The Pulsar Timing Array Signal from Infrared Regions of Scalar-Induced Gravitational Waves
Abstract
:1. Introduction
2. The Infrared Behavior of SIGWs
3. Results
4. Discussion and Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ananda, K.N.; Clarkson, C.; Wands, D. The Cosmological gravitational wave background from primordial density perturbations. Phys. Rev. D 2007, 75, 123518. [Google Scholar] [CrossRef]
- Baumann, D.; Steinhardt, P.J.; Takahashi, K.; Ichiki, K. Gravitational Wave Spectrum Induced by Primordial Scalar Perturbations. Phys. Rev. D 2007, 76, 084019. [Google Scholar] [CrossRef]
- Domènech, G. Scalar Induced Gravitational Waves Review. Universe 2021, 7, 398. [Google Scholar] [CrossRef]
- Liu, L.; Chen, Z.C.; Huang, Q.G. Probing the equation of state of the early Universe with pulsar timing arrays. J. Cosmol. Astropart. Phys. 2023, 11, 071. [Google Scholar] [CrossRef]
- Danzmann, K. LISA: An ESA cornerstone mission for a gravitational wave observatory. Class. Quant. Grav. 1997, 14, 1399–1404. [Google Scholar] [CrossRef]
- Amaro-Seoane, P.; Audley, H.; Babak, S.; Baker, J.; Barausse, E.; Bender, P.; Berti, E.; Binetruy, P.; Born, M.; Bortoluzzi, D.; et al. Laser Interferometer Space Antenna. arXiv 2017, arXiv:1702.00786. [Google Scholar]
- Hu, W.R.; Wu, Y.L. The Taiji Program in Space for gravitational wave physics and the nature of gravity. Natl. Sci. Rev. 2017, 4, 685–686. [Google Scholar] [CrossRef]
- Luo, J.; Chen, L.; Duan, H.; Gong, Y.; Hu, S.; Ji, J.; Liu, Q.; Mei, J.; Milyukov, V.; Sazhin, M.; et al. TianQin: A space-borne gravitational wave detector. Class. Quant. Grav. 2016, 33, 035010. [Google Scholar] [CrossRef]
- Gong, Y.; Luo, J.; Wang, B. Concepts and status of Chinese space gravitational wave detection projects. Nat. Astron. 2021, 5, 881–889. [Google Scholar] [CrossRef]
- Martin, J.; Motohashi, H.; Suyama, T. Ultra Slow-Roll Inflation and the non-Gaussianity Consistency Relation. Phys. Rev. D 2013, 87, 023514. [Google Scholar] [CrossRef]
- Motohashi, H.; Starobinsky, A.A.; Yokoyama, J. Inflation with a constant rate of roll. J. Cosmol. Astropart. Phys. 2015, 09, 018. [Google Scholar] [CrossRef]
- Yi, Z.; Gong, Y. On the constant-roll inflation. J. Cosmol. Astropart. Phys. 2018, 03, 052. [Google Scholar] [CrossRef]
- Germani, C.; Prokopec, T. On primordial black holes from an inflection point. Phys. Dark Univ. 2017, 18, 6–10. [Google Scholar] [CrossRef]
- Motohashi, H.; Hu, W. Primordial Black Holes and Slow-Roll Violation. Phys. Rev. D 2017, 96, 063503. [Google Scholar] [CrossRef]
- Ezquiaga, J.M.; Garcia-Bellido, J.; Ruiz Morales, E. Primordial Black Hole production in Critical Higgs Inflation. Phys. Lett. B 2018, 776, 345–349. [Google Scholar] [CrossRef]
- Di, H.; Gong, Y. Primordial black holes and second order gravitational waves from ultra-slow-roll inflation. J. Cosmol. Astropart. Phys. 2018, 07, 007. [Google Scholar] [CrossRef]
- Gao, Q.; Gong, Y.; Yi, Z. On the constant-roll inflation with large and small ηH. Universe 2019, 5, 215. [Google Scholar] [CrossRef]
- Lin, J.; Gao, Q.; Gong, Y.; Lu, Y.; Zhang, C.; Zhang, F. Primordial black holes and secondary gravitational waves from k and G inflation. Phys. Rev. D 2020, 101, 103515. [Google Scholar] [CrossRef]
- Lin, J.; Gao, S.; Gong, Y.; Lu, Y.; Wang, Z.; Zhang, F. Primordial black holes and scalar induced gravitational waves from Higgs inflation with noncanonical kinetic term. Phys. Rev. D 2023, 107, 043517. [Google Scholar] [CrossRef]
- Gao, Q.; Gong, Y.; Yi, Z. Primordial black holes and secondary gravitational waves from natural inflation. Nucl. Phys. B 2021, 969, 115480. [Google Scholar] [CrossRef]
- Gao, Q. Primordial black holes and secondary gravitational waves from chaotic inflation. Sci. China Phys. Mech. Astron. 2021, 64, 280411. [Google Scholar] [CrossRef]
- Yi, Z.; Gong, Y.; Wang, B.; Zhu, Z.h. Primordial black holes and secondary gravitational waves from the Higgs field. Phys. Rev. D 2021, 103, 063535. [Google Scholar] [CrossRef]
- Yi, Z.; Gao, Q.; Gong, Y.; Zhu, Z.h. Primordial black holes and scalar-induced secondary gravitational waves from inflationary models with a noncanonical kinetic term. Phys. Rev. D 2021, 103, 063534. [Google Scholar] [CrossRef]
- Yi, Z.; Zhu, Z.H. NANOGrav signal and LIGO-Virgo primordial black holes from the Higgs field. J. Cosmol. Astropart. Phys. 2022, 05, 046. [Google Scholar] [CrossRef]
- Yi, Z. Primordial black holes and scalar-induced gravitational waves from the generalized Brans-Dicke theory. J. Cosmol. Astropart. Phys. 2023, 03, 048. [Google Scholar] [CrossRef]
- Zhang, F.; Gong, Y.; Lin, J.; Lu, Y.; Yi, Z. Primordial non-Gaussianity from G-inflation. J. Cosmol. Astropart. Phys. 2021, 04, 045. [Google Scholar] [CrossRef]
- Pi, S.; Zhang, Y.l.; Huang, Q.G.; Sasaki, M. Scalaron from R2-gravity as a heavy field. J. Cosmol. Astropart. Phys. 2018, 05, 042. [Google Scholar] [CrossRef]
- Kamenshchik, A.Y.; Tronconi, A.; Vardanyan, T.; Venturi, G. Non-Canonical Inflation and Primordial Black Holes Production. Phys. Lett. B 2019, 791, 201–205. [Google Scholar] [CrossRef]
- Fu, C.; Wu, P.; Yu, H. Primordial Black Holes from Inflation with Nonminimal Derivative Coupling. Phys. Rev. D 2019, 100, 063532. [Google Scholar] [CrossRef]
- Fu, C.; Wu, P.; Yu, H. Scalar induced gravitational waves in inflation with gravitationally enhanced friction. Phys. Rev. D 2020, 101, 023529. [Google Scholar] [CrossRef]
- Zhang, F. Primordial black holes and scalar induced gravitational waves from the E model with a Gauss-Bonnet term. Phys. Rev. D 2022, 105, 063539. [Google Scholar] [CrossRef]
- Cai, R.G.; Chen, C.; Fu, C. Primordial black holes and stochastic gravitational wave background from inflation with a noncanonical spectator field. Phys. Rev. D 2021, 104, 083537. [Google Scholar] [CrossRef]
- Chen, P.; Koh, S.; Tumurtushaa, G. Primordial black holes and induced gravitational waves from inflation in the Horndeski theory of gravity. arXiv 2021, arXiv:2107.08638. [Google Scholar]
- Karam, A.; Koivunen, N.; Tomberg, E.; Vaskonen, V.; Veermäe, H. Anatomy of single-field inflationary models for primordial black holes. J. Cosmol. Astropart. Phys. 2023, 03, 013. [Google Scholar] [CrossRef]
- Hawking, S. Gravitationally collapsed objects of very low mass. Mon. Not. Roy. Astron. Soc. 1971, 152, 75. [Google Scholar] [CrossRef]
- Carr, B.J.; Hawking, S.W. Black holes in the early Universe. Mon. Not. Roy. Astron. Soc. 1974, 168, 399–415. [Google Scholar] [CrossRef]
- Saito, R.; Yokoyama, J. Gravitational wave background as a probe of the primordial black hole abundance. Phys. Rev. Lett. 2009, 102, 161101, Erratum in Phys. Rev. Lett. 2011, 107, 069901. [Google Scholar] [CrossRef] [PubMed]
- Kohri, K.; Terada, T. Semianalytic calculation of gravitational wave spectrum nonlinearly induced from primordial curvature perturbations. Phys. Rev. D 2018, 97, 123532. [Google Scholar] [CrossRef]
- Cheng, S.L.; Lee, W.; Ng, K.W. Primordial black holes and associated gravitational waves in axion monodromy inflation. J. Cosmol. Astropart. Phys. 2018, 07, 001. [Google Scholar] [CrossRef]
- Lu, Y.; Gong, Y.; Yi, Z.; Zhang, F. Constraints on primordial curvature perturbations from primordial black hole dark matter and secondary gravitational waves. J. Cosmol. Astropart. Phys. 2019, 12, 031. [Google Scholar] [CrossRef]
- Cai, R.G.; Pi, S.; Wang, S.J.; Yang, X.Y. Resonant multiple peaks in the induced gravitational waves. J. Cosmol. Astropart. Phys. 2019, 05, 013. [Google Scholar] [CrossRef]
- Cai, R.g.; Pi, S.; Sasaki, M. Gravitational Waves Induced by non-Gaussian Scalar Perturbations. Phys. Rev. Lett. 2019, 122, 201101. [Google Scholar] [CrossRef] [PubMed]
- Cai, R.G.; Pi, S.; Wang, S.J.; Yang, X.Y. Pulsar Timing Array Constraints on the Induced Gravitational Waves. J. Cosmol. Astropart. Phys. 2019, 10, 059. [Google Scholar] [CrossRef]
- Cai, R.G.; Guo, Z.K.; Liu, J.; Liu, L.; Yang, X.Y. Primordial black holes and gravitational waves from parametric amplification of curvature perturbations. J. Cosmol. Astropart. Phys. 2020, 06, 013. [Google Scholar] [CrossRef]
- Wu, Y. Merger history of primordial black-hole binaries. Phys. Rev. D 2020, 101, 083008. [Google Scholar] [CrossRef]
- Domènech, G.; Pi, S.; Sasaki, M. Induced gravitational waves as a probe of thermal history of the universe. J. Cosmol. Astropart. Phys. 2020, 08, 017. [Google Scholar] [CrossRef]
- Liu, L.; Guo, Z.K.; Cai, R.G. Effects of the surrounding primordial black holes on the merger rate of primordial black hole binaries. Phys. Rev. D 2019, 99, 063523. [Google Scholar] [CrossRef]
- Liu, L.; Guo, Z.K.; Cai, R.G. Effects of the merger history on the merger rate density of primordial black hole binaries. Eur. Phys. J. C 2019, 79, 717. [Google Scholar] [CrossRef]
- Liu, L.; Guo, Z.K.; Cai, R.G.; Kim, S.P. Merger rate distribution of primordial black hole binaries with electric charges. Phys. Rev. D 2020, 102, 043508. [Google Scholar] [CrossRef]
- Liu, L.; Yang, X.Y.; Guo, Z.K.; Cai, R.G. Testing primordial black hole and measuring the Hubble constant with multiband gravitational-wave observations. J. Cosmol. Astropart. Phys. 2023, 01, 006. [Google Scholar] [CrossRef]
- Liu, L.; You, Z.Q.; Wu, Y.; Chen, Z.C. Constraining the merger history of primordial-black-hole binaries from GWTC-3. Phys. Rev. D 2023, 107, 063035. [Google Scholar] [CrossRef]
- Chen, Z.C.; Yuan, C.; Huang, Q.G. Pulsar Timing Array Constraints on Primordial Black Holes with NANOGrav 11-Year Dataset. Phys. Rev. Lett. 2020, 124, 251101. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Chen, Z.C.; Huang, Q.G. Scalar induced gravitational waves in different gauges. Phys. Rev. D 2020, 101, 063018. [Google Scholar] [CrossRef]
- Yuan, C.; Chen, Z.C.; Huang, Q.G. Log-dependent slope of scalar induced gravitational waves in the infrared regions. Phys. Rev. D 2020, 101, 043019. [Google Scholar] [CrossRef]
- Yuan, C.; Chen, Z.C.; Huang, Q.G. Probing primordial–black-hole dark matter with scalar induced gravitational waves. Phys. Rev. D 2019, 100, 081301. [Google Scholar] [CrossRef]
- Carr, B.; Kohri, K.; Sendouda, Y.; Yokoyama, J. Constraints on primordial black holes. Rept. Prog. Phys. 2021, 84, 116902. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Christiansen, O.; Guo, Z.K.; Cai, R.G.; Kim, S.P. Gravitational and electromagnetic radiation from binary black holes with electric and magnetic charges: Circular orbits on a cone. Phys. Rev. D 2020, 102, 103520. [Google Scholar] [CrossRef]
- Liu, L.; Christiansen, O.; Ruan, W.H.; Guo, Z.K.; Cai, R.G.; Kim, S.P. Gravitational and electromagnetic radiation from binary black holes with electric and magnetic charges: Elliptical orbits on a cone. Eur. Phys. J. C 2021, 81, 1048. [Google Scholar] [CrossRef]
- Yi, Z.; Fei, Q. Constraints on primordial curvature spectrum from primordial black holes and scalar-induced gravitational waves. Eur. Phys. J. C 2023, 83, 82. [Google Scholar] [CrossRef]
- Liu, L.; Kim, S.P. Gravitational and electromagnetic radiations from binary black holes with electric and magnetic charges. In Proceedings of the 17th Italian-Korean Symposium on Relativistic Astrophysics, Gunsan-si, Republic of Korea, 2–6 August 2021. [Google Scholar]
- Chen, Z.C.; Huang, Q.G. Merger Rate Distribution of Primordial-Black-Hole Binaries. Astrophys. J. 2018, 864, 61. [Google Scholar] [CrossRef]
- Chen, Z.C.; Huang, F.; Huang, Q.G. Stochastic Gravitational-wave Background from Binary Black Holes and Binary Neutron Stars and Implications for LISA. Astrophys. J. 2019, 871, 97. [Google Scholar] [CrossRef]
- Chen, Z.C.; Huang, Q.G. Distinguishing Primordial Black Holes from Astrophysical Black Holes by Einstein Telescope and Cosmic Explorer. J. Cosmol. Astropart. Phys. 2020, 08, 039. [Google Scholar] [CrossRef]
- Chen, Z.C.; Yuan, C.; Huang, Q.G. Confronting the primordial black hole scenario with the gravitational-wave events detected by LIGO-Virgo. Phys. Lett. B 2022, 829, 137040. [Google Scholar] [CrossRef]
- Chen, Z.C.; Du, S.S.; Huang, Q.G.; You, Z.Q. Constraints on primordial-black-hole population and cosmic expansion history from GWTC-3. J. Cosmol. Astropart. Phys. 2023, 03, 024. [Google Scholar] [CrossRef]
- Liu, L.; Kim, S.P. Merger rate of charged black holes from the two-body dynamical capture. J. Cosmol. Astropart. Phys. 2022, 03, 059. [Google Scholar] [CrossRef]
- Zheng, L.M.; Li, Z.; Chen, Z.C.; Zhou, H.; Zhu, Z.H. Towards a reliable reconstruction of the power spectrum of primordial curvature perturbation on small scales from GWTC-3. Phys. Lett. B 2023, 838, 137720. [Google Scholar] [CrossRef]
- Chen, Z.C.; Kim, S.P.; Liu, L. Gravitational and electromagnetic radiation from binary black holes with electric and magnetic charges: Hyperbolic orbits on a cone. Commun. Theor. Phys. 2023, 75, 065401. [Google Scholar] [CrossRef]
- Meng, D.S.; Yuan, C.; Huang, Q.G. Primordial black holes generated by the non-minimal spectator field. Sci. China Phys. Mech. Astron. 2023, 66, 280411. [Google Scholar] [CrossRef]
- Sasaki, M.; Suyama, T.; Tanaka, T.; Yokoyama, S. Primordial black holes—Perspectives in gravitational wave astronomy. Class. Quant. Grav. 2018, 35, 063001. [Google Scholar] [CrossRef]
- Bird, S.; Cholis, I.; Muñoz, J.B.; Ali-Haïmoud, Y.; Kamionkowski, M.; Kovetz, E.D.; Raccanelli, A.; Riess, A.G. Did LIGO detect dark matter? Phys. Rev. Lett. 2016, 116, 201301. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, M.; Suyama, T.; Tanaka, T.; Yokoyama, S. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 2016, 117, 061101, Erratum in Phys. Rev. Lett. 2018, 121, 059901. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, P.; Naselsky, P.; Novikov, I. Inflation and primordial black holes as dark matter. Phys. Rev. D 1994, 50, 7173–7178. [Google Scholar] [CrossRef] [PubMed]
- Frampton, P.H.; Kawasaki, M.; Takahashi, F.; Yanagida, T.T. Primordial Black Holes as All Dark Matter. J. Cosmol. Astropart. Phys 2010, 04, 023. [Google Scholar] [CrossRef]
- Belotsky, K.M.; Dmitriev, A.D.; Esipova, E.A.; Gani, V.A.; Grobov, A.V.; Khlopov, M.Y.; Kirillov, A.A.; Rubin, S.G.; Svadkovsky, I.V. Signatures of primordial black hole dark matter. Mod. Phys. Lett. A 2014, 29, 1440005. [Google Scholar] [CrossRef]
- Khlopov, M.Y.; Rubin, S.G.; Sakharov, A.S. Primordial structure of massive black hole clusters. Astropart. Phys. 2005, 23, 265. [Google Scholar] [CrossRef]
- Carr, B.; Kuhnel, F.; Sandstad, M. Primordial Black Holes as Dark Matter. Phys. Rev. D 2016, 94, 083504. [Google Scholar] [CrossRef]
- Inomata, K.; Kawasaki, M.; Mukaida, K.; Tada, Y.; Yanagida, T.T. Inflationary Primordial Black Holes as All Dark Matter. Phys. Rev. D 2017, 96, 043504. [Google Scholar] [CrossRef]
- García-Bellido, J. Massive Primordial Black Holes as Dark Matter and their detection with Gravitational Waves. J. Phys. Conf. Ser. 2017, 840, 012032. [Google Scholar] [CrossRef]
- Kovetz, E.D. Probing Primordial-Black-Hole Dark Matter with Gravitational Waves. Phys. Rev. Lett. 2017, 119, 131301. [Google Scholar] [CrossRef] [PubMed]
- Carr, B.; Kuhnel, F. Primordial Black Holes as Dark Matter: Recent Developments. Ann. Rev. Nucl. Part. Sci. 2020, 70, 355–394. [Google Scholar] [CrossRef]
- Scholtz, J.; Unwin, J. What if Planet 9 is a Primordial Black Hole? Phys. Rev. Lett. 2020, 125, 051103. [Google Scholar] [CrossRef] [PubMed]
- Cai, R.G.; Pi, S.; Sasaki, M. Universal infrared scaling of gravitational wave background spectra. Phys. Rev. D 2020, 102, 083528. [Google Scholar] [CrossRef]
- Xu, W.T.; Liu, J.; Gao, T.J.; Guo, Z.K. Gravitational waves from double-inflection-point inflation. Phys. Rev. D 2020, 101, 023505. [Google Scholar] [CrossRef]
- Pi, S.; Sasaki, M. Gravitational Waves Induced by Scalar Perturbations with a Lognormal Peak. J. Cosmol. Astropart. Phys. 2020, 09, 037. [Google Scholar] [CrossRef]
- Agazie, G.; Anumarlapudi, A.; Archibald, A.M.; Arzoumanian, Z.; Baker, P.T.; Bécsy, B.; Blecha, L.; Brazier, A.; Brook, P.R.; Burke-Spolaor, S.; et al. The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background. Astrophys. J. Lett. 2023, 951, L8. [Google Scholar] [CrossRef]
- Agazie, G.; Anumarlapudi, A.; Archibald, A.M.; Arzoumanian, Z.; Baker, P.T.; Bécsy, B.; Blecha, L.; Brazier, A.; Brook, P.R.; Burke-Spolaor, S.; et al. The NANOGrav 15 yr Data Set: Observations and Timing of 68 Millisecond Pulsars. Astrophys. J. Lett. 2023, 951, L9. [Google Scholar] [CrossRef]
- Zic, A.; Reardon, D.J.; Kapur, A.; Hobbs, G.; Mandow, R.; Curyło, M.; Shannon, R.M.; Askew, J.; Bailes, M.; Bhat, N.D.R.; et al. The Parkes Pulsar Timing Array third data release. Publ. Astron. Soc. Austral. 2023, 40, e049. [Google Scholar] [CrossRef]
- Reardon, D.J.; Zic, A.; Shannon, R.M.; Hobbs, G.B.; Bailes, M.; Marco, V.D.; Kapur, A.; Rogers, A.F.; Thrane, E.; Askew, J.; et al. Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array. Astrophys. J. Lett. 2023, 951, L6. [Google Scholar] [CrossRef]
- Antoniadis, J.; Babak, S.; Nielsen, A.-S.B.; Bassa, C.G.; Berthereau, A.; Bonetti, M.; Bortolas, E.; Brook, P.R.; Burgay, M.; Caballero, R.N.; et al. The second data release from the European Pulsar Timing Array—I. The dataset and timing analysis. Astron. Astrophys. 2023, 678, A48. [Google Scholar] [CrossRef]
- Antoniadis, J.; Arumugam, P.; Arumugam, S.; Babak, S.; Bagchi, M.; Nielsen, A.-S.B.; Bassa, C.G.; Bathula, A.; Berthereau, A.; Bonetti, M.; et al. The second data release from the European Pulsar Timing Array—III. Search for gravitational wave signals. Astron. Astrophys. 2023, 678, A50. [Google Scholar] [CrossRef]
- Xu, H.; Chen, S.; Guo, Y.; Jiang, J.; Wang, B.; Xu, J.; Xue, Z.; Caballero, R.N.; Yuan, J.; Xu, Y.; et al. Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I. Res. Astron. Astrophys. 2023, 23, 075024. [Google Scholar] [CrossRef]
- Agazie, G.; Anumarlapudi, A.; Archibald, A.M.; Baker, P.T.; Bécsy, B.; Blecha, L.; Bonilla, A.; Brazier, A.; Brook, P.R.; Burke-Spolaor, S.; et al. The NANOGrav 15 yr Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational-wave Background. Astrophys. J. Lett. 2023, 952, L37. [Google Scholar] [CrossRef]
- Afzal, A.; Agazie, G.; Anumarlapudi, A.; Archibald, A.M.; Arzoumanian, Z.; Baker, P.T.; Bécsy, B.; Blanco-Pillado, J.J.; Blecha, L.; Boddy, K.K.; et al. The NANOGrav 15 yr Data Set: Search for Signals from New Physics. Astrophys. J. Lett. 2023, 951, L11. [Google Scholar] [CrossRef]
- Antoniadis, J.; Arumugam, P.; Arumugam, S.; Auclair, P.; Babak, S.; Bagchi, M.; Nielsen, A.-S.B.; Barausse, E.; Bassa, C.G.; Bathula, A.; et al. The second data release from the European Pulsar Timing Array: IV. Implications for massive black holes, dark matter and the early Universe. arXiv 2023, arXiv:2306.16227. [Google Scholar]
- Ellis, J.; Fairbairn, M.; Hütsi, G.; Raidal, J.; Urrutia, J.; Vaskonen, V.; Veermäe, H. Gravitational waves from supermassive black hole binaries in light of the NANOGrav 15-year data. Phys. Rev. D 2024, 109, L021302. [Google Scholar] [CrossRef]
- Shen, Z.Q.; Yuan, G.W.; Wang, Y.Y.; Wang, Y.Z. Dark Matter Spike surrounding Supermassive Black Holes Binary and the nanohertz Stochastic Gravitational Wave Background. arXiv 2023, arXiv:2306.17143. [Google Scholar]
- Bi, Y.C.; Wu, Y.M.; Chen, Z.C.; Huang, Q.G. Implications for the supermassive black hole binaries from the NANOGrav 15-year data set. Sci. China Phys. Mech. Astron. 2023, 66, 120402. [Google Scholar] [CrossRef]
- Barausse, E.; Dey, K.; Crisostomi, M.; Panayada, A.; Marsat, S.; Basak, S. Implications of the pulsar timing array detections for massive black hole mergers in the LISA band. Phys. Rev. D 2023, 108, 103034. [Google Scholar] [CrossRef]
- Addazi, A.; Cai, Y.F.; Marciano, A.; Visinelli, L. Have pulsar timing array methods detected a cosmological phase transition? Phys. Rev. D 2024, 109, 015028. [Google Scholar] [CrossRef]
- Athron, P.; Fowlie, A.; Lu, C.T.; Morris, L.; Wu, L.; Wu, Y.; Xu, Z. Can supercooled phase transitions explain the gravitational wave background observed by pulsar timing arrays? arXiv 2023, arXiv:2306.17239. [Google Scholar] [CrossRef]
- Zu, L.; Zhang, C.; Li, Y.Y.; Gu, Y.; Tsai, Y.L.S.; Fan, Y.Z. Mirror QCD phase transition as the origin of the nanohertz Stochastic Gravitational-Wave Background. Sci. Bull. 2024, 69, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Yang, A.; Ma, J.; Huang, F.P. Implication of nano-Hertz stochastic gravitational wave on dynamical dark matter through a dark first-order phase transition. Class. Quant. Grav. 2024, 41, 065009. [Google Scholar] [CrossRef]
- Xiao, Y.; Yang, J.M.; Zhang, Y. Implications of nano-Hertz gravitational waves on electroweak phase transition in the singlet dark matter model. Sci. Bull. 2023, 68, 3158–3164. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.T.; Tada, Y. Translating nano-Hertz gravitational wave background into primordial perturbations taking account of the cosmological QCD phase transition. Phys. Rev. D 2023, 108, L101304. [Google Scholar] [CrossRef]
- Gouttenoire, Y. First-Order Phase Transition Interpretation of Pulsar Timing Array Signal Is Consistent with Solar-Mass Black Holes. Phys. Rev. Lett. 2023, 131, 171404. [Google Scholar] [CrossRef] [PubMed]
- An, H.; Su, B.; Tai, H.; Wang, L.T.; Yang, C. Phase transition during inflation and the gravitational wave signal at pulsar timing arrays. arXiv 2023, arXiv:2308.00070. [Google Scholar]
- Kitajima, N.; Nakayama, K. Nanohertz gravitational waves from cosmic strings and dark photon dark matter. Phys. Lett. B 2023, 846, 138213. [Google Scholar] [CrossRef]
- Ellis, J.; Lewicki, M.; Lin, C.; Vaskonen, V. Cosmic superstrings revisited in light of NANOGrav 15-year data. Phys. Rev. D 2023, 108, 103511. [Google Scholar] [CrossRef]
- Wang, Z.; Lei, L.; Jiao, H.; Feng, L.; Fan, Y.Z. The nanohertz stochastic gravitational wave background from cosmic string loops and the abundant high redshift massive galaxies. Sci. China Phys. Mech. Astron. 2023, 66, 120403. [Google Scholar] [CrossRef]
- Antusch, S.; Hinze, K.; Saad, S.; Steiner, J. Singling out SO(10) GUT models using recent PTA results. Phys. Rev. D 2023, 108, 095053. [Google Scholar] [CrossRef]
- Ahmed, W.; Chowdhury, T.A.; Nasri, S.; Saad, S. Gravitational waves from metastable cosmic strings in the Pati-Salam model in light of new pulsar timing array data. Phys. Rev. D 2024, 109, 015008. [Google Scholar] [CrossRef]
- Ahmed, W.; Rehman, M.U.; Zubair, U. Probing stochastic gravitational wave background from SU(5) × U(1) strings in light of NANOGrav 15-year data. J. Cosmol. Astropart. Phys. 2024, 01, 049. [Google Scholar] [CrossRef]
- Basilakos, S.; Nanopoulos, D.V.; Papanikolaou, T.; Saridakis, E.N.; Tzerefos, C. Gravitational wave signatures of no-scale supergravity in NANOGrav and beyond. Phys. Lett. B 2024, 850, 138507. [Google Scholar] [CrossRef]
- Chen, Z.C.; Huang, Q.G.; Liu, C.; Liu, L.; Liu, X.J.; Wu, Y.; Wu, Y.M.; Yi, Z.; You, Z.Q. Prospects for Taiji to detect a gravitational-wave background from cosmic strings. J. Cosmol. Astropart. Phys. 2024, 03, 022. [Google Scholar] [CrossRef]
- Kitajima, N.; Lee, J.; Murai, K.; Takahashi, F.; Yin, W. Gravitational waves from domain wall collapse, and application to nanohertz signals with QCD-coupled axions. Phys. Lett. B 2024, 851, 138586. [Google Scholar] [CrossRef]
- Blasi, S.; Mariotti, A.; Rase, A.; Sevrin, A. Axionic domain walls at Pulsar Timing Arrays: QCD bias and particle friction. J. High Energy Phys. 2023, 11, 169. [Google Scholar] [CrossRef]
- Babichev, E.; Gorbunov, D.; Ramazanov, S.; Samanta, R.; Vikman, A. NANOGrav spectral index γ=3 from melting domain walls. Phys. Rev. D 2023, 108, 123529. [Google Scholar] [CrossRef]
- Franciolini, G.; Iovino, A.J.; Vaskonen, V.; Veermae, H. Recent Gravitational Wave Observation by Pulsar Timing Arrays and Primordial Black Holes: The Importance of Non-Gaussianities. Phys. Rev. Lett. 2023, 131, 201401. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chen, Z.C.; Huang, Q.G. Implications for the non-Gaussianity of curvature perturbation from pulsar timing arrays. Phys. Rev. D 2024, 109, L061301. [Google Scholar] [CrossRef]
- Vagnozzi, S. Inflationary interpretation of the stochastic gravitational wave background signal detected by pulsar timing array experiments. J. High Energy Astrophys. 2023, 39, 81–98. [Google Scholar] [CrossRef]
- Cai, Y.F.; He, X.C.; Ma, X.H.; Yan, S.F.; Yuan, G.W. Limits on scalar-induced gravitational waves from the stochastic background by pulsar timing array observations. Sci. Bull. 2023, 68, 2929–2935. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Z.C.; Li, J.P.; Zhu, Q.H. Implications of pulsar timing array data for scalar-induced gravitational waves and primordial black holes: Primordial non-Gaussianity fNL considered. Phys. Rev. Res. 2024, 6, L012060. [Google Scholar] [CrossRef]
- Jin, J.H.; Chen, Z.C.; Yi, Z.; You, Z.Q.; Liu, L.; Wu, Y. Confronting sound speed resonance with pulsar timing arrays. J. Cosmol. Astropart. Phys. 2023, 09, 016. [Google Scholar] [CrossRef]
- You, Z.Q.; Yi, Z.; Wu, Y. Constraints on primordial curvature power spectrum with pulsar timing arrays. J. Cosmol. Astropart. Phys. 2023, 11, 065. [Google Scholar] [CrossRef]
- Yi, Z.; You, Z.Q.; Wu, Y.; Chen, Z.C.; Liu, L. Exploring the NANOGrav Signal and Planet-mass Primordial Black Holes through Higgs Inflation. arXiv 2023, arXiv:2308.14688. [Google Scholar]
- Yi, Z.; You, Z.Q.; Wu, Y. Model-independent reconstruction of the primordial curvature power spectrum from PTA data. J. Cosmol. Astropart. Phys. 2024, 01, 066. [Google Scholar] [CrossRef]
- Bringmann, T.; Depta, P.F.; Konstandin, T.; Schmidt-Hoberg, K.; Tasillo, C. Does NANOGrav observe a dark sector phase transition? J. Cosmol. Astropart. Phys. 2023, 11, 053. [Google Scholar] [CrossRef]
- Zhang, Z.; Cai, C.; Su, Y.H.; Wang, S.; Yu, Z.H.; Zhang, H.H. Nano-Hertz gravitational waves from collapsing domain walls associated with freeze-in dark matter in light of pulsar timing array observations. Phys. Rev. D 2023, 108, 095037. [Google Scholar] [CrossRef]
- Yi, Z.; Gao, Q.; Gong, Y.; Wang, Y.; Zhang, F. Scalar induced gravitational waves in light of Pulsar Timing Array data. Sci. China Phys. Mech. Astron. 2023, 66, 120404. [Google Scholar] [CrossRef]
- Chen, Z.C.; Li, J.; Liu, L.; Yi, Z. Probing the speed of scalar-induced gravitational waves with pulsar timing arrays. Phys. Rev. D 2024, 109, L101302. [Google Scholar] [CrossRef]
- Zhu, X.J.; Cui, W.; Thrane, E. The minimum and maximum gravitational-wave background from supermassive binary black holes. Mon. Not. Roy. Astron. Soc. 2019, 482, 2588–2596. [Google Scholar] [CrossRef]
- Li, J.; Chen, Z.C.; Huang, Q.G. Measuring the tilt of primordial gravitational-wave power spectrum from observations. Sci. China Phys. Mech. Astron. 2019, 62, 110421, Erratum in Sci. China Phys. Mech. Astron. 2021, 64, 250451. [Google Scholar] [CrossRef]
- Chen, Z.C.; Yuan, C.; Huang, Q.G. Non-tensorial gravitational wave background in NANOGrav 12.5-year data set. Sci. China Phys. Mech. Astron. 2021, 64, 120412. [Google Scholar] [CrossRef]
- Wu, Y.M.; Chen, Z.C.; Huang, Q.G. Constraining the Polarization of Gravitational Waves with the Parkes Pulsar Timing Array Second Data Release. Astrophys. J. 2022, 925, 37. [Google Scholar] [CrossRef]
- Chen, Z.C.; Wu, Y.M.; Huang, Q.G. Searching for isotropic stochastic gravitational-wave background in the international pulsar timing array second data release. Commun. Theor. Phys. 2022, 74, 105402. [Google Scholar] [CrossRef]
- Chen, Z.C.; Wu, Y.M.; Huang, Q.G. Search for the Gravitational-wave Background from Cosmic Strings with the Parkes Pulsar Timing Array Second Data Release. Astrophys. J. 2022, 936, 20. [Google Scholar] [CrossRef]
- Wu, Y.M.; Chen, Z.C.; Huang, Q.G.; Zhu, X.; Bhat, N.D.R.; Feng, Y.; Hobbs, G.; Manchester, R.N.; Russell, C.J.; Shannon, R.M. Constraining ultralight vector dark matter with the Parkes Pulsar Timing Array second data release. Phys. Rev. D 2022, 106, L081101. [Google Scholar] [CrossRef]
- Falxa, M.; Babak, S.; Baker, P.T.; Bécsy, B.; Chalumeau, A.; Chen, S.; Chen, Z.; Cornish, N.J.; Guillemot, L.; Hazboun, J.S.; et al. Searching for continuous Gravitational Waves in the second data release of the International Pulsar Timing Array. Mon. Not. Roy. Astron. Soc. 2023, 521, 5077–5086. [Google Scholar] [CrossRef]
- Wu, Y.M.; Chen, Z.C.; Huang, Q.G. Search for stochastic gravitational-wave background from massive gravity in the NANOGrav 12.5-year dataset. Phys. Rev. D 2023, 107, 042003. [Google Scholar] [CrossRef]
- Wu, Y.M.; Chen, Z.C.; Huang, Q.G. Pulsar timing residual induced by ultralight tensor dark matter. J. Cosmol. Astropart. Phys. 2023, 09, 021. [Google Scholar] [CrossRef]
- Agazie, G.; Antoniadis, J.; Anumarlapudi, A.; Archibald, A.M.; Arumugam, P.; Arumugam, S.; Arzoumanian, Z.; Askew, J.; Babak, S.; Bagchi, M.; et al. Comparing Recent Pulsar Timing Array Results on the Nanohertz Stochastic Gravitational-wave Background. Astrophys. J. 2024, 966, 105. [Google Scholar] [CrossRef]
- Malik, K.A.; Wands, D. Cosmological perturbations. Phys. Rep. 2009, 475, 1–51. [Google Scholar] [CrossRef]
- Inomata, K.; Kawasaki, M.; Mukaida, K.; Tada, Y.; Yanagida, T.T. Inflationary primordial black holes for the LIGO gravitational wave events and pulsar timing array experiments. Phys. Rev. D 2017, 95, 123510. [Google Scholar] [CrossRef]
- Espinosa, J.R.; Racco, D.; Riotto, A. A Cosmological Signature of the SM Higgs Instability: Gravitational Waves. J. Cosmol. Astropart. Phys. 2018, 09, 012. [Google Scholar] [CrossRef]
- Ashton, G.; Huebner, M.; Lasky, P.D.; Talbot, C.; Ackley, K.; Biscoveanu, S.; Chu, Q.; Divarkala, A.; Easter, P.J.; Goncharov, B.; et al. BILBY: A user-friendly Bayesian inference library for gravitational-wave astronomy. Astrophys. J. Suppl. 2019, 241, 27. [Google Scholar] [CrossRef]
- Skilling, J. Nested Sampling. AIP Conf. Proc. 2004, 735, 395–405. [Google Scholar] [CrossRef]
- Moore, C.J.; Vecchio, A. Ultra-low-frequency gravitational waves from cosmological and astrophysical processes. Nat. Astron. 2021, 5, 1268–1274. [Google Scholar] [CrossRef]
Model | Parameters | Prior | Posterior (Nano) | Posterior (Epta) | (Nano) | (Epta) |
---|---|---|---|---|---|---|
SMBHB | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fei, Q. The Pulsar Timing Array Signal from Infrared Regions of Scalar-Induced Gravitational Waves. Universe 2024, 10, 255. https://doi.org/10.3390/universe10060255
Fei Q. The Pulsar Timing Array Signal from Infrared Regions of Scalar-Induced Gravitational Waves. Universe. 2024; 10(6):255. https://doi.org/10.3390/universe10060255
Chicago/Turabian StyleFei, Qin. 2024. "The Pulsar Timing Array Signal from Infrared Regions of Scalar-Induced Gravitational Waves" Universe 10, no. 6: 255. https://doi.org/10.3390/universe10060255
APA StyleFei, Q. (2024). The Pulsar Timing Array Signal from Infrared Regions of Scalar-Induced Gravitational Waves. Universe, 10(6), 255. https://doi.org/10.3390/universe10060255