Next Article in Journal
The Hearth of the World: The Sun before Astrophysics
Previous Article in Journal
The Correlation Luminosity-Velocity Dispersion of Galaxies and Active Galactic Nuclei
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Communication

The Pulsar Timing Array Signal from Infrared Regions of Scalar-Induced Gravitational Waves

School of Mathematics and Physics, Hubei Polytechnic University, Huangshi 435003, China
Universe 2024, 10(6), 255; https://doi.org/10.3390/universe10060255
Submission received: 22 April 2024 / Revised: 1 June 2024 / Accepted: 5 June 2024 / Published: 7 June 2024
(This article belongs to the Section Cosmology)

Abstract

:
The common-spectrum process, characterized by the Hellings–Downs angular correlation and observed by pulsar timing array collaborations, such as NANOGrav, PPTA, EPTA, and CPTA, can be explained by the scalar-induced gravitational waves (SIGWs). The energy density of SIGWs exhibits universal behavior in the infrared regions. Utilizing a broken power law parameterization for the primordial curvature power spectrum, we clarify the PTA signal through the infrared characteristics of the SIGWs, using Bayesian analysis to provide posterior distributions. Bayesian factors emphasize the statistical preference for the SIGW model over explanations involving supermassive black hole binaries.

1. Introduction

Linear scalar perturbations, seeded by the primordial curvature perturbations generated during inflation, can construct a second-order perturbation source to induce gravitational waves. These scalar-induced gravitational waves (SIGWs), rich in early Universe information, such as the primordial curvature perturbation at small scales [1,2] and the equation of state of the early Universe [3,4], span a broad frequency range and can be detected by pulsar timing arrays (PTAs) or space-based GW detectors, such as the Laser Interferometer Space Antenna (LISA) [5,6], Taiji [7], or TianQin [8,9]. To induce detectable GWs, the amplitude of the primordial curvature power spectrum should be enhanced by about seven orders of magnitude at small scales compared with large-scale observations, which can be achieved with ultra-slow-roll inflation models [10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34]. Alternatively, accompanied by the SIGWs, the large primordial curvature perturbations can give rise to primordial black holes (PBHs) [1,2,16,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69] (for the review, see [3,70]), offering explanations for LIGO-Virgo GW events [71,72], dark matter [73,74,75,76,77,78,79,80,81], and the anomalous orbits of trans-Neptunian objects [82].
Typically, scalar-induced gravitational waves exhibit a peak in the amplitude of the energy density at a specific scale, and this specific scale is denoted as k p . In the infrared regions k k p , SIGWs resulting from primordial curvature perturbations with a narrow peak follow a universal behavior, specifically
Ω GW f / f year 3 log 10 2 ( f p / f ) ,
where the term “universal” means that a broad range of models gives the same log-dependent index of the energy density spectrum of SIGWs in the infrared region [54,83,84,85]. A more effective approach to examining the energy density behavior of SIGWs in the infrared regions involves parameterizing the primordial curvature power spectrum using a broken power law form, P ζ = A ζ ( k / k p 0 ) n 1 for k < k p 0 and P ζ = A ζ ( k / k p 0 ) n 2 for k k p 0 . Within this broken power law framework, a narrow peak in the power spectrum is achieved for sufficiently large absolute values of n 1 and n 2 , while a broad peak results for sufficiently small absolute values of these parameters. For the case of a narrow peak with n 1 > 3 / 2 , the primordial curvature power spectra generate SIGWs with energy densities in the infrared regions as in Equation (1), which is independent of n 1 and consistent with the conclusion displayed in Ref. [54,83,84,85]. For the situation with n 1 = 3 / 2 , the energy density in the infrared regions is Ω GW f / f year 3 log 10 3 ( f p / f ) , exhibiting a slight variation from the situation with a narrower peak, n 1 > 3 / 2 . Finally, for the case with n 1 < 3 / 2 , the broken power law form yields SIGWs with an exact power-law form in the infrared regions.
Recently, a common-spectrum process, which appears compatible with the Hellings–Downs angular correlation has been announced by PTA collaborations, including the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) [86,87], Parkers Pulsar Timing Array (PPTA) [88,89], European Pulsar Timing Array (EPTA), Indian Pulsar Timing Array (InPTA) [90,91], and Chinese Pulsar Timing Array (CPTA) [92]. Assuming that the signals come from an ensemble of binary supermassive black hole binary (SMBHB) inspirals and the characteristic-strain spectrum is proportional to f 2 / 3 , the strain amplitude of the signals is around 2 . 4 0.6 + 0.7 × 10 15 at a reference frequency of 1 yr 1 [86]. While supermassive black hole binaries are considered as an explanation [93,94,95,96,97,98,99], alternative interpretations include cosmic inflation [94,95], first-order phase transitions [100,101,102,103,104,105,106,107], cosmic strings [108,109,110,111,112,113,114,115], domain walls [116,117,118], or scalar-induced gravitational waves [4,119,120,121,122,123,124,125,126,127,128,129,130,131]. For more about the physical explanation of signals in the PTA band, please refer to the references [132,133,134,135,136,137,138,139,140,141,142]. The feature of the energy density of SIGWs in the infrared regions aligns with the PTA signals, prompting our investigation using the NANOGrav 15-year dataset and EPTA Data Release 2 (DR2).
The organization of this paper is as follows. In Section 2, we give a brief review of the energy density of SIGWs in the infrared regions. The constraint on the SIGWs in the infrared regions from the PTAs data is presented in Section 3, and conclusions are given in Section 4.

2. The Infrared Behavior of SIGWs

In this section, we will give a brief review of the calculation of the energy density of SIGWs and their universal behavior in the infrared regions with the power spectrum of the primordial curvature being chosen as a broken power law form. The metric with perturbations in the Newtonian gauge and cosmological background is [143]
d s 2 = a 2 ( η ) ( 1 + 2 Φ ) d η 2 + a 2 ( η ) ( 1 2 Φ ) δ i j + 1 2 h i j d x i d x j ,
where Φ is the Bardeen potential, a is the scale factor of the Universe, η is the conformal time, and h i j is the tensor perturbation. For the second order of tensor perturbations, the linear order scalar perturbations can construct a second-order source to induce the gravitational waves. The power spectrum of these scalar-induced gravitational waves is [1,2,38,40,144,145]
P h k , η = 4 0 d v 1 v 1 + v d u 4 v 2 1 + v 2 u 2 2 4 v u 2 × I RD 2 u , v , x P ζ v k P ζ u k ,
where x = k η , and  P ζ is the power spectrum of primordial curvature perturbations generated during inflation. After the horizon re-entry, and at the later time k η 1 , the integrated kernel I RD 2 can be expressed as [38]
I RD 2 ( v , u , x ) ¯ = 1 2 x 2 3 ( u 2 + v 2 3 ) 4 u 3 v 3 2 × { π 2 ( u 2 + v 2 3 ) 2 Θ v + u 3 4 u v ( u 2 + v 2 3 ) log 3 ( u + v ) 2 3 ( u v ) 2 2 } ,
where a bar on the top denotes the mean value among several periods. The energy density in gravitational waves is
Ω GW η , k = 1 24 k H ( η ) 2 P h k , η ¯ .
To describe the power spectrum of the primordial curvature perturbations, we use a broken power-law parameterization, which takes the following form
P ζ k = A ζ k k p 0 n 1 , k k p 0 , A ζ k k p 0 n 2 , k > k p 0 ,
where k p 0 is the peak scale and A ζ is the amplitude at the peak. To ensure a single peak in the power spectrum at the scale k p 0 , the indices of the parameterization (6) should satisfy the condition n 1 > 0 and n 2 < 0 . The magnitude of n 1 and n 2 determines the nature of the peak: small absolute values result in a broad peak, while large absolute values produce a narrow peak. Consequently, the broken power-law parameterization is versatile and capable of representing both narrow and broad peak power spectra. By substituting the parameterization (6) into the above equations, we can derive the energy density of scalar-induced gravitational waves in the infrared region,
h 2 Ω GW k = A G W f f year 2 n 1 , n 1 < 3 / 2 A G W f f year 3 log 10 3 ( f p / f ) , n 1 = 3 / 2 , A G W f f year 3 log 10 2 ( f p / f ) , n 1 > 3 / 2 ,
where the relation of the wave number k and the frequency f is
f = k 2 π 1.6 nHz k 10 6 Mpc 1 ,
and f year represents the frequency corresponding to one year. For the scenario of a narrow peak with n 1 > 3 / 2 , the behavior of the energy density of SIGWs in the infrared regions is independent of the model n 1 and consistent with the conclusion in Ref. [54,83,84,85]. In contrast, for the broad peak with n 1 < 3 / 2 , the behavior of the energy density of SIGWs in the infrared regions follows an exact power law form.

3. Results

The increasing feature of the energy density of SIGWs in infrared regions aligns with the recent PTA signals. To explain the PTA signal and obtain the constraints on the SIGWs described by Equation (7), we independently perform a Bayesian analysis on the NANOGrav 15-year dataset and the EPTA DR2, respectively. In the Bayesian analysis, we employ the Bilby gravitational wave inference library [146] using nested sampling with the dynesty algorithm [147]. The NANOGrav dataset consists of 14 frequency bins from the NANOGrav 15-year dataset [86,94] and the EPTA dataset consists of 9 bins from the EPTA DR2 [91,95]. To compute the log-likelihood, we first calculate the SIGW energy density at all the frequency bins for each dataset. We then evaluate the log probabilities from independent kernel density estimates of the energy density at each bin. Finally, we obtain the log-likelihood by taking the sum of all these log probability terms for each dataset [148]. Consequently, the likelihood can be expressed as
ln L D ( Θ ) = i = 1 n D ln L i Ω GW f i , Θ ,
where Θ = { A GW , n 1 , f p } is the collection of parameters presented in Equation (7), f i is the frequency of each bin, the label D = { nano , epta } denotes the NANOGrav dataset and EPTA dataset, and { n nano = 14 , n epta = 9 } . The natural logarithm of the Bayes factors is defined as
ln B 10 ( D ) = ln p ( D | M 1 ) p ( D | M 0 ) ,
where p ( D | M ) is the model evidence. In this work, we choose the fiducial model M 0 as the SMBHB model, and the model M 1 is given by Equation (7).
In Table 1, we display the priors of the parameters { A GW , n 1 , f p } . The priors of the parameters are uniform or log-uniform distributions.
The posteriors for the parameters are shown in Figure 1, Figure 2 and Figure 3, where the left panel and right panel use the NANOGrav 15-year dataset and EPTA DR2, respectively. For the priors listed in Table 1, increasing the interval of the bounds results in almost the same posterior, with the Bayes factor changing slowly as the interval becomes larger. Therefore, priors with larger interval bounds do not significantly affect the posterior and the final conclusions. The corresponding maximum posterior values, 1- σ credible interval bounds, and Bayes factors are presented in Table 1, where the labels “nano” and “epta” denote the result by using the NANOGrav dataset and EPTA DR2, respectively. For the broad peak with n 1 < 3 / 2 , the energy density of SIGWs obeys the power law form, and the posterior, displayed in Figure 1, is consistent with the results given in the NANOGrav collaboration [94]. By using the NANOGrav 15-year dataset, the maximum posterior values and 1- σ credible interval bounds of posteriors are n 1 = 0 . 95 0.17 + 0.16 and log 10 A GW = 7 . 17 0.25 + 0.24 ; by using the EPTA DR2; they are n 1 = 1 . 17 0.24 + 0.19 and log 10 A GW = 7 . 06 0.32 + 0.23 . For the intermediate case with n 1 = 3 / 2 , the posterior of the parameters is illustrated in Figure 2. By using the NANOGrav 15-year dataset, the maximum posterior values and 1- σ credible interval bounds of posteriors are log 10 f p / Hz = 6 . 67 0.37 + 0.96 and log 10 A GW = 8 . 02 0.68 + 0.42 , and by using the EPTA DR2, they are log 10 f p / Hz = 4 . 94 1.25 + 1.27 and log 10 A GW = 9 . 27 0.43 + 0.68 . For the narrow peak with n 1 > 3 / 2 , the energy density of SIGWs in infrared regions has a universal log-dependent form, which is independent of the index n 1 . The posterior for the parameters is shown in Figure 3; by using the NANOGrav 15-year dataset, we have log 10 f p / Hz = 7 . 09 0.26 + 0.80 and log 10 A GW = 7 . 20 0.53 + 0.31 ; and by using the EPTA DR2, we have log 10 f p / Hz = 5 . 20 1.31 + 1.49 and log 10 A GW = 8 . 31 0.40 + 0.54 .
Utilizing the maximum posterior values from Table 1, and taking them into Equation (7), we visualize the energy density of the SIGWs in the infrared regions in Figure 4. The left panel and right panel are the fittings of the NANOGrav 15-year dataset and EPTA DR2, respectively. The blue and gray violins represent the observational bins from the NANOGrav 15-year dataset and EPTA DR2 dataset. Meanwhile, the black, green, and red curves correspond to the energy density of SIGWs from broad ( n 1 < 3 / 2 ), intermediate ( n 1 = 3 / 2 ), and narrow peaks ( n 1 > 3 / 2 ), respectively. The three energy density curves are closely packed both for the NANOGrav dataset and EPTA dataset, making it challenging to distinguish between the three models. This result is also supported by the natural logarithm of the Bayes factors listed in Table 1.

4. Discussion and Conclusions

The common-spectrum process, characterized by the Hellings–Downs angular correlation detected by NANOGrav, PPTA, EPTA, and CPTA collaborations can be accounted for by scalar-induced gravitational waves. The energy density of SIGWs arising from the primordial curvature power spectrum with a narrow peak has a universal log-dependent form in the infrared regions. An effective parameterization of the primordial curvature power spectrum is the broken power law form, given by P ζ = A ζ ( k / k p 0 ) n 1 for k < k p 0 and P ζ = A ζ ( k / k p 0 ) n 2 for k k p 0 . For n 1 > 3 / 2 , this form gives a power spectrum with a narrow peak, and the corresponding SIGWs exhibit the universal form h 2 Ω GW = A G W f / f year 3 log 10 2 ( f p / f ) ; for n 1 = 3 / 2 , this intermediate case induces h 2 Ω GW = A G W f / f year 3 log 10 3 ( f p / f ) ; and for n 1 < 3 / 2 , the primordial curvature power spectrum with a broad peak produces SIGWs with an energy density in the infrared regions exhibiting an exact power-law form.
Utilizing Bayesian analysis on the dataset of NANOGrav 15-year data and EPTA DR2 independently, we determine the posterior distribution of parameters in the SIGW energy density in Equation (7). For the scenario where the primordial curvature power spectrum features a broad peak with n 1 < 3 / 2 , the maximum posterior values and 1- σ credible interval bounds of posteriors by using NANOGrav dataset are n 1 = 0 . 95 0.17 + 0.16 and log 10 A GW = 7 . 17 0.25 + 0.24 , and they are n 1 = 1 . 17 0.24 + 0.19 and log 10 A GW = 7 . 06 0.32 + 0.23 by using EPTA DR2. For the intermediate case with n 1 = 3 / 2 , we have log 10 f p / Hz = 6 . 67 0.37 + 0.96 and log 10 A GW = 8 . 02 0.68 + 0.42 by using NANOGrav dataset, and log 10 f p / Hz = 4 . 94 1.25 + 1.27 and log 10 A GW = 9 . 27 0.43 + 0.68 by using EPTA DR2. In the case that the primordial curvature power spectrum has a narrow peak with n 1 > 3 / 2 , we obtain log 10 f p / Hz = 7 . 09 0.26 + 0.80 and log 10 A GW = 7 . 20 0.53 + 0.31 by using the NANOGrav dataset, and log 10 f p / Hz = 5 . 20 1.31 + 1.49 and log 10 A GW = 8 . 31 0.40 + 0.54 by using the EPTA DR2. Compared to interpreting the signal as a stochastic background from supermassive black hole binaries, the natural logarithm of the Bayes factors for these three models are around ln B 4 by using the NANOGrav dataset, and ln B 5 by using the EPTA DR2. Consequently, the PTA signal favors the SIGW explanation over SMBHBs, yet cannot distinguish between broad and narrow peak scenarios. Besides SIGWs, other cosmological processes, such as domain walls and phase transitions, are also favored by the PTA dataset in terms of Bayesian analysis. To confirm the source of this PTA signal, we require information from other frequency bands. Future space-based gravitational wave detectors, such as LISA, TianQin, and Taiji, may have the opportunity to provide that information.

Funding

This research was supported in part by the National Natural Science Foundation of China under Grant No. 12305060 and the Talent-Introduction Program of Hubei Polytechnic University under Grant No. 19xjk25R.

Data Availability Statement

Data are contained within the article.

Conflicts of Interest

The author declares no conflicts of interest.

References

  1. Ananda, K.N.; Clarkson, C.; Wands, D. The Cosmological gravitational wave background from primordial density perturbations. Phys. Rev. D 2007, 75, 123518. [Google Scholar] [CrossRef]
  2. Baumann, D.; Steinhardt, P.J.; Takahashi, K.; Ichiki, K. Gravitational Wave Spectrum Induced by Primordial Scalar Perturbations. Phys. Rev. D 2007, 76, 084019. [Google Scholar] [CrossRef]
  3. Domènech, G. Scalar Induced Gravitational Waves Review. Universe 2021, 7, 398. [Google Scholar] [CrossRef]
  4. Liu, L.; Chen, Z.C.; Huang, Q.G. Probing the equation of state of the early Universe with pulsar timing arrays. J. Cosmol. Astropart. Phys. 2023, 11, 071. [Google Scholar] [CrossRef]
  5. Danzmann, K. LISA: An ESA cornerstone mission for a gravitational wave observatory. Class. Quant. Grav. 1997, 14, 1399–1404. [Google Scholar] [CrossRef]
  6. Amaro-Seoane, P.; Audley, H.; Babak, S.; Baker, J.; Barausse, E.; Bender, P.; Berti, E.; Binetruy, P.; Born, M.; Bortoluzzi, D.; et al. Laser Interferometer Space Antenna. arXiv 2017, arXiv:1702.00786. [Google Scholar]
  7. Hu, W.R.; Wu, Y.L. The Taiji Program in Space for gravitational wave physics and the nature of gravity. Natl. Sci. Rev. 2017, 4, 685–686. [Google Scholar] [CrossRef]
  8. Luo, J.; Chen, L.; Duan, H.; Gong, Y.; Hu, S.; Ji, J.; Liu, Q.; Mei, J.; Milyukov, V.; Sazhin, M.; et al. TianQin: A space-borne gravitational wave detector. Class. Quant. Grav. 2016, 33, 035010. [Google Scholar] [CrossRef]
  9. Gong, Y.; Luo, J.; Wang, B. Concepts and status of Chinese space gravitational wave detection projects. Nat. Astron. 2021, 5, 881–889. [Google Scholar] [CrossRef]
  10. Martin, J.; Motohashi, H.; Suyama, T. Ultra Slow-Roll Inflation and the non-Gaussianity Consistency Relation. Phys. Rev. D 2013, 87, 023514. [Google Scholar] [CrossRef]
  11. Motohashi, H.; Starobinsky, A.A.; Yokoyama, J. Inflation with a constant rate of roll. J. Cosmol. Astropart. Phys. 2015, 09, 018. [Google Scholar] [CrossRef]
  12. Yi, Z.; Gong, Y. On the constant-roll inflation. J. Cosmol. Astropart. Phys. 2018, 03, 052. [Google Scholar] [CrossRef]
  13. Germani, C.; Prokopec, T. On primordial black holes from an inflection point. Phys. Dark Univ. 2017, 18, 6–10. [Google Scholar] [CrossRef]
  14. Motohashi, H.; Hu, W. Primordial Black Holes and Slow-Roll Violation. Phys. Rev. D 2017, 96, 063503. [Google Scholar] [CrossRef]
  15. Ezquiaga, J.M.; Garcia-Bellido, J.; Ruiz Morales, E. Primordial Black Hole production in Critical Higgs Inflation. Phys. Lett. B 2018, 776, 345–349. [Google Scholar] [CrossRef]
  16. Di, H.; Gong, Y. Primordial black holes and second order gravitational waves from ultra-slow-roll inflation. J. Cosmol. Astropart. Phys. 2018, 07, 007. [Google Scholar] [CrossRef]
  17. Gao, Q.; Gong, Y.; Yi, Z. On the constant-roll inflation with large and small ηH. Universe 2019, 5, 215. [Google Scholar] [CrossRef]
  18. Lin, J.; Gao, Q.; Gong, Y.; Lu, Y.; Zhang, C.; Zhang, F. Primordial black holes and secondary gravitational waves from k and G inflation. Phys. Rev. D 2020, 101, 103515. [Google Scholar] [CrossRef]
  19. Lin, J.; Gao, S.; Gong, Y.; Lu, Y.; Wang, Z.; Zhang, F. Primordial black holes and scalar induced gravitational waves from Higgs inflation with noncanonical kinetic term. Phys. Rev. D 2023, 107, 043517. [Google Scholar] [CrossRef]
  20. Gao, Q.; Gong, Y.; Yi, Z. Primordial black holes and secondary gravitational waves from natural inflation. Nucl. Phys. B 2021, 969, 115480. [Google Scholar] [CrossRef]
  21. Gao, Q. Primordial black holes and secondary gravitational waves from chaotic inflation. Sci. China Phys. Mech. Astron. 2021, 64, 280411. [Google Scholar] [CrossRef]
  22. Yi, Z.; Gong, Y.; Wang, B.; Zhu, Z.h. Primordial black holes and secondary gravitational waves from the Higgs field. Phys. Rev. D 2021, 103, 063535. [Google Scholar] [CrossRef]
  23. Yi, Z.; Gao, Q.; Gong, Y.; Zhu, Z.h. Primordial black holes and scalar-induced secondary gravitational waves from inflationary models with a noncanonical kinetic term. Phys. Rev. D 2021, 103, 063534. [Google Scholar] [CrossRef]
  24. Yi, Z.; Zhu, Z.H. NANOGrav signal and LIGO-Virgo primordial black holes from the Higgs field. J. Cosmol. Astropart. Phys. 2022, 05, 046. [Google Scholar] [CrossRef]
  25. Yi, Z. Primordial black holes and scalar-induced gravitational waves from the generalized Brans-Dicke theory. J. Cosmol. Astropart. Phys. 2023, 03, 048. [Google Scholar] [CrossRef]
  26. Zhang, F.; Gong, Y.; Lin, J.; Lu, Y.; Yi, Z. Primordial non-Gaussianity from G-inflation. J. Cosmol. Astropart. Phys. 2021, 04, 045. [Google Scholar] [CrossRef]
  27. Pi, S.; Zhang, Y.l.; Huang, Q.G.; Sasaki, M. Scalaron from R2-gravity as a heavy field. J. Cosmol. Astropart. Phys. 2018, 05, 042. [Google Scholar] [CrossRef]
  28. Kamenshchik, A.Y.; Tronconi, A.; Vardanyan, T.; Venturi, G. Non-Canonical Inflation and Primordial Black Holes Production. Phys. Lett. B 2019, 791, 201–205. [Google Scholar] [CrossRef]
  29. Fu, C.; Wu, P.; Yu, H. Primordial Black Holes from Inflation with Nonminimal Derivative Coupling. Phys. Rev. D 2019, 100, 063532. [Google Scholar] [CrossRef]
  30. Fu, C.; Wu, P.; Yu, H. Scalar induced gravitational waves in inflation with gravitationally enhanced friction. Phys. Rev. D 2020, 101, 023529. [Google Scholar] [CrossRef]
  31. Zhang, F. Primordial black holes and scalar induced gravitational waves from the E model with a Gauss-Bonnet term. Phys. Rev. D 2022, 105, 063539. [Google Scholar] [CrossRef]
  32. Cai, R.G.; Chen, C.; Fu, C. Primordial black holes and stochastic gravitational wave background from inflation with a noncanonical spectator field. Phys. Rev. D 2021, 104, 083537. [Google Scholar] [CrossRef]
  33. Chen, P.; Koh, S.; Tumurtushaa, G. Primordial black holes and induced gravitational waves from inflation in the Horndeski theory of gravity. arXiv 2021, arXiv:2107.08638. [Google Scholar]
  34. Karam, A.; Koivunen, N.; Tomberg, E.; Vaskonen, V.; Veermäe, H. Anatomy of single-field inflationary models for primordial black holes. J. Cosmol. Astropart. Phys. 2023, 03, 013. [Google Scholar] [CrossRef]
  35. Hawking, S. Gravitationally collapsed objects of very low mass. Mon. Not. Roy. Astron. Soc. 1971, 152, 75. [Google Scholar] [CrossRef]
  36. Carr, B.J.; Hawking, S.W. Black holes in the early Universe. Mon. Not. Roy. Astron. Soc. 1974, 168, 399–415. [Google Scholar] [CrossRef]
  37. Saito, R.; Yokoyama, J. Gravitational wave background as a probe of the primordial black hole abundance. Phys. Rev. Lett. 2009, 102, 161101, Erratum in Phys. Rev. Lett. 2011, 107, 069901. [Google Scholar] [CrossRef] [PubMed]
  38. Kohri, K.; Terada, T. Semianalytic calculation of gravitational wave spectrum nonlinearly induced from primordial curvature perturbations. Phys. Rev. D 2018, 97, 123532. [Google Scholar] [CrossRef]
  39. Cheng, S.L.; Lee, W.; Ng, K.W. Primordial black holes and associated gravitational waves in axion monodromy inflation. J. Cosmol. Astropart. Phys. 2018, 07, 001. [Google Scholar] [CrossRef]
  40. Lu, Y.; Gong, Y.; Yi, Z.; Zhang, F. Constraints on primordial curvature perturbations from primordial black hole dark matter and secondary gravitational waves. J. Cosmol. Astropart. Phys. 2019, 12, 031. [Google Scholar] [CrossRef]
  41. Cai, R.G.; Pi, S.; Wang, S.J.; Yang, X.Y. Resonant multiple peaks in the induced gravitational waves. J. Cosmol. Astropart. Phys. 2019, 05, 013. [Google Scholar] [CrossRef]
  42. Cai, R.g.; Pi, S.; Sasaki, M. Gravitational Waves Induced by non-Gaussian Scalar Perturbations. Phys. Rev. Lett. 2019, 122, 201101. [Google Scholar] [CrossRef] [PubMed]
  43. Cai, R.G.; Pi, S.; Wang, S.J.; Yang, X.Y. Pulsar Timing Array Constraints on the Induced Gravitational Waves. J. Cosmol. Astropart. Phys. 2019, 10, 059. [Google Scholar] [CrossRef]
  44. Cai, R.G.; Guo, Z.K.; Liu, J.; Liu, L.; Yang, X.Y. Primordial black holes and gravitational waves from parametric amplification of curvature perturbations. J. Cosmol. Astropart. Phys. 2020, 06, 013. [Google Scholar] [CrossRef]
  45. Wu, Y. Merger history of primordial black-hole binaries. Phys. Rev. D 2020, 101, 083008. [Google Scholar] [CrossRef]
  46. Domènech, G.; Pi, S.; Sasaki, M. Induced gravitational waves as a probe of thermal history of the universe. J. Cosmol. Astropart. Phys. 2020, 08, 017. [Google Scholar] [CrossRef]
  47. Liu, L.; Guo, Z.K.; Cai, R.G. Effects of the surrounding primordial black holes on the merger rate of primordial black hole binaries. Phys. Rev. D 2019, 99, 063523. [Google Scholar] [CrossRef]
  48. Liu, L.; Guo, Z.K.; Cai, R.G. Effects of the merger history on the merger rate density of primordial black hole binaries. Eur. Phys. J. C 2019, 79, 717. [Google Scholar] [CrossRef]
  49. Liu, L.; Guo, Z.K.; Cai, R.G.; Kim, S.P. Merger rate distribution of primordial black hole binaries with electric charges. Phys. Rev. D 2020, 102, 043508. [Google Scholar] [CrossRef]
  50. Liu, L.; Yang, X.Y.; Guo, Z.K.; Cai, R.G. Testing primordial black hole and measuring the Hubble constant with multiband gravitational-wave observations. J. Cosmol. Astropart. Phys. 2023, 01, 006. [Google Scholar] [CrossRef]
  51. Liu, L.; You, Z.Q.; Wu, Y.; Chen, Z.C. Constraining the merger history of primordial-black-hole binaries from GWTC-3. Phys. Rev. D 2023, 107, 063035. [Google Scholar] [CrossRef]
  52. Chen, Z.C.; Yuan, C.; Huang, Q.G. Pulsar Timing Array Constraints on Primordial Black Holes with NANOGrav 11-Year Dataset. Phys. Rev. Lett. 2020, 124, 251101. [Google Scholar] [CrossRef] [PubMed]
  53. Yuan, C.; Chen, Z.C.; Huang, Q.G. Scalar induced gravitational waves in different gauges. Phys. Rev. D 2020, 101, 063018. [Google Scholar] [CrossRef]
  54. Yuan, C.; Chen, Z.C.; Huang, Q.G. Log-dependent slope of scalar induced gravitational waves in the infrared regions. Phys. Rev. D 2020, 101, 043019. [Google Scholar] [CrossRef]
  55. Yuan, C.; Chen, Z.C.; Huang, Q.G. Probing primordial–black-hole dark matter with scalar induced gravitational waves. Phys. Rev. D 2019, 100, 081301. [Google Scholar] [CrossRef]
  56. Carr, B.; Kohri, K.; Sendouda, Y.; Yokoyama, J. Constraints on primordial black holes. Rept. Prog. Phys. 2021, 84, 116902. [Google Scholar] [CrossRef] [PubMed]
  57. Liu, L.; Christiansen, O.; Guo, Z.K.; Cai, R.G.; Kim, S.P. Gravitational and electromagnetic radiation from binary black holes with electric and magnetic charges: Circular orbits on a cone. Phys. Rev. D 2020, 102, 103520. [Google Scholar] [CrossRef]
  58. Liu, L.; Christiansen, O.; Ruan, W.H.; Guo, Z.K.; Cai, R.G.; Kim, S.P. Gravitational and electromagnetic radiation from binary black holes with electric and magnetic charges: Elliptical orbits on a cone. Eur. Phys. J. C 2021, 81, 1048. [Google Scholar] [CrossRef]
  59. Yi, Z.; Fei, Q. Constraints on primordial curvature spectrum from primordial black holes and scalar-induced gravitational waves. Eur. Phys. J. C 2023, 83, 82. [Google Scholar] [CrossRef]
  60. Liu, L.; Kim, S.P. Gravitational and electromagnetic radiations from binary black holes with electric and magnetic charges. In Proceedings of the 17th Italian-Korean Symposium on Relativistic Astrophysics, Gunsan-si, Republic of Korea, 2–6 August 2021. [Google Scholar]
  61. Chen, Z.C.; Huang, Q.G. Merger Rate Distribution of Primordial-Black-Hole Binaries. Astrophys. J. 2018, 864, 61. [Google Scholar] [CrossRef]
  62. Chen, Z.C.; Huang, F.; Huang, Q.G. Stochastic Gravitational-wave Background from Binary Black Holes and Binary Neutron Stars and Implications for LISA. Astrophys. J. 2019, 871, 97. [Google Scholar] [CrossRef]
  63. Chen, Z.C.; Huang, Q.G. Distinguishing Primordial Black Holes from Astrophysical Black Holes by Einstein Telescope and Cosmic Explorer. J. Cosmol. Astropart. Phys. 2020, 08, 039. [Google Scholar] [CrossRef]
  64. Chen, Z.C.; Yuan, C.; Huang, Q.G. Confronting the primordial black hole scenario with the gravitational-wave events detected by LIGO-Virgo. Phys. Lett. B 2022, 829, 137040. [Google Scholar] [CrossRef]
  65. Chen, Z.C.; Du, S.S.; Huang, Q.G.; You, Z.Q. Constraints on primordial-black-hole population and cosmic expansion history from GWTC-3. J. Cosmol. Astropart. Phys. 2023, 03, 024. [Google Scholar] [CrossRef]
  66. Liu, L.; Kim, S.P. Merger rate of charged black holes from the two-body dynamical capture. J. Cosmol. Astropart. Phys. 2022, 03, 059. [Google Scholar] [CrossRef]
  67. Zheng, L.M.; Li, Z.; Chen, Z.C.; Zhou, H.; Zhu, Z.H. Towards a reliable reconstruction of the power spectrum of primordial curvature perturbation on small scales from GWTC-3. Phys. Lett. B 2023, 838, 137720. [Google Scholar] [CrossRef]
  68. Chen, Z.C.; Kim, S.P.; Liu, L. Gravitational and electromagnetic radiation from binary black holes with electric and magnetic charges: Hyperbolic orbits on a cone. Commun. Theor. Phys. 2023, 75, 065401. [Google Scholar] [CrossRef]
  69. Meng, D.S.; Yuan, C.; Huang, Q.G. Primordial black holes generated by the non-minimal spectator field. Sci. China Phys. Mech. Astron. 2023, 66, 280411. [Google Scholar] [CrossRef]
  70. Sasaki, M.; Suyama, T.; Tanaka, T.; Yokoyama, S. Primordial black holes—Perspectives in gravitational wave astronomy. Class. Quant. Grav. 2018, 35, 063001. [Google Scholar] [CrossRef]
  71. Bird, S.; Cholis, I.; Muñoz, J.B.; Ali-Haïmoud, Y.; Kamionkowski, M.; Kovetz, E.D.; Raccanelli, A.; Riess, A.G. Did LIGO detect dark matter? Phys. Rev. Lett. 2016, 116, 201301. [Google Scholar] [CrossRef] [PubMed]
  72. Sasaki, M.; Suyama, T.; Tanaka, T.; Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 2016, 117, 061101, Erratum in Phys. Rev. Lett. 2018, 121, 059901. [Google Scholar] [CrossRef] [PubMed]
  73. Ivanov, P.; Naselsky, P.; Novikov, I. Inflation and primordial black holes as dark matter. Phys. Rev. D 1994, 50, 7173–7178. [Google Scholar] [CrossRef] [PubMed]
  74. Frampton, P.H.; Kawasaki, M.; Takahashi, F.; Yanagida, T.T. Primordial Black Holes as All Dark Matter. J. Cosmol. Astropart. Phys 2010, 04, 023. [Google Scholar] [CrossRef]
  75. Belotsky, K.M.; Dmitriev, A.D.; Esipova, E.A.; Gani, V.A.; Grobov, A.V.; Khlopov, M.Y.; Kirillov, A.A.; Rubin, S.G.; Svadkovsky, I.V. Signatures of primordial black hole dark matter. Mod. Phys. Lett. A 2014, 29, 1440005. [Google Scholar] [CrossRef]
  76. Khlopov, M.Y.; Rubin, S.G.; Sakharov, A.S. Primordial structure of massive black hole clusters. Astropart. Phys. 2005, 23, 265. [Google Scholar] [CrossRef]
  77. Carr, B.; Kuhnel, F.; Sandstad, M. Primordial Black Holes as Dark Matter. Phys. Rev. D 2016, 94, 083504. [Google Scholar] [CrossRef]
  78. Inomata, K.; Kawasaki, M.; Mukaida, K.; Tada, Y.; Yanagida, T.T. Inflationary Primordial Black Holes as All Dark Matter. Phys. Rev. D 2017, 96, 043504. [Google Scholar] [CrossRef]
  79. García-Bellido, J. Massive Primordial Black Holes as Dark Matter and their detection with Gravitational Waves. J. Phys. Conf. Ser. 2017, 840, 012032. [Google Scholar] [CrossRef]
  80. Kovetz, E.D. Probing Primordial-Black-Hole Dark Matter with Gravitational Waves. Phys. Rev. Lett. 2017, 119, 131301. [Google Scholar] [CrossRef] [PubMed]
  81. Carr, B.; Kuhnel, F. Primordial Black Holes as Dark Matter: Recent Developments. Ann. Rev. Nucl. Part. Sci. 2020, 70, 355–394. [Google Scholar] [CrossRef]
  82. Scholtz, J.; Unwin, J. What if Planet 9 is a Primordial Black Hole? Phys. Rev. Lett. 2020, 125, 051103. [Google Scholar] [CrossRef] [PubMed]
  83. Cai, R.G.; Pi, S.; Sasaki, M. Universal infrared scaling of gravitational wave background spectra. Phys. Rev. D 2020, 102, 083528. [Google Scholar] [CrossRef]
  84. Xu, W.T.; Liu, J.; Gao, T.J.; Guo, Z.K. Gravitational waves from double-inflection-point inflation. Phys. Rev. D 2020, 101, 023505. [Google Scholar] [CrossRef]
  85. Pi, S.; Sasaki, M. Gravitational Waves Induced by Scalar Perturbations with a Lognormal Peak. J. Cosmol. Astropart. Phys. 2020, 09, 037. [Google Scholar] [CrossRef]
  86. Agazie, G.; Anumarlapudi, A.; Archibald, A.M.; Arzoumanian, Z.; Baker, P.T.; Bécsy, B.; Blecha, L.; Brazier, A.; Brook, P.R.; Burke-Spolaor, S.; et al. The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background. Astrophys. J. Lett. 2023, 951, L8. [Google Scholar] [CrossRef]
  87. Agazie, G.; Anumarlapudi, A.; Archibald, A.M.; Arzoumanian, Z.; Baker, P.T.; Bécsy, B.; Blecha, L.; Brazier, A.; Brook, P.R.; Burke-Spolaor, S.; et al. The NANOGrav 15 yr Data Set: Observations and Timing of 68 Millisecond Pulsars. Astrophys. J. Lett. 2023, 951, L9. [Google Scholar] [CrossRef]
  88. Zic, A.; Reardon, D.J.; Kapur, A.; Hobbs, G.; Mandow, R.; Curyło, M.; Shannon, R.M.; Askew, J.; Bailes, M.; Bhat, N.D.R.; et al. The Parkes Pulsar Timing Array third data release. Publ. Astron. Soc. Austral. 2023, 40, e049. [Google Scholar] [CrossRef]
  89. Reardon, D.J.; Zic, A.; Shannon, R.M.; Hobbs, G.B.; Bailes, M.; Marco, V.D.; Kapur, A.; Rogers, A.F.; Thrane, E.; Askew, J.; et al. Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array. Astrophys. J. Lett. 2023, 951, L6. [Google Scholar] [CrossRef]
  90. Antoniadis, J.; Babak, S.; Nielsen, A.-S.B.; Bassa, C.G.; Berthereau, A.; Bonetti, M.; Bortolas, E.; Brook, P.R.; Burgay, M.; Caballero, R.N.; et al. The second data release from the European Pulsar Timing Array—I. The dataset and timing analysis. Astron. Astrophys. 2023, 678, A48. [Google Scholar] [CrossRef]
  91. Antoniadis, J.; Arumugam, P.; Arumugam, S.; Babak, S.; Bagchi, M.; Nielsen, A.-S.B.; Bassa, C.G.; Bathula, A.; Berthereau, A.; Bonetti, M.; et al. The second data release from the European Pulsar Timing Array—III. Search for gravitational wave signals. Astron. Astrophys. 2023, 678, A50. [Google Scholar] [CrossRef]
  92. Xu, H.; Chen, S.; Guo, Y.; Jiang, J.; Wang, B.; Xu, J.; Xue, Z.; Caballero, R.N.; Yuan, J.; Xu, Y.; et al. Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I. Res. Astron. Astrophys. 2023, 23, 075024. [Google Scholar] [CrossRef]
  93. Agazie, G.; Anumarlapudi, A.; Archibald, A.M.; Baker, P.T.; Bécsy, B.; Blecha, L.; Bonilla, A.; Brazier, A.; Brook, P.R.; Burke-Spolaor, S.; et al. The NANOGrav 15 yr Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational-wave Background. Astrophys. J. Lett. 2023, 952, L37. [Google Scholar] [CrossRef]
  94. Afzal, A.; Agazie, G.; Anumarlapudi, A.; Archibald, A.M.; Arzoumanian, Z.; Baker, P.T.; Bécsy, B.; Blanco-Pillado, J.J.; Blecha, L.; Boddy, K.K.; et al. The NANOGrav 15 yr Data Set: Search for Signals from New Physics. Astrophys. J. Lett. 2023, 951, L11. [Google Scholar] [CrossRef]
  95. Antoniadis, J.; Arumugam, P.; Arumugam, S.; Auclair, P.; Babak, S.; Bagchi, M.; Nielsen, A.-S.B.; Barausse, E.; Bassa, C.G.; Bathula, A.; et al. The second data release from the European Pulsar Timing Array: IV. Implications for massive black holes, dark matter and the early Universe. arXiv 2023, arXiv:2306.16227. [Google Scholar]
  96. Ellis, J.; Fairbairn, M.; Hütsi, G.; Raidal, J.; Urrutia, J.; Vaskonen, V.; Veermäe, H. Gravitational waves from supermassive black hole binaries in light of the NANOGrav 15-year data. Phys. Rev. D 2024, 109, L021302. [Google Scholar] [CrossRef]
  97. Shen, Z.Q.; Yuan, G.W.; Wang, Y.Y.; Wang, Y.Z. Dark Matter Spike surrounding Supermassive Black Holes Binary and the nanohertz Stochastic Gravitational Wave Background. arXiv 2023, arXiv:2306.17143. [Google Scholar]
  98. Bi, Y.C.; Wu, Y.M.; Chen, Z.C.; Huang, Q.G. Implications for the supermassive black hole binaries from the NANOGrav 15-year data set. Sci. China Phys. Mech. Astron. 2023, 66, 120402. [Google Scholar] [CrossRef]
  99. Barausse, E.; Dey, K.; Crisostomi, M.; Panayada, A.; Marsat, S.; Basak, S. Implications of the pulsar timing array detections for massive black hole mergers in the LISA band. Phys. Rev. D 2023, 108, 103034. [Google Scholar] [CrossRef]
  100. Addazi, A.; Cai, Y.F.; Marciano, A.; Visinelli, L. Have pulsar timing array methods detected a cosmological phase transition? Phys. Rev. D 2024, 109, 015028. [Google Scholar] [CrossRef]
  101. Athron, P.; Fowlie, A.; Lu, C.T.; Morris, L.; Wu, L.; Wu, Y.; Xu, Z. Can supercooled phase transitions explain the gravitational wave background observed by pulsar timing arrays? arXiv 2023, arXiv:2306.17239. [Google Scholar] [CrossRef]
  102. Zu, L.; Zhang, C.; Li, Y.Y.; Gu, Y.; Tsai, Y.L.S.; Fan, Y.Z. Mirror QCD phase transition as the origin of the nanohertz Stochastic Gravitational-Wave Background. Sci. Bull. 2024, 69, 741–746. [Google Scholar] [CrossRef] [PubMed]
  103. Jiang, S.; Yang, A.; Ma, J.; Huang, F.P. Implication of nano-Hertz stochastic gravitational wave on dynamical dark matter through a dark first-order phase transition. Class. Quant. Grav. 2024, 41, 065009. [Google Scholar] [CrossRef]
  104. Xiao, Y.; Yang, J.M.; Zhang, Y. Implications of nano-Hertz gravitational waves on electroweak phase transition in the singlet dark matter model. Sci. Bull. 2023, 68, 3158–3164. [Google Scholar] [CrossRef] [PubMed]
  105. Abe, K.T.; Tada, Y. Translating nano-Hertz gravitational wave background into primordial perturbations taking account of the cosmological QCD phase transition. Phys. Rev. D 2023, 108, L101304. [Google Scholar] [CrossRef]
  106. Gouttenoire, Y. First-Order Phase Transition Interpretation of Pulsar Timing Array Signal Is Consistent with Solar-Mass Black Holes. Phys. Rev. Lett. 2023, 131, 171404. [Google Scholar] [CrossRef] [PubMed]
  107. An, H.; Su, B.; Tai, H.; Wang, L.T.; Yang, C. Phase transition during inflation and the gravitational wave signal at pulsar timing arrays. arXiv 2023, arXiv:2308.00070. [Google Scholar]
  108. Kitajima, N.; Nakayama, K. Nanohertz gravitational waves from cosmic strings and dark photon dark matter. Phys. Lett. B 2023, 846, 138213. [Google Scholar] [CrossRef]
  109. Ellis, J.; Lewicki, M.; Lin, C.; Vaskonen, V. Cosmic superstrings revisited in light of NANOGrav 15-year data. Phys. Rev. D 2023, 108, 103511. [Google Scholar] [CrossRef]
  110. Wang, Z.; Lei, L.; Jiao, H.; Feng, L.; Fan, Y.Z. The nanohertz stochastic gravitational wave background from cosmic string loops and the abundant high redshift massive galaxies. Sci. China Phys. Mech. Astron. 2023, 66, 120403. [Google Scholar] [CrossRef]
  111. Antusch, S.; Hinze, K.; Saad, S.; Steiner, J. Singling out SO(10) GUT models using recent PTA results. Phys. Rev. D 2023, 108, 095053. [Google Scholar] [CrossRef]
  112. Ahmed, W.; Chowdhury, T.A.; Nasri, S.; Saad, S. Gravitational waves from metastable cosmic strings in the Pati-Salam model in light of new pulsar timing array data. Phys. Rev. D 2024, 109, 015008. [Google Scholar] [CrossRef]
  113. Ahmed, W.; Rehman, M.U.; Zubair, U. Probing stochastic gravitational wave background from SU(5) × U(1) strings in light of NANOGrav 15-year data. J. Cosmol. Astropart. Phys. 2024, 01, 049. [Google Scholar] [CrossRef]
  114. Basilakos, S.; Nanopoulos, D.V.; Papanikolaou, T.; Saridakis, E.N.; Tzerefos, C. Gravitational wave signatures of no-scale supergravity in NANOGrav and beyond. Phys. Lett. B 2024, 850, 138507. [Google Scholar] [CrossRef]
  115. Chen, Z.C.; Huang, Q.G.; Liu, C.; Liu, L.; Liu, X.J.; Wu, Y.; Wu, Y.M.; Yi, Z.; You, Z.Q. Prospects for Taiji to detect a gravitational-wave background from cosmic strings. J. Cosmol. Astropart. Phys. 2024, 03, 022. [Google Scholar] [CrossRef]
  116. Kitajima, N.; Lee, J.; Murai, K.; Takahashi, F.; Yin, W. Gravitational waves from domain wall collapse, and application to nanohertz signals with QCD-coupled axions. Phys. Lett. B 2024, 851, 138586. [Google Scholar] [CrossRef]
  117. Blasi, S.; Mariotti, A.; Rase, A.; Sevrin, A. Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction. J. High Energy Phys. 2023, 11, 169. [Google Scholar] [CrossRef]
  118. Babichev, E.; Gorbunov, D.; Ramazanov, S.; Samanta, R.; Vikman, A. NANOGrav spectral index γ=3 from melting domain walls. Phys. Rev. D 2023, 108, 123529. [Google Scholar] [CrossRef]
  119. Franciolini, G.; Iovino, A.J.; Vaskonen, V.; Veermae, H. Recent Gravitational Wave Observation by Pulsar Timing Arrays and Primordial Black Holes: The Importance of Non-Gaussianities. Phys. Rev. Lett. 2023, 131, 201401. [Google Scholar] [CrossRef] [PubMed]
  120. Liu, L.; Chen, Z.C.; Huang, Q.G. Implications for the non-Gaussianity of curvature perturbation from pulsar timing arrays. Phys. Rev. D 2024, 109, L061301. [Google Scholar] [CrossRef]
  121. Vagnozzi, S. Inflationary interpretation of the stochastic gravitational wave background signal detected by pulsar timing array experiments. J. High Energy Astrophys. 2023, 39, 81–98. [Google Scholar] [CrossRef]
  122. Cai, Y.F.; He, X.C.; Ma, X.H.; Yan, S.F.; Yuan, G.W. Limits on scalar-induced gravitational waves from the stochastic background by pulsar timing array observations. Sci. Bull. 2023, 68, 2929–2935. [Google Scholar] [CrossRef]
  123. Wang, S.; Zhao, Z.C.; Li, J.P.; Zhu, Q.H. Implications of pulsar timing array data for scalar-induced gravitational waves and primordial black holes: Primordial non-Gaussianity fNL considered. Phys. Rev. Res. 2024, 6, L012060. [Google Scholar] [CrossRef]
  124. Jin, J.H.; Chen, Z.C.; Yi, Z.; You, Z.Q.; Liu, L.; Wu, Y. Confronting sound speed resonance with pulsar timing arrays. J. Cosmol. Astropart. Phys. 2023, 09, 016. [Google Scholar] [CrossRef]
  125. You, Z.Q.; Yi, Z.; Wu, Y. Constraints on primordial curvature power spectrum with pulsar timing arrays. J. Cosmol. Astropart. Phys. 2023, 11, 065. [Google Scholar] [CrossRef]
  126. Yi, Z.; You, Z.Q.; Wu, Y.; Chen, Z.C.; Liu, L. Exploring the NANOGrav Signal and Planet-mass Primordial Black Holes through Higgs Inflation. arXiv 2023, arXiv:2308.14688. [Google Scholar]
  127. Yi, Z.; You, Z.Q.; Wu, Y. Model-independent reconstruction of the primordial curvature power spectrum from PTA data. J. Cosmol. Astropart. Phys. 2024, 01, 066. [Google Scholar] [CrossRef]
  128. Bringmann, T.; Depta, P.F.; Konstandin, T.; Schmidt-Hoberg, K.; Tasillo, C. Does NANOGrav observe a dark sector phase transition? J. Cosmol. Astropart. Phys. 2023, 11, 053. [Google Scholar] [CrossRef]
  129. Zhang, Z.; Cai, C.; Su, Y.H.; Wang, S.; Yu, Z.H.; Zhang, H.H. Nano-Hertz gravitational waves from collapsing domain walls associated with freeze-in dark matter in light of pulsar timing array observations. Phys. Rev. D 2023, 108, 095037. [Google Scholar] [CrossRef]
  130. Yi, Z.; Gao, Q.; Gong, Y.; Wang, Y.; Zhang, F. Scalar induced gravitational waves in light of Pulsar Timing Array data. Sci. China Phys. Mech. Astron. 2023, 66, 120404. [Google Scholar] [CrossRef]
  131. Chen, Z.C.; Li, J.; Liu, L.; Yi, Z. Probing the speed of scalar-induced gravitational waves with pulsar timing arrays. Phys. Rev. D 2024, 109, L101302. [Google Scholar] [CrossRef]
  132. Zhu, X.J.; Cui, W.; Thrane, E. The minimum and maximum gravitational-wave background from supermassive binary black holes. Mon. Not. Roy. Astron. Soc. 2019, 482, 2588–2596. [Google Scholar] [CrossRef]
  133. Li, J.; Chen, Z.C.; Huang, Q.G. Measuring the tilt of primordial gravitational-wave power spectrum from observations. Sci. China Phys. Mech. Astron. 2019, 62, 110421, Erratum in Sci. China Phys. Mech. Astron. 2021, 64, 250451. [Google Scholar] [CrossRef]
  134. Chen, Z.C.; Yuan, C.; Huang, Q.G. Non-tensorial gravitational wave background in NANOGrav 12.5-year data set. Sci. China Phys. Mech. Astron. 2021, 64, 120412. [Google Scholar] [CrossRef]
  135. Wu, Y.M.; Chen, Z.C.; Huang, Q.G. Constraining the Polarization of Gravitational Waves with the Parkes Pulsar Timing Array Second Data Release. Astrophys. J. 2022, 925, 37. [Google Scholar] [CrossRef]
  136. Chen, Z.C.; Wu, Y.M.; Huang, Q.G. Searching for isotropic stochastic gravitational-wave background in the international pulsar timing array second data release. Commun. Theor. Phys. 2022, 74, 105402. [Google Scholar] [CrossRef]
  137. Chen, Z.C.; Wu, Y.M.; Huang, Q.G. Search for the Gravitational-wave Background from Cosmic Strings with the Parkes Pulsar Timing Array Second Data Release. Astrophys. J. 2022, 936, 20. [Google Scholar] [CrossRef]
  138. Wu, Y.M.; Chen, Z.C.; Huang, Q.G.; Zhu, X.; Bhat, N.D.R.; Feng, Y.; Hobbs, G.; Manchester, R.N.; Russell, C.J.; Shannon, R.M. Constraining ultralight vector dark matter with the Parkes Pulsar Timing Array second data release. Phys. Rev. D 2022, 106, L081101. [Google Scholar] [CrossRef]
  139. Falxa, M.; Babak, S.; Baker, P.T.; Bécsy, B.; Chalumeau, A.; Chen, S.; Chen, Z.; Cornish, N.J.; Guillemot, L.; Hazboun, J.S.; et al. Searching for continuous Gravitational Waves in the second data release of the International Pulsar Timing Array. Mon. Not. Roy. Astron. Soc. 2023, 521, 5077–5086. [Google Scholar] [CrossRef]
  140. Wu, Y.M.; Chen, Z.C.; Huang, Q.G. Search for stochastic gravitational-wave background from massive gravity in the NANOGrav 12.5-year dataset. Phys. Rev. D 2023, 107, 042003. [Google Scholar] [CrossRef]
  141. Wu, Y.M.; Chen, Z.C.; Huang, Q.G. Pulsar timing residual induced by ultralight tensor dark matter. J. Cosmol. Astropart. Phys. 2023, 09, 021. [Google Scholar] [CrossRef]
  142. Agazie, G.; Antoniadis, J.; Anumarlapudi, A.; Archibald, A.M.; Arumugam, P.; Arumugam, S.; Arzoumanian, Z.; Askew, J.; Babak, S.; Bagchi, M.; et al. Comparing Recent Pulsar Timing Array Results on the Nanohertz Stochastic Gravitational-wave Background. Astrophys. J. 2024, 966, 105. [Google Scholar] [CrossRef]
  143. Malik, K.A.; Wands, D. Cosmological perturbations. Phys. Rep. 2009, 475, 1–51. [Google Scholar] [CrossRef]
  144. Inomata, K.; Kawasaki, M.; Mukaida, K.; Tada, Y.; Yanagida, T.T. Inflationary primordial black holes for the LIGO gravitational wave events and pulsar timing array experiments. Phys. Rev. D 2017, 95, 123510. [Google Scholar] [CrossRef]
  145. Espinosa, J.R.; Racco, D.; Riotto, A. A Cosmological Signature of the SM Higgs Instability: Gravitational Waves. J. Cosmol. Astropart. Phys. 2018, 09, 012. [Google Scholar] [CrossRef]
  146. Ashton, G.; Huebner, M.; Lasky, P.D.; Talbot, C.; Ackley, K.; Biscoveanu, S.; Chu, Q.; Divarkala, A.; Easter, P.J.; Goncharov, B.; et al. BILBY: A user-friendly Bayesian inference library for gravitational-wave astronomy. Astrophys. J. Suppl. 2019, 241, 27. [Google Scholar] [CrossRef]
  147. Skilling, J. Nested Sampling. AIP Conf. Proc. 2004, 735, 395–405. [Google Scholar] [CrossRef]
  148. Moore, C.J.; Vecchio, A. Ultra-low-frequency gravitational waves from cosmological and astrophysical processes. Nat. Astron. 2021, 5, 1268–1274. [Google Scholar] [CrossRef]
Figure 1. The posterior of the parameters for the broad peak case with n 1 < 3 / 2 , and the blue regions denote 1 σ , 2 σ , and 3 σ confidence regions. The left and right panels use the NANOGrav 15-year dataset and EPTA DR2, respectively. The dashed vertical blue lines denote 0.16 and 0.84 qualities, respectively.
Figure 1. The posterior of the parameters for the broad peak case with n 1 < 3 / 2 , and the blue regions denote 1 σ , 2 σ , and 3 σ confidence regions. The left and right panels use the NANOGrav 15-year dataset and EPTA DR2, respectively. The dashed vertical blue lines denote 0.16 and 0.84 qualities, respectively.
Universe 10 00255 g001
Figure 2. The posterior of the parameters for the intermediate case with n 1 = 3 / 2 , and the blue regions denote 1 σ , 2 σ , and 3 σ confidence regions.
Figure 2. The posterior of the parameters for the intermediate case with n 1 = 3 / 2 , and the blue regions denote 1 σ , 2 σ , and 3 σ confidence regions.
Universe 10 00255 g002
Figure 3. The posterior of the parameters for the narrow peak case with n 1 > 3 / 2 , and the blue regions denote 1 σ , 2 σ , and 3 σ confidence regions.
Figure 3. The posterior of the parameters for the narrow peak case with n 1 > 3 / 2 , and the blue regions denote 1 σ , 2 σ , and 3 σ confidence regions.
Universe 10 00255 g003
Figure 4. The energy density of the SIGWs given by Equation (7). The broad, intermediate, and narrow peaks denote the case with n 1 < 3 / 2 , n 1 = 3 / 2 , and n 1 > 3 / 2 , respectively. The blue violins in the left panel and the gray violins in the right panel are the constraints from the NANOGrav 15-year dataset and EPTA DR2, respectively.
Figure 4. The energy density of the SIGWs given by Equation (7). The broad, intermediate, and narrow peaks denote the case with n 1 < 3 / 2 , n 1 = 3 / 2 , and n 1 > 3 / 2 , respectively. The blue violins in the left panel and the gray violins in the right panel are the constraints from the NANOGrav 15-year dataset and EPTA DR2, respectively.
Universe 10 00255 g004
Table 1. The priors, maximum posterior values, 1- σ credible interval bounds of posteriors, and Bayes factor for the model are described by Equation (7). The labels “nano” and “epta” denote the Bayesian analysis conducted using the NANOGrav 15-year dataset and EPTA DR2, respectively. The fiducial model M 0 is SMBHB model. The symbol U denotes the uniform distribution.
Table 1. The priors, maximum posterior values, 1- σ credible interval bounds of posteriors, and Bayes factor for the model are described by Equation (7). The labels “nano” and “epta” denote the Bayesian analysis conducted using the NANOGrav 15-year dataset and EPTA DR2, respectively. The fiducial model M 0 is SMBHB model. The symbol U denotes the uniform distribution.
ModelParametersPriorPosterior
(Nano)
Posterior
(Epta)
ln B
(Nano)
ln B (Epta)
n 1 < 3 / 2 log 10 A GW U [ 10 , 5 ] 7 . 17 0.25 + 0.24 7 . 06 0.32 + 0.23 4.4 4.8
n 1 U [ 0 , 1.5 ] + 0 . 95 0.17 + 0.16 + 1 . 17 0.24 + 0.19
n 1 = 3 / 2 log 10 A GW U [ 10 , 5 ] 8 . 02 0.68 + 0.42 9 . 27 0.43 + 0.68 4.5 5.3
log 10 ( f p / Hz ) U [ 9 , 3 ] 6 . 67 0.37 + 0.96 4 . 94 1.25 + 1.27
n 1 > 3 / 2 log 10 A GW U [ 10 , 5 ] 7 . 20 0.53 + 0.31 8 . 31 0.40 + 0.54 4.0 5.2
log 10 ( f p / Hz ) U [ 9 , 3 ] 7 . 09 0.26 + 0.80 5 . 20 1.31 + 1.49
SMBHB log 10 A GW U [ 10 , 5 ] 8 . 14 0.16 + 0.13 8 . 21 0.08 + 0.18
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Fei, Q. The Pulsar Timing Array Signal from Infrared Regions of Scalar-Induced Gravitational Waves. Universe 2024, 10, 255. https://doi.org/10.3390/universe10060255

AMA Style

Fei Q. The Pulsar Timing Array Signal from Infrared Regions of Scalar-Induced Gravitational Waves. Universe. 2024; 10(6):255. https://doi.org/10.3390/universe10060255

Chicago/Turabian Style

Fei, Qin. 2024. "The Pulsar Timing Array Signal from Infrared Regions of Scalar-Induced Gravitational Waves" Universe 10, no. 6: 255. https://doi.org/10.3390/universe10060255

APA Style

Fei, Q. (2024). The Pulsar Timing Array Signal from Infrared Regions of Scalar-Induced Gravitational Waves. Universe, 10(6), 255. https://doi.org/10.3390/universe10060255

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop