Flavor Violation at Future Lepton Colliders. Universe, 10(6), 243. https://doi.org/10.3390/universe10060243