FLRW Transit Cosmological Model in f (R, T) Gravity
Abstract
:1. Introduction
2. The Model in Gravity
- Investigating the nature of matter in the presence of which the model can yield the desired evolution of the universe.
- Examining the role of gravity.
- Comparing and distinguishing outcomes from those of Einstein’s gravity.
3. The Behavior of Coupled Matter
- Null energy conditions (NEC): ;
- Weak energy conditions (WEC): , ;
- Strong energy conditions (SEC): ;
- Dominant energy conditions (DEC): .
4. The Behavior of Effective Matter
5. Conclusions
- The primary matter exhibits the characteristics of all kinds of matter, viz., stiff matter (), radiation (), dust (), quintessence (), and a cosmological constant (), in the same order as is required to depict the cosmic history, including the transition from a decelerating to an accelerating universe.
- The coupled matter satisfies the NEC throughout the evolution of the universe. However, it violates the WEC and the NEC during very early stages of evolution. It also violates the SEC at late times, which shows that the coupled matter contributes to quintessence DE.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2018, 641, A6. [Google Scholar]
- Anderson, L.; Aubourg, E.; Bailey, S.; Beutler, F.; Bhardwaj, V.; Blanton, M.; Bolton, A.S.; Brinkmann, J.; Brownstein, J.R.; Burden, A.; et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the data release 9 spectroscopic galaxy sample. Mon. Not. Roy. Astron. Soc. 2013, 427, 3435. [Google Scholar] [CrossRef]
- Bennett, C.L.; Larson, D.; Weiland, J.L.; Jarosik, N.; Hinshaw, G.; Odegard, N.; Smith, K.M.; Hill, R.S.; Gold, B.; Halpern, M.; et al. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final maps and results (WMAP Collaboration). Astrophys. J. Suppl. 2013, 208, 20. [Google Scholar] [CrossRef]
- Spergel, D.N.; Verde, L.; Peiris, H.V.; Komatsu, E.; Nolta, M.R.; Bennett, C.L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; et al. First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters. Astrophys. J. Suppl. 2003, 148, 175–194. [Google Scholar] [CrossRef]
- Netterfield, C.B.; Ade, P.A.; Bock, J.J.; Bond, J.R.; Borrill, J.; Boscaleri, A.; Coble, K.; Contaldi, C.R.; Crill, B.P.; de Bernardis, P.; et al. A measurement by BOOMERANG of multiple peaks in the angular power spectrum of the cosmic microwave background. Astrophys. J. 2002, 571, 604. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astrophy. J. 1998, 116, 1009. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophy. J. 1999, 517, 565. [Google Scholar] [CrossRef]
- Schmidt, B.P.; Suntzeff, N.B.; Phillips, M.M.; Schommer, R.A.; Clocchiatti, A.; Kirshner, R.P.; Garnavich, P.; Challis, P.; Leibundgut, B.R.U.N.O.; Spyromilio, J.; et al. The high-z supernova search: Measuring cosmic deceleration and global curvature of the universe using type Ia supernovae. Astrophy. J. 1998, 507, 46. [Google Scholar] [CrossRef]
- Guth, A.H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. 1981, 23, 347. [Google Scholar] [CrossRef]
- Albrecht, A.; Steinhardt, P.J. Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 1982, 48, 1220–1223. [Google Scholar] [CrossRef]
- Linde, A. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 1982, 108, 389–393. [Google Scholar] [CrossRef]
- Frieman, J.A.; Turner, M.S.; Huterer, D. Dark Energy and the accelerating universe. Ann. Rev. Astron. Astrophys. 2008, 46, 385. [Google Scholar] [CrossRef]
- Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. D 2006, 15, 1753–1936. [Google Scholar] [CrossRef]
- Komatsu, E.; Dunkley, J.; Nolta, M.R.; Bennett, C.L.; Gold, B.; Hinshaw, G.; Jarosik, N.; Larson, D.; Limon, M.; Page, L.E.A.; et al. Five-year Wilkinson microwave anisotropy probe (WMAP) observations: Cosmological interpretation. Astrophys. J. Suppl. 2009, 180, 330–376. [Google Scholar] [CrossRef]
- Sahni, V.; Starobinsky, A.A. The case for a positive cosmological Lambda-term. Int. J. Mod. Phys. D 2000, 9, 373–444. [Google Scholar] [CrossRef]
- Popolo, A.D. Non-baryonic dark matter in cosmology. AIP Conf. Proc. 2013, 1548, 2–63. [Google Scholar]
- Popolo, A.D.; Delliou, M.L.; Lee, X. Correlations in the matter distribution in CLASH galaxy clusters. Phys. Dark Universe 2019, 26, 100342. [Google Scholar] [CrossRef]
- Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1. [Google Scholar] [CrossRef]
- Astashenok, A.V.; Popolo, A.D. Cosmological measure with volume averaging and the vacuum energy problem. Class. Quantum Grav. 2012, 29, 085014. [Google Scholar] [CrossRef]
- Martin, J. Quintessence: A mini-review. Mod. Phys. Lett. A 2008, 23, 1252–1265. [Google Scholar] [CrossRef]
- Caldwell, R.R.; Kamionkowski, M.; Weinberg, N.N. Phantom energy: Dark energy with ω < −1 causes a cosmic doomsday. Phys. Rev. Lett. 2003, 91, 071301. [Google Scholar] [PubMed]
- Tonry, J.L.; Schmidt, B.P.; Barris, B.; Candia, P.; Challis, P.; Clocchiatti, A.; Coil, A.L.; Filippenko, A.V.; Garnavich, P.; Hogan, C.; et al. Cosmological results from high-z supernovae. Astrophys. J. 2003, 594, 1. [Google Scholar] [CrossRef]
- Padmanabhan, T.; Choudhury, T.R. Can the clustered dark matter and the smooth dark energy arise from the same scalar field? Phys. Rev. D 2002, 66, 081301. [Google Scholar] [CrossRef]
- Bento, M.C.; Bertolami, O.; Sen, A.A. Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification. Phys. Rev. D 2002, 66, 043507. [Google Scholar] [CrossRef]
- Takeshi, C.; Okabe, T.; Yamaguchi, M. Kinetically driven quintessence. Phys. Rev. D 2000, 62, 023511. [Google Scholar]
- Nojiri, S.I.; Odintsov, S.D. Unifying inflation with ΛCDM epoch in modified f (R) gravity consistent with Solar System tests. Phys. Lett. B 2007, 657, 238–245. [Google Scholar] [CrossRef]
- Nojiri, S.I.; Odintsov, S.D. Unified cosmic history in modified gravity: From f (R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59–144. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Faraoni, V. f (R) theories of gravity. Rev. Mod. Phys. 2010, 82, 451. [Google Scholar] [CrossRef]
- Felice, A.D.; Tsujikawa, S. f (R) theories. Living Rev. Relativ. 2010, 13, 3. [Google Scholar] [CrossRef]
- Nojiri, S.I.; Odintsov, S.D. Modified Gauss–Bonnet theory as gravitational alternative for dark energy. Phys. Lett. B 2005, 631, 1–6. [Google Scholar] [CrossRef]
- Cognola, G.; Elizalde, E.; Nojiri, S.I.; Odintsov, S.D.; Zerbini, S. String-inspired Gauss-Bonnet gravity reconstructed from the universe expansion history and yielding the transition from matter dominance to dark energy. Phys. Rev. D 2007, 75, 086002. [Google Scholar] [CrossRef]
- Mandal, S.; Sahoo, P.K. A complete cosmological scenario in teleparallel gravity. Eur. Phys. J. Plus 2020, 135, 706. [Google Scholar] [CrossRef]
- Järv, L.; Rünkla, M.; Saal, M.; Vilson, O. Nonmetricity formulation of general relativity and its scalar-tensor extension. Phys. Rev. D 2018, 97, 124025. [Google Scholar] [CrossRef]
- Xu, Y.; Harko, T.; Shahidi, S.; Liang, S.D. Weyl type f (Q, T) gravity, and its cosmological implications. Eur. Phys. J. C 2020, 80, 449. [Google Scholar] [CrossRef]
- Bertolami, O.; Lobo, F.S.N.; Paramos, J. Nonminimal coupling of perfect fluids to curvature. Phys. Rev. D 2008, 78, 064036. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N. f (R, Lm) gravity. Eur. Phys. J. C 2010, 70, 373–379. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.; Nojiri, S.I.; Odintsov, S.D. f (R, T) gravity. Phy. Rev. D 2011, 84, 024020. [Google Scholar] [CrossRef]
- Tretyakov, P.V. Cosmology in modified f (R, T)-gravity. Eur. Phys. J. C 2018, 78, 896. [Google Scholar] [CrossRef]
- Jamil, M.; Momeni, D.; Raza, M.; Myrzakulov, R. Reconstruction of some cosmological models in f (R, T) cosmology. Eur. Phys. J. C 2012, 72, 1999. [Google Scholar] [CrossRef]
- Azizi, T. Wormhole geometries in f (R, T) Gravity. Int. J. Theor. Phys. 2013, 52, 3486. [Google Scholar] [CrossRef]
- Alvarenga, F.G.; de la Cruz-Dombriz, A.; Houndjo, M.J.S.; Rodrigues, M.E.; Sáez-Gómez, D. Dynamics of scalar perturbations in f (R, T) gravity. Phys. Rev. D 2013, 87, 103526. [Google Scholar] [CrossRef]
- Sharif, M.; Rani, S.; Myrzakulov, R. Analysis of F (R, T) gravity models through energy conditions. Eur. Phys. J. Plus 2013, 128, 123. [Google Scholar] [CrossRef]
- Pasqua, A.; Chattopadhyay, S.; Khomenkoc, I. A reconstruction of modified holographic Ricci dark energy in f (R, T) gravity. Can. J. Phys. 2013, 91, 632. [Google Scholar] [CrossRef]
- Alves, M.E.S.; Moraes, P.H.R.S.; de Araujo, J.C.N.; Malheiro, M. Gravitational waves in f (R, T) and f (R, Tϕ) theories of gravity. Phys. Rev. D 2016, 94, 024032. [Google Scholar] [CrossRef]
- Momeni, D.; Moraes, P.H.R.S.; Myrzakulov, R. Generalized second law of thermodynamics in f (R, T) theory of gravity. Astrophys. Space Sci. 2016, 361, 228. [Google Scholar] [CrossRef]
- Das, A.; Rahaman, F.; Guha, B.K.; Ray, S. Compact stars in f (R, T) gravity. Eur. Phys. J. C 2016, 76, 654. [Google Scholar] [CrossRef]
- Shabani, H.; Ziaie, A.H. Bouncing cosmological solutions from f (R, T) gravity. Eur. Phys. J. C 2018, 78, 397. [Google Scholar] [CrossRef]
- Deb, D.; Ketov, S.V.; Maurya, S.K.; Khlopov, M.; Moraes, P.H.R.S.; Ray, S. Exploring physical features of anisotropic strange stars beyond standard maximum mass limit in gravity. Mon. Not. Astron. Soc. 2019, 485, 5652. [Google Scholar] [CrossRef]
- Elizalde, E.; Khurshudyan, M. On wormhole formation in f (R, T) gravity: Varying Chaplygin gas and barotropic fluid. Phys. Rev. D 2018, 98, 123525. [Google Scholar] [CrossRef]
- Ordines, T.M.; Carlson, E.D. Limits on f (R, T) gravity from Earth’s atmosphere. Phys. Rev. D 2019, 99, 104052. [Google Scholar] [CrossRef]
- Singh, V.; Beesham, A. Plane symmetric model in f (R, T) gravity. Eur. Phys. J. Plus 2020, 135, 319. [Google Scholar] [CrossRef]
- Singh, V.; Beesham, A. LRS Bianchi I model with constant expansion rate in f (R, T). Astrophys. Space Sci. 2020, 13, 125. [Google Scholar] [CrossRef]
- Banerjee, N.; Das, S. Acceleration of the universe with a simple trigonometric potential. Gen. Relativ. Gravit. 2005, 37, 1695–1703. [Google Scholar] [CrossRef]
- Akarsu, A.; Dereli, T. Cosmological models with linearly varying deceleration parameter. Int. J. Theor. Phys. 2012, 51, 612–621. [Google Scholar] [CrossRef]
- Mishra, B.; Tripathy, S.K.; Tarai, S. Cosmological models with a hybrid scale factor in an extended gravity theory. Mod. Phys. Lett. A 2018, 33, 1850052. [Google Scholar] [CrossRef]
- Pradhan, A.; Goswami, G.; Beesham, A. The reconstruction of constant jerk parameter with f (R, T) gravity. J. High Energy Astrophys. 2023, 38, 12–21. [Google Scholar] [CrossRef]
- Chawla, C.; Mishra, R.K.; Pradhan, A. String cosmological models from early deceleration to current acceleration phase with varying G and Λ. Eur. Phys. J. Plus 2012, 127, 137. [Google Scholar] [CrossRef]
- Mishra, R.K.; Chand, A. Cosmological models in alternative theory of gravity with bilinear deceleration parameter. Astrophys. Space Sci. 2016, 361, 259. [Google Scholar] [CrossRef]
- Mishra, R.K.; Dua, H.; Chand, A. Bianchi-III cosmological model with BVDP in modified f (R, T) theory. Astrophys. Space Sci. 2018, 363, 112. [Google Scholar] [CrossRef]
- Mishra, R.K.; Dua, H. Phase transition of cosmological model with statistical techniques. Astrophys. Space Sci. 2020, 365, 131. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Sofuoglu, D. Quadratically varying deceleration parameter in f (R, T) gravity. Int. J. Geom. Methods Mod. Phys. 2020, 17, 2030003. [Google Scholar] [CrossRef]
- Katore, S.D.; Gore, S.V. ΛCDM cosmological models with quintessence in f (R) theory of gravitation. J. Astrophys. Astron. 2020, 41, 12. [Google Scholar] [CrossRef]
- Ahmed, N.; Fekry, M.; Shaker, A.A. Transition from decelerating to accelerating universe with quadratic equation of state in f (R, T) gravity. NRIAG J. Astron. Geophys. 2019, 8, 198–203. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Sofuoglu, D.; Beesham, A. FRW universe in f (R, T) gravity. Int. J. Geom. Methods Mod. Phys. 2021, 18, 2150104. [Google Scholar] [CrossRef]
- Pradhan, A.; Garg, P.; Dixit, A. FRW cosmological models with cosmological constant in f (R, T) theory of gravity. Can. J. Phys. 2021, 999, 741–753. [Google Scholar] [CrossRef]
- Pradhan, A.; Saha, B.; Rikhvitsky, V. Bianchi type-I transit cosmological models with time dependent gravitational and cosmological constants: Reexamined. Indian J. Phys. 2015, 89, 503–513. [Google Scholar] [CrossRef]
- Yadav, A.K. Cosmological constant dominated transit universe from the early deceleration phase to the current acceleration phase in Bianchi-V spacetime. Chin. Phys. Lett. 2012, 29, 079801. [Google Scholar] [CrossRef]
- Tripathy, S.K.; Mishra, B.; Khlopov, M.; Ray, S. Cosmological models with a hybrid scale factor. Int. J. Mod. Phys. 2021, 30, 2140005. [Google Scholar] [CrossRef]
- Tarai, S.; Ray, P.P.; Mishra, B.; Tripathy, S.K. Effect of bulk viscosity in cosmic acceleration. Int. J. Geom. Methods Mod. Phys. 2022, 19, 2250060. [Google Scholar] [CrossRef]
- Mishra, B.; Tripathy, S.K.; Tarai, S. Accelerating models with a hybrid scale factor in extended gravity. J. Astrophys. Astron. 2021, 42, 2. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Beesham, A.; Mishra, S.; Dubey, V. Anisotropic Cosmological Model in a Modified Theory of Gravitation. Universe 2021, 7, 226. [Google Scholar] [CrossRef]
- Jokweni, S.; Singh, V.; Beesham, A. LRS Bianchi-I Transit Cosmological Models in f (R, T) Gravity. Phys. Sci. Forum 2023, 7, 34. [Google Scholar] [CrossRef]
- Linder, E.V. Exploring the expansion history of the universe. Phys. Rev. Lett. 2003, 90, 091301. [Google Scholar] [CrossRef]
- Ray, S.; Mukhopadhyay, U.; Duttachowdhury, S.B. Dark energy models with a time-dependent gravitational constant. Int. J. Mod. Phys. D 2007, 16, 1791. [Google Scholar] [CrossRef]
- Mukhopadhyay, U.; Ray, S.; Duttachowdhury, S.B. Λ-CDM universe: A phenomenological approach with many possibilities. Int. J. Mod. Phys. D 2008, 17, 301. [Google Scholar] [CrossRef]
- Linder, E.V. The dynamics of quintessence, the quintessence of dynamics. Gen. Rel. Grav. 2008, 40, 329–356. [Google Scholar] [CrossRef]
- Ray, S.; Rahaman, F.; Mukhopadhyay, U.; Sarkar, R. Variable equation of state for generalized dark energy model. Int. J. Theor. Phys. 2011, 50, 2687–2696. [Google Scholar] [CrossRef]
- Knop, R.A.; Aldering, G.; Amanullah, R.; Astier, P.; Blanc, G.; Burns, M.S.; Conley, A.; Deustua, S.E.; Doi, M.; Ellis, R.S.; et al. New constraints on ΩM, ΩΛ, and Ω from an independent set of 11 high-redshift supernovae observed with the Hubble Space Telescope. Astrophys. J. 2003, 598, 102. [Google Scholar] [CrossRef]
- Tegmark, M.; Blanton, M.R.; Strauss, M.A.; Hoyle, F.; Schlegel, D.; Scoccimarro, R.; Vogeley, M.S.; Weinberg, D.H.; Zehavi, I.; Berlind, A.; et al. The three-dimensional power spectrum of galaxies from the sloan digital sky survey. Astrophys. J. 2004, 606, 702. [Google Scholar] [CrossRef]
- Huterer, D.; Turner, M.S. Probing dark energy: Methods and strategies. Phys. Rev. D 2001, 64, 123527. [Google Scholar] [CrossRef]
- Huterer, D.; Cooray, A. Uncorrelated estimates of dark energy evolution. Phys. Rev. D 2005, 71, 023506. [Google Scholar] [CrossRef]
- Mishra, R.K.; Dua, H. Evolution of FLRW universe in Brans-Dicke gravity theory. Astrophys. Space Sci. 2021, 366, 6. [Google Scholar] [CrossRef]
- Basilakos, S. Solving the main cosmological puzzles with a generalized time varying vacuum energy. Astron. Astrophys. 2009, 508, 575. [Google Scholar] [CrossRef]
- Saha, B. Interacting Scalar and Electromagnetic Fields in f (R, T) Theory of Gravity. Int. J. Theor. Phys. 2015, 54, 3776. [Google Scholar] [CrossRef]
- Fisher, S.B.; Carlson, E.D. Reexamining f (R, T) gravity. Phys. Rev. D 2019, 100, 064059. [Google Scholar] [CrossRef]
- Harko, T.; Moraes, P.H. Comment on Reexamining f (R, T) gravity. Phys. Rev. D 2020, 101, 108501. [Google Scholar] [CrossRef]
- Jaekel, A.P.; da Silva, J.P.; Velten, H. Revisiting f (R, T) cosmologies. Phys. Dark Univ. 2024, 43, 101401. [Google Scholar] [CrossRef]
- Velten, H.; Carames, T.R.P. Cosmological inviability of f (R, T) gravity. Phys. Rev. D 2017, 95, 123536. [Google Scholar] [CrossRef]
- Singh, C.P.; Singh, V. Reconstruction of modified f (R, T) f (R, T) gravity with perfect fluid cosmological models. Gen. Relativ. Grav. 2014, 46, 1696. [Google Scholar] [CrossRef]
- Singh, V.; Beesham, A. The f (R, Tϕ) gravity models with conservation of energy–momentum tensor. Eur. Phys. J. C 2018, 78, 564. [Google Scholar] [CrossRef]
- Bertini, N.R.; Velten, H. Fully conservative f (R, T) gravity and Solar System constraints. Phys. Rev. D 2023, 107, 124005. [Google Scholar] [CrossRef]
- Singh, V.; Beesham, A. A time-varying deceleration parameter for unified description of cosmological evolution. Int. J. Geom. Meth. Mod. Phys. 2018, 15, 1850145. [Google Scholar] [CrossRef]
- Narawade, S.A.; Koussour, M.; Mishra, B. Observational Constraints on Hybrid Scale Factor in f (Q, T) Gravity with Anisotropic Space-Time. Annalen Der Physik 2023, 535, 2300161. [Google Scholar] [CrossRef]
- Singh, S.S.; Anjana Devi, L. Interacting anisotropic dark energy with hybrid expansion in f (R, T) gravity. New Astr. 2022, 90, 101656. [Google Scholar] [CrossRef]
- Aydiner, E. Late time transition of Universe and the hybrid scale factor. Eur. Phys. J. C 2022, 82, 39. [Google Scholar] [CrossRef]
- Magana, J.; Amante, M.H.; Garcia-Aspeitia, M.A.; Motta, V. The Cardassian expansion revisited: Constraints from updated Hubble parameter measurements and type Ia supernova data. Mon. Not. R. Astron. Soc. 2018, 476, 1036–1049. [Google Scholar] [CrossRef]
- Scolnic, D.M.; Jones, D.O.; Rest, A.; Pan, Y.C.; Chornock, R.; Foley, R.J.; Huber, M.E.; Kessler, R.; Narayan, G.; Riess, A.G.; et al. The complete light-curve sample of spectroscopically confirmed SNe Ia from Pan-STARRS1 and cosmological constraints from the combined pantheon sample. Astrophys. J. 2018, 859, 101. [Google Scholar] [CrossRef]
- Macaulay, E.; Nichol, R.C.; Bacon, D.; Brout, D.; Davis, T.M.; Zhang, B.; Bassett, B.A.; Scolnic, D.; A. Möller, A.; D’Andrea, C.B.; et al. First cosmological results using Type Ia supernovae from the Dark Energy Survey: Measurement of the Hubble constant. Mon. Not. R. Astron. Soc. 2019, 486, 2184–2196. [Google Scholar] [CrossRef]
- Kumar, D.; Jain, D.; Mahajan, S.; Mukherjee, A.; Rana, A. Constraints on the transition redshift using Hubble phase space portrait. Int. J. Mod. Phys. D 2023, 32, 2350039. [Google Scholar] [CrossRef]
- Epstein, H.; Glaser, V.; Jaffe, A. Nonpositivity of the energy density in quantized field theories. Nuovo Cimento 1965, 36, 1016. [Google Scholar] [CrossRef]
- Lamoreaux, S.K. Demonstration of the Casimir Force in the 0.6 to 6 μm Range. Phys. Rev. Lett. 1997, 78, 5. [Google Scholar] [CrossRef]
- Mohideen, U.; Roy, A. Precision measurement of the Casimir force from 0.1 to 0.9 μm. Phys. Rev. Lett. 1998, 81, 4549. [Google Scholar] [CrossRef]
- Wu, L.A.; Kimble, H.J.; Hall, J.L.; Wu, H. Generation of squeezed states by parametric down conversion. Phys. Rev. Lett. 1986, 57, 2520. [Google Scholar] [CrossRef] [PubMed]
- Linde, A.D. Phase transitions in gauge theories and cosmology. Rep. Prog. Phys. 1985, 42, 389. [Google Scholar] [CrossRef]
- Barrow, J.D.; Ottewil, A. The stability of general relativistic cosmological theory. J. Phys. A Math. Gen. 1983, 16, 2757. [Google Scholar] [CrossRef]
- Hawking, S.W.; Luttrell, J.C. Higher derivatives in quantum cosmology: (I). The isotropic case. Nucl. Phys. B 1984, 247, 250. [Google Scholar] [CrossRef]
- Whitt, B. Fourth-order gravity as general relativity plus matter. Phys. Lett. B 1984, 145, 176. [Google Scholar] [CrossRef]
- Mijic, M.B.; Morris, M.B.; Suen, W.W. The R2 cosmology: Inflation without a phase transition. Phys. Rev. D 1986, 34, 2934. [Google Scholar] [CrossRef] [PubMed]
- Pollock, M.D. On the initial conditions for super-exponential inflation. Phys. Lett. B 1988, 215, 635. [Google Scholar] [CrossRef]
- Barrow, J.D. String-driven inflationary and deflationary cosmological models. Nucl. Phys. B 1988, 310, 743. [Google Scholar] [CrossRef]
- Torres, D.F. Quintessence, superquintessence, and observable quantities in Brans-Dicke and nonminimally coupled theories. Phys. Rev. D 2002, 66, 043522. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Quantum de Sitter cosmology and phantom matter. Phys. Lett. B 2003, 562, 147. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Effective equation of state and energy conditions in phantom/tachyon inflationary cosmology perturbed by quantum effects. Phys. Lett. B 2003, 571, 1. [Google Scholar] [CrossRef]
- Piao, Y.S.; Zhang, Y.Z. Phantom inflation and primordial perturbation spectrum. Phys. Rev. D 2004, 70, 063513. [Google Scholar] [CrossRef]
- Malik, A.; Naz, T.; Rauf, A.; Shamir, M.F.; Yousaf, Z. f (R, T) Gravity Bouncing Universe with Cosmological Parameters. Eur. Phys. J. Plus 2024, 139, 276. [Google Scholar] [CrossRef]
- Harko, T.; (Babes-Bolyai University, 1 Kogalniceanu Street, Cluj, Romania). Private communication, 2024.
- Baffou, E.H.; Kpadonou, A.V.; Rodrigues, M.E.; Houndjo, M.J.S.; Tossa, J. Cosmological viable f (R, T) dark energy model: Dynamics and stability. Astrophys. Space Sci. 2015, 356, 173–180. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, V.; Jokweni, S.; Beesham, A. FLRW Transit Cosmological Model in f (R, T) Gravity. Universe 2024, 10, 272. https://doi.org/10.3390/universe10070272
Singh V, Jokweni S, Beesham A. FLRW Transit Cosmological Model in f (R, T) Gravity. Universe. 2024; 10(7):272. https://doi.org/10.3390/universe10070272
Chicago/Turabian StyleSingh, Vijay, Siwaphiwe Jokweni, and Aroonkumar Beesham. 2024. "FLRW Transit Cosmological Model in f (R, T) Gravity" Universe 10, no. 7: 272. https://doi.org/10.3390/universe10070272
APA StyleSingh, V., Jokweni, S., & Beesham, A. (2024). FLRW Transit Cosmological Model in f (R, T) Gravity. Universe, 10(7), 272. https://doi.org/10.3390/universe10070272