Theoretical Perspectives on Viscous Nature of Strongly Interacting Systems
Abstract
:1. Introduction
2. The Model Framework
3. Transport Coefficients
4. Results
4.1. Shear Viscosity
4.2. Bulk Viscosity
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bożek, P.; Wyskiel, I. Directed flow in ultrarelativistic heavy-ion collisions. Phys. Rev. C 2010, 81, 054902. [Google Scholar] [CrossRef]
- Steinheimer, J.; Auvinen, J.; Petersen, H.; Bleicher, M.; Stöcker, H. Examination of directed flow as a signal for a phase transition in relativistic nuclear collisions. Phys. Rev. C 2014, 89, 054913. [Google Scholar] [CrossRef]
- Ollitrault, J.-Y. Anisotropy as a signature of transverse collective flow. Phys. Rev. D 1992, 46, 229–245. [Google Scholar] [CrossRef] [PubMed]
- Policastro, G.; Son, D.T.; Starinets, A.O. Shear Viscosity of Strongly Coupled N = 4 Supersymmetric Yang-Mills Plasma. Phys. Rev. Lett. 2001, 87, 081601. [Google Scholar] [CrossRef] [PubMed]
- Kovtun, P.K.; Son, D.T.; Starinets, A.O. Viscosity in Strongly Interacting Quantum Field Theories from Black Hole Physics. Phys. Rev. Lett. 2005, 94, 111601. [Google Scholar] [CrossRef] [PubMed]
- Ferdinand, E.; Fisher, M.E. Bounded and Inhomogeneous Ising Models. I. Specific-Heat Anomaly of a Finite Lattice. Phys. Rev. 1969, 185, 832. [Google Scholar] [CrossRef]
- Fisher, M.E.; Barber, M.N. Scaling Theory for Finite-Size Effects in the Critical Region. Phys. Rev. Lett. 1972, 28, 1516. [Google Scholar] [CrossRef]
- Luscher, M. Volume dependence of the energy spectrum in massive quantum field theories. I. Stable particle states. Commun. Math. Phys. 1986, 104, 177. [Google Scholar] [CrossRef]
- Elze, H.T.; Greiner, W. Finite size effects for quark-gluon plasma droplets. Phys. Lett. B 1986, 179, 385. [Google Scholar] [CrossRef]
- Gasser, J.; Leutwyler, H. Thermodynamics of chiral symmetry. Phys. Lett. B 1987, 188, 477. [Google Scholar] [CrossRef]
- Spieles, C.; Stoecker, H.; Greiner, C. Phase transition of a finite quark-gluon plasma. Phys. Rev. C 1998, 57, 908. [Google Scholar] [CrossRef]
- Gopie, A.; Ogilvie, M.C. First principles estimate of finite size effects in quark-gluon plasma formation. Phys. Rev. D 1999, 59, 034009. [Google Scholar] [CrossRef]
- Kiriyama, O.; Hosaka, A. Chiral phase properties of finite size quark droplets in the Nambu–Jona-Lasinio model. Phys. Rev. D 2003, 67, 085010. [Google Scholar] [CrossRef]
- Fischer, C.S.; Pennington, M.R. Finite volume effects in a quenched lattice-QCD quark propagator. Phys. Rev. D 2006, 73, 034029. [Google Scholar] [CrossRef]
- Luecker, J.; Fischer, C.S.; Williams, R. Volume behavior of quark condensate, pion mass, and decay constant from Dyson Schwinger equations. Phys. Rev. D 2010, 81, 094005. [Google Scholar] [CrossRef]
- Palhares, L.F.; Fraga, E.S.; Kodama, T. Chiral transition in a finite system and possible use of finite-size scaling in relativistic heavy ion collisions. J. Phys. G 2011, 38, 085101. [Google Scholar] [CrossRef]
- Braun, J.; Klein, B.; Piasecki, P. On the scaling behavior of the chiral phase transition in QCD in finite and infinite volume. Eur. Phys. J. C 2011, 71, 1576. [Google Scholar] [CrossRef]
- Fraga, E.S.; Palhares, L.F.; Sorensen, P. Finite-size scaling as a tool in the search for the QCD critical point in heavy ion data. Phys. Rev. C 2011, 84, 011903. [Google Scholar] [CrossRef]
- Marty, R.; Bratkovskaya, E.; Cassing, W.; Aichelin, J.; Berrehrah, H. Transport coefficients from the Nambu–Jona-Lasinio model for SU(3)f. Phys. Rev. C 2013, 88, 045204. [Google Scholar] [CrossRef]
- Ratti, C.; Thaler, M.A.; Weise, W. Phases of QCD: Lattice thermodynamics and a field theoretical model. Phys. Rev. D 2006, 73, 014019. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Mukherjee, T.K.; Mustafa, M.G.; Ray, R. Susceptibilities and speed of sound from the Polyakov-Nambu-Jona-Lasinio model. Phys. Rev. D 2006, 73, 114007. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mustafa, M.G.; Ray, R. Thermodynamics of the Polyakov-Nambu-Jona-Lasinio model with nonzero baryon and isospin chemical potentials. Phys. Rev. D 2007, 75, 094015. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Mukherjee, T.K.; Mustafa, M.G.; Ray, R. Polyakov-Nambu-Jona-Lasinio model with a Vandermonde term. Phys. Rev. D 2008, 77, 094024. [Google Scholar] [CrossRef]
- Meinsinger, P.N.; Ogilvie, M.C. Chiral symmetry restoration and ZN symmetry. Phys. Lett. B 1996, 379, 163–168. [Google Scholar] [CrossRef]
- Meisinger, P.N.; Ogilvie, M.C. Coupling the deconfining and chiral transitions. Nucl. Phys. B 1996, 47, 519–522. [Google Scholar] [CrossRef]
- Fukushima, K. Chiral effective model with the Polyakov loop. Phys. Lett. B 2004, 591, 277–284. [Google Scholar] [CrossRef]
- Megias, E.; Arriola, E.R.; Salcedo, L.L. Dimension two condensates and the Polyakov loop above the deconfinement phase transition. J. High Energy Phys. 2006, 1, 73. [Google Scholar] [CrossRef]
- Megías, E.; Arriola, E.R.; Salcedo, L.L. Chiral Lagrangian at finite temperature from the Polyakov-chiral quark model. Phys. Rev. D 2006, 74, 114014. [Google Scholar] [CrossRef]
- Megías, E.; Arriola, E.R.; Salcedo, L.L. Polyakov loop in chiral quark models at finite temperature. Phys. Rev. D 2006, 74, 065005. [Google Scholar] [CrossRef]
- Tsai, H.-M.; Müller, B. Phenomenology of the three-flavor PNJL model and thermal strange quark production. J. Phys. G 2009, 36, 075101. [Google Scholar] [CrossRef]
- Megias, E.; Arriola, E.R.; Salcedo, L.L. Polyakov Loop and the Hadron Resonance Gas Model. Phys. Rev. Lett. 2012, 109, 151601. [Google Scholar] [CrossRef] [PubMed]
- Megías, E.; Arriola, E.R.; Salcedo, L. Polyakov loop in various representations in the confined phase of QCD. Phys. Rev. D 2014, 89, 076006. [Google Scholar] [CrossRef]
- Deb, P.; Bhattacharyya, A.; Datta, S.; Ghosh, S.K. Mesonic excitations of QGP: Study with an effective model. Phys. Rev. C 2009, 79, 055208. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Ghosh, S.K.; Ray, R.; Saha, K.; Upadhaya, S. Polyakov–Nambu–Jona-Lasinio model in finite volumes. Europhys. Lett. 2016, 116, 52001. [Google Scholar] [CrossRef]
- Osipov, A.; Hiller, B.; da Providência, J. Multi-quark interactions with a globally stable vacuum. Phys. Lett. B 2006, 634, 48–54. [Google Scholar] [CrossRef]
- Osipov, A.; Hiller, B.; Blin, A.; da Providência, J. Effects of eight-quark interactions on the hadronic vacuum and mass spectra of light mesons. Ann. Phys. 2007, 322, 2021–2054. [Google Scholar] [CrossRef]
- Lang, R.; Weise, W. Shear viscosity from Kubo formalism: NJL model study. Eur. Phys. J. A 2014, 50, 63. [Google Scholar] [CrossRef]
- Fukutome, T.; Iwasaki, M. Effect of Soft Mode on Shear Viscosity of Quark Matter. Prog. Theor. Phys. 2008, 119, 991–1004. [Google Scholar] [CrossRef]
- Iwasaki, M.; Ohnishi, H.; Fukutome, T. Shear viscosity and spectral function of the quark matter. arXiv 2006, arXiv:hep-ph/0606192vl. [Google Scholar]
- Iwasaki, M.; Ohnishi, H.; Fukutome, T. Shear viscosity of the quark matter. J. Phys. G 2008, 35, 035003. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Raha, S.; Ray, R.; Saha, K.; Upadhaya, S. Shear viscosity and phase diagram from Polyakov–Nambu–Jona-Lasinio model. Phys. Rev. D 2015, 91, 054005. [Google Scholar] [CrossRef]
- Kubo, R. Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. J. Phys. Soc. Jpn. 1957, 12, 570–586. [Google Scholar] [CrossRef]
- Kubo, R.; Yokota, M.; Nakajima, S. Statistical-Mechanical Theory of Irreversible Processes. II. Response to Thermal Disturbance. J. Phys. Soc. Jpn. 1957, 12, 1203–1211. [Google Scholar] [CrossRef]
- Shushpanov, I.A.; Kapusta, J.I.; Ellis, P.J. Low-energy theorems for QCD at finite temperature and chemical potential. Phys. Rev. C 1999, 59, 2931–2933. [Google Scholar] [CrossRef]
- Kharzeev, D.; Tuchin, K. Bulk viscosity of QCD matter near the critical temperature. J. High Energy Phys. 2008, 2008, 93. [Google Scholar] [CrossRef]
- Karsch, F.; Kharzeev, D.; Tuchin, K. Universal properties of bulk viscosity near the QCD phase transition. Phys. Lett. B 2008, 663, 217–221. [Google Scholar] [CrossRef]
- Fujii, H.; Kharzeev, D. Long-range forces of QCD. Phys. Rev. D 1999, 60, 114039. [Google Scholar] [CrossRef]
- Saha, K.; Upadhaya, S.; Ghosh, S. A comparative study on two different approaches of bulk viscosity in the Polyakov–Nambu–Jona-Lasinio model. Mod. Phys. Lett. A 2017, 32, 1750018. [Google Scholar] [CrossRef]
- Gavin, S. Transport coefficients in ultra-relativistic heavy-ion collisions. Nucl. Phys. A 1985, 435, 826–843. [Google Scholar] [CrossRef]
- Chakraborty, P.; Kapusta, J.I. Quasiparticle theory of shear and bulk viscosities of hadronic matter. Phys. Rev. C 2011, 83, 014906. [Google Scholar] [CrossRef]
- Ghosh, S.; Peixoto, T.C.; Roy, V.; Serna, F.E.; Krein, G. Shear and bulk viscosities of quark matter from quark-meson fluctuations in the Nambu–Jona-Lasinio model. Phys. Rev. C 2016, 93, 045205. [Google Scholar] [CrossRef]
- Fernández-Fraile, D.; Nicola, A.G. Bulk Viscosity and the Conformal Anomaly in the Pion Gas. Phys. Rev. Lett. 2009, 102, 121601. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Fraile, D.; Nicola, A.G. Transport coefficients and resonances for a meson gas in Chiral Perturbation Theory. Eur. Phys. J. C 2009, 62, 37. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Deb, P.; Ghosh, S.K.; Maity, S.; Raha, S.; Ray, R.; Saha, K.; Upadhaya, S. Finite temperature properties of a modified Polyakov–Nambu–Jona-Lasinio model. Phys. Rev. D 2020, 102, 074006. [Google Scholar] [CrossRef]
- Zhao, Y.-P. Thermodynamic properties and transport coefficients of QCD matter within the nonextensive Polyakov–Nambu–Jona-Lasinio model. Phys. Rev. D 2020, 101, 096006. [Google Scholar] [CrossRef]
- Satapathy, S.; Paul, S.; Anand, A.; Kumar, R.; Ghosh, S. From non-interacting to interacting picture of thermodynamics and transport coefficients for quark gluon plasma. J. Phys. G 2020, 47, 045201. [Google Scholar] [CrossRef]
- Gao, F.; Liu, Y.-X. Temperature effect on shear and bulk viscosities of QCD matter. Phys. Rev. D 2018, 97, 056011. [Google Scholar] [CrossRef]
- Islam, C.A.; Mustafa, M.G.; Ray, R.; Singha, P. Consistent approach to study gluon quasiparticles. Phys. Rev. D 2022, 106, 054002. [Google Scholar] [CrossRef]
- Hua, L.-M.; Xu, J. Shear viscosity of nuclear matter in the spinodal region. Phys. Rev. C 2023, 107, 034601. [Google Scholar] [CrossRef]
- Ghosh, S.; Ghosh, S. One-loop Kubo estimations of the shear and bulk viscous coefficients for hot and magnetized bosonic and fermionic systems. Phys. Rev. D 2021, 103, 096015. [Google Scholar] [CrossRef]
- Ghosh, S.; Ghosh, S.; Bhattacharyya, S. Phenomenological bound on the viscosity of the hadron resonance gas. Phys. Rev. C 2018, 98, 045202. [Google Scholar] [CrossRef]
- Singha, P.; Abhishek, A.; Kadam, G.; Ghosh, S.; Mishra, H. Calculations of shear, bulk viscosities and electrical conductivity in the Polyakov-quark–meson model. J. Phys. G 2019, 46, 015201. [Google Scholar] [CrossRef]
- Saha, K.; Ghosh, S.; Upadhaya, S.; Maity, S. Transport coefficients in a finite volume Polyakov–Nambu–Jona-Lasinio model. Phys. Rev. D 2018, 97, 116020. [Google Scholar] [CrossRef]
- Ghosh, S. Electrical conductivity of hadronic matter from different possible mesonic and baryonic loops. Phys. Rev. D 2017, 95, 036018. [Google Scholar] [CrossRef]
- Muller, D.; Buballa, M.; Wambach, J. Quark propagator in the Nambu–Jona-Lasinio model in a self-consistent 1/Nc expansion. Phys. Rev. D 2010, 81, 094022. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saha, K. Theoretical Perspectives on Viscous Nature of Strongly Interacting Systems. Universe 2024, 10, 259. https://doi.org/10.3390/universe10060259
Saha K. Theoretical Perspectives on Viscous Nature of Strongly Interacting Systems. Universe. 2024; 10(6):259. https://doi.org/10.3390/universe10060259
Chicago/Turabian StyleSaha, Kinkar. 2024. "Theoretical Perspectives on Viscous Nature of Strongly Interacting Systems" Universe 10, no. 6: 259. https://doi.org/10.3390/universe10060259
APA StyleSaha, K. (2024). Theoretical Perspectives on Viscous Nature of Strongly Interacting Systems. Universe, 10(6), 259. https://doi.org/10.3390/universe10060259