Centenary of Alexander Friedmann’s Prediction of Universe Expansion and the Prospects of Modern Cosmology
Abstract
:1. Introduction
2. The Standard Cosmological Model
3. Current Research Topics in Cosmology
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Friedman, A.A. Über die Krümmung des Raumes. Z. Phys. 1922, 10, 377–386. [Google Scholar] [CrossRef]
- Friedmann, A.A. Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes. Z. Phys. 1924, 21, 326–332. [Google Scholar] [CrossRef]
- Einstein, A. Bemerkung zu der Arbeit von A. Friedmann “Über die Krümmung des Raumes”. Z. Phys. 1922, 11, 326. [Google Scholar] [CrossRef]
- Einstein, A. Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. Sitzungsber. Königlich Preuss. Akad. Wiss. 1917, 6, 142–152, Translated: Cosmological considerations in the general theory of relativity. In The Collected Papers of Albert Einstein. Volume 6: The Berlin Years: Writings, 1914–1917 (English Translation Supplement); Klein, M.J., Kox, A.J., Schulman, R., Eds.; Princeton University Press: Princeton, NJ, USA, 1997; pp. 421–432. [Google Scholar]
- de Sitter, W. On Einstein’s theory of gravitation and its astronomical consequences. First paper. Mon. Not. R. Astron. Soc. 1916, 76, 699–728. [Google Scholar] [CrossRef]
- Lemaître, G. Un univers homogène de masse constante et de rayon croissant, rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Ann. Soc. Sci. Brux. A 1927, 47, 49–59. [Google Scholar]
- Robertson, H.P. Kinematics and world structure. Astrophys. J. 1935, 82, 284–301. [Google Scholar] [CrossRef]
- Walker, A.G. On Milne’s theory of world-structure. Proc. Lond. Math. Soc. 1937, 42, 90–127. [Google Scholar] [CrossRef]
- Hubble, E. A relation between distance and radial velocity among extra-galactic nebulae. Proc. Nat. Acad. Sci. USA 1929, 15, 168–173. [Google Scholar] [CrossRef]
- Gamow, G. Expanding universe and the origin of elements. Phys. Rev. 1946, 70, 572–573. [Google Scholar] [CrossRef]
- Alpher, R.A.; Bethe, H.; Gamow, G. The Origin of Chemical Elements. Phys. Rev. 1948, 73, 803–804. [Google Scholar] [CrossRef]
- Cyburt, R.H.; Fields, B.D.; Olive, K.A.; Yeh, T.-H. Big bang nucleosynthesis: Present status. Rev. Mod. Phys. 2016, 88, 015004. [Google Scholar] [CrossRef]
- Alpher, R.A.; Herman, R.C. Evolution of the Universe. Nature 1948, 162, 774–775. [Google Scholar] [CrossRef]
- Penzias, A.A.; Wilson, R.W. A Measurement of Excess Antenna Temperature at 4080 Mc/s. Astrophys. J. Lett. 1965, 142, 419–421. [Google Scholar] [CrossRef]
- Gawiser, E.; Silk, J. The cosmic microwave background radiation. Phys. Rep. 2000, 333–334, 245–267. [Google Scholar] [CrossRef]
- Partridge, R.B. The Cosmic Microwave Background Radiation; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Naselsky, P.D.; Novikov, D.I.; Novikov, I.D. The Physics of the Cosmic Microwave Background; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Evans, R. The Cosmic Microwave Background: How It Changed Our Understanding of the Universe; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Durrer, R. The Cosmic Microwave Background; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Hawking, S.W.; Ellis, G.F.R. The Cosmic Black-Body Radiation and the Existence of Singularities in our Universe. Astrophys. J. 1968, 152, 25–36. [Google Scholar] [CrossRef]
- Hawking, S.W.; Penrose, R. The Singularities of Gravitational Collapse and Cosmology. Proc. Roy. Soc. A Math. Phys. Engin. Sci. 1970, 314, 529–548. [Google Scholar]
- Guth, A.H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347–356. [Google Scholar] [CrossRef]
- Guth, A.H.; Weinberg, E.J. Could the universe have recovered from a slow first-order phase transition? Nucl. Phys. B 1983, 212, 321–364. [Google Scholar] [CrossRef]
- Guth, A.H. The Inflationary Universe: The Quest for a New Theory of Cosmic Origins; Basic Books: New York, NY, USA, 1997. [Google Scholar]
- Linde, A.D. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 1982, 108, 389–393. [Google Scholar] [CrossRef]
- Albrecht, A.; Steinhardt, P.J. Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking. Phys. Rev. Lett. 1982, 48, 1220–1223. [Google Scholar] [CrossRef]
- Linde, A.D. Chaotic inflation. Phys. Lett. B 1983, 129, 177–181. [Google Scholar] [CrossRef]
- Linde, A.D. Particle Physics and Inflationary Cosmology; Harwood: Chur, Switzerland, 1990. [Google Scholar]
- Mamayev, S.G.; Mostepanenko, V.M. Isotropic cosmological models determined by the vacuum quantum effects. Zh. Eksp. Teor. Fiz. 1980, 78, 20–27, Translated in Sov. Phys. JETP 1980, 51, 9–13. [Google Scholar]
- Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. A 1980, 91, 99–102. [Google Scholar] [CrossRef]
- Kofman, L.; Linde, A.; Starobinsky, A.A. Reheating after Inflation. Phys. Rev. Lett. 1994, 73, 3195–3198. [Google Scholar] [CrossRef]
- Kofman, L.; Linde, A.D.; Starobinsky, A.A. Towards the theory of reheating after inflation. Phys. Rev. D 1997, 56, 3258–3295. [Google Scholar] [CrossRef]
- Narozhnyi, N.B.; Nikishov, A.I. Pair production by a periodic electric field. Zh. Eksp. Teor. Fiz. 1973, 65, 862–874, Translated in Sov. Phys. JETP 1974, 38, 427–432. [Google Scholar]
- Mostepanenko, V.M.; Frolov, V.M. Production of particles from vacuum by a uniform electric-field with periodic time-dependence. Yad. Fiz. 1974, 19, 885–896, Translated in Sov. J. Nucl. Phys. 1974, 19, 451–456. [Google Scholar]
- Dolgov, A.D.; Kirilova, D.P. On particle creation by a time-dependent scalar field. Yad. Fiz. 1990, 51, 273–282, Translated in Sov. J. Nucl. Phys. 1990, 51, 172–177. [Google Scholar]
- Traschen, J.H.; Brandenberger, R.H. Particle production during out-of-equilibrium phase transitions. Phys. Rev. D 1990, 42, 2491–2504. [Google Scholar] [CrossRef]
- Boyanovsky, D.; de Vega, H.J.; Holman, R.; Lee, D.-S.; Singh, A. Dissipation via particle production in scalar field theories. Phys. Rev. D 1995, 51, 4419–4444. [Google Scholar] [CrossRef]
- Kaiser, D.I. Post-inflation reheating in an expanding universe. Phys. Rev. D 1996, 53, 1776–1783. [Google Scholar] [CrossRef]
- Fujisaki, H.; Kumekawa, K.; Yamaguchi, M.; Yoshimura, M. Particle production and dissipative cosmic field. Phys. Rev. D 1996, 53, 6805–6812. [Google Scholar] [CrossRef] [PubMed]
- Kasuya, S.; Kawasaki, M. Restriction to parametric resonant decay after inflation. Phys. Lett. B 1996, 388, 686–691. [Google Scholar] [CrossRef]
- Son, D.T. Reheating and thermalization in a simple scalar model. Phys. Rev. D 1996, 54, 3745–3761. [Google Scholar] [CrossRef]
- Riotto, A.; Tkachev, I.I. Non-equilibrium symmetry restoration beyond one loop. Phys. Lett. B 1996, 385, 57–62. [Google Scholar] [CrossRef]
- Allahverdi, R.; Campbell, B.A. Cosmological reheating and self-interacting final state bosons. Phys. Lett. B 1997, 395, 169–177. [Google Scholar] [CrossRef]
- Prokopec, T.; Roos, T.G. Lattice study of classical inflaton decay. Phys. Rev. D 1997, 55, 3768–3775. [Google Scholar] [CrossRef]
- Khlebnikov, S.; Tkachev, I. Relic gravitational waves produced after preheating. Phys. Rev. D 1997, 56, 653–660. [Google Scholar] [CrossRef]
- Moss, I.G.; Graham, C. Particle production and reheating of the inflationary universe. Phys. Rev. D 2008, 78, 123526. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Frieman, J.A.; Turner, M.S.; Huterer, D. Dark energy and the accelerating universe. Annu. Rev. Astron. Astrophys. 2008, 46, 385–432. [Google Scholar] [CrossRef]
- Peebles, P.J.E.; Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys. 2003, 75, 559–606. [Google Scholar] [CrossRef]
- Chiba, T.; De Felice, A.; Tsujikawa, S. Observational constraints on quintessence: Thawing, tracker, and scaling models. Phys. Rev. D 2013, 87, 083505. [Google Scholar] [CrossRef]
- Tsujikawa, S. Quintessence: A review. Class. Quant. Grav. 2013, 30, 214003. [Google Scholar] [CrossRef]
- Joyce, A.; Lombriser, L.; Schmidt, F. Dark energy vs. modified gravity. Ann. Rev. Nucl. Part. Sci. 2016, 66, 95–122. [Google Scholar] [CrossRef]
- Fujii, Y.; Maeda, K.-i. The Scalar-Tensor Theory of Gravitation; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Quiros, I. Selected topics in scalar-tensor theories and beyond. Int. J. Mod. Phys. D 2019, 28, 1930012. [Google Scholar] [CrossRef]
- Khoury, J.; Weltman, A. Chameleon Fields: Awaiting Surprises for Tests of Gravity in Space. Phys. Rev. Lett. 2004, 93, 171104. [Google Scholar] [CrossRef]
- Hinterbichler, K.; Khoury, J.; Levy, A.; Matas, A. Symmetron cosmology. Phys. Rev. D 2011, 84, 103521. [Google Scholar] [CrossRef]
- Brax, P.; Fischer, H.; Käding, C.; Pitschmann, M. The environment dependent dilaton in the laboratory and the solar system. Eur. Phys. J. C 2022, 82, 934. [Google Scholar] [CrossRef]
- Deruelle, N.; Uzan, J.-P.; de Forcrand-Millard, P. Relativity in Modern Physics; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Weinberg, S. A New Light Boson? Phys. Rev. Lett. 1978, 40, 223–226. [Google Scholar] [CrossRef]
- Wilczek, F. Problem of Strong P and T Invariance in the Presence of Instantons. Phys. Rev. Lett. 1978, 40, 279–283. [Google Scholar] [CrossRef]
- Mostepanenko, V.M. Prediction of the Expansion of the Universe Made by Alexander Friedmann and the Effect of Particle Creation in Cosmology. Universe 2024, 10, 84. [Google Scholar] [CrossRef]
- de Bernardis, P.; Ade, P.A.R.; Bock, J.J.; Bond, J.R.; Borrill, J.; Boscaleri, A.; Coble, K.; Crill, B.P.; De Gasperis, G.; Farese, P.C.; et al. A Flat Universe from High-Resolution Maps of the Cosmic Microwave Background Radiation. Nature 2020, 404, 955–959. [Google Scholar] [CrossRef]
- Colless, M.; Dalton, G.B.; Maddox, S.J.; Sutherland, W.J.; Norberg, P.; Cole, S.; Bland-Hawthorn, J.; Bridges, T.J.; Cannon, R.D.; Collins, C.A.; et al. The 2dF Galaxy Redshift Survey: Spectra and redshifts. Mon. Not. R. Astron. Soc. 2001, 328, 1039–1063. [Google Scholar] [CrossRef]
- Bennett, C.L.; Larson, D.; Weiland, J.L.; Jarosik, N.; Hinshaw, G.; Odegard, N.; Smith, K.M.; Hill, R.S.; Gold, B.; Halpern, M.; et al. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results. Astrophys. J. Suppl. 2013, 208, 20. [Google Scholar] [CrossRef]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck Collaboration. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar]
- Tristram, M.; Banday, A.J.; Douspis, M.; Garrido, X.; Górski, K.M.; Henrot-Versillé, S.; Hergt, L.T.; Iliĉ, S.; Keskitalo, R.; Lagache, G.; et al. Cosmological parameters derived from the final Planck data release (PR4). Astron. Astrophys. 2024, 682, A37. [Google Scholar] [CrossRef]
- Grib, A.A.; Pavlov, Y.V. Particles of Negative and Zero Energy in Black Holes and Cosmological Models. Universe 2023, 9, 217. [Google Scholar] [CrossRef]
- Penrose, R. Gravitational collapse: The role of general relativity. Riv. Nuovo C 1969, 1, 252–276. [Google Scholar]
- Penrose, R.; Floyd, R.M. Extraction of rotational energy from a black hole. Nat. Phys. Sci. 1971, 229, 177–179. [Google Scholar] [CrossRef]
- Toporensky, A.V.; Zaslavskii, O.B. Zero-momentum trajectories inside a black hole and high energy particle collisions. J. Cosmol. Astropart. Phys. 2019, 12, 063. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Kashargin, P.E.; Sushkov, S.V. Possible Wormholes in a Friedmann Universe. Universe 2023, 9, 465. [Google Scholar] [CrossRef]
- Bronnikov, K.A. Scalar-tensor theory and scalar charge. Acta Phys. Pol. B 1973, 4, 251–266. [Google Scholar]
- Ellis, H.G. Ether flow through a drainhole-A particle model in general relativity. J. Math. Phys. 1973, 14, 104–118. [Google Scholar] [CrossRef]
- Ellis, H.G. The evolving, flowless drainhole: A nongravitating-particle model in general relativity theory. Gen. Relat. Gravit. 1979, 10, 105–123. [Google Scholar] [CrossRef]
- Clément, G. A class of wormhole solutions to higher dimensional general relativity. Gen. Rel. Grav. 1984, 16, 131–138. [Google Scholar] [CrossRef]
- Clément, G. Axisymmetric regular multiwormhole solutions in five-dimensional general relativity. Gen. Rel. Grav. 1984, 16, 477–489. [Google Scholar] [CrossRef]
- Morris, M.S.; Thorne, K.S. Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity. Am. J. Phys. 1988, 56, 395–412. [Google Scholar] [CrossRef]
- Odintsov, S.D.; D’Onofrio, S.; Paul, T. Entropic Inflation in Presence of Scalar Field. Universe 2024, 10, 4. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Black holes and entropy. Phys. Rev. D 1973, 7, 2333–2346. [Google Scholar] [CrossRef]
- Tsallis, C. Possible Generalization of Boltzmann-Gibbs Statistics. J. Statist. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Jahromi, A.S.; Moosavi, S.A.; Moradpour, H.; Graça, J.P.M.; Lobo, I.P.; Salako, I.G.; Jawad, A. Generalized entropy formalism and a new holographic dark energy model. Phys. Lett. B 2018, 780, 21–24. [Google Scholar] [CrossRef]
- Majhi, A. Non-extensive Statistical Mechanics and Black Hole Entropy from Quantum Geometry. Phys. Lett. B 2017, 775, 32–36. [Google Scholar] [CrossRef]
- Oliveira, V.G.; de Oliveira Neto, G.; Shapiro, I.L. Kantowski-Sachs Model with a Running Cosmological Constant and Radiation. Universe 2024, 10, 83. [Google Scholar] [CrossRef]
- Jacobs, K.C. Spatially homogeneous and euclidean cosmological models with shear. Astrophys. J. 1968, 153, 661–678. [Google Scholar] [CrossRef]
- Weber, E. Kantowski-Sachs cosmological models approaching isotropy. J. Math. Phys. 1984, 25, 3279–3285. [Google Scholar] [CrossRef]
- Grøn, Ø. Transition of a Kantowski-Sachs cosmological model into an inflationary era. J. Math. Phys. 1986, 27, 1490–1491. [Google Scholar] [CrossRef]
- Vargas Moniz, P. Kantowski-Sachs universes and the cosmic no hair conjecture. Phys. Rev. D 1993, 47, 4315–4321. [Google Scholar] [CrossRef] [PubMed]
- Byland, S.; Scialom, D. Evolution of the Bianchi I, The Bianchi III and the Kantowski-Sachs universe: Isotropization and inflation. Phys. Rev. D 1998, 57, 6065–6074. [Google Scholar] [CrossRef]
- Parisi, L.; Radicella, N.; Vilasi, G. Kantowski-Sachs Universes sourced by a Skyrme fluid. Phys. Rev. D 2015, 91, 063533. [Google Scholar] [CrossRef]
- Kamenshchik, A.; Petriakova, P. Regular Friedmann Universes and Matter Transformations. Universe 2024, 10, 137. [Google Scholar] [CrossRef]
- Creminelli, P.; Nicolis, A.; Trincherini, E. Galilean Genesis: An Alternative to inflation. J. Cosmol. Astropart. Phys. 2010, 2010, 021. [Google Scholar] [CrossRef]
- Easson, D.; Sawicki, I.; Vikman, A. G-bounce. J. Cosmol. Astropart. Phys. 2011, 11, 021. [Google Scholar] [CrossRef]
- Spallucci, E.; Smailagic, A. Regular black holes from from semi-classical down to Planckian size. Int. J. Mod. Phys. D 2017, 26, 1730013. [Google Scholar] [CrossRef]
- Sebastiani, L.; Zerbini, S. Some remarks on non-singular spherically symmetric space-times. Astronomy 2022, 1, 99–125. [Google Scholar] [CrossRef]
- Grib, A.A.; Pavlov, Y.V. On Phase Transitions during Collisions near the Horizon of Black Holes. Universe 2024, 10, 131. [Google Scholar] [CrossRef]
- Kolb, E.W.; Turner, M.S. The Early Universe; Addison-Wesley: Redwood City, CA, USA, 1990. [Google Scholar]
- Pasechnik, R.; Šumbera, M. Phenomenological review on quark-gluon plasma: Concepts vs. observations. Universe 2017, 3, 7. [Google Scholar] [CrossRef]
- Gorbunov, D.S.; Rubakov, V.A. Introduction to the Theory of the Early Universe: Hot Big Bang Theory; World Scientific: Singapore, 2018. [Google Scholar]
- Saha, B. Spinor Field in FLRW Cosmology. Universe 2023, 9, 243. [Google Scholar] [CrossRef]
- De Andrade, V.C.; Guillen, L.C.T.; Pereira, J.G. Gravitational energy momentum density in teleparallel gravity. Phys. Rev. Lett. 2000, 84, 4533–4536. [Google Scholar] [CrossRef] [PubMed]
- Awad, A.; El Hanafy, W.; Nashed, G.G.L.; Odintsov, S.D.; Oikonomou, V.K. Constant-roll inflation in f(T) teleparallel gravity. J. Cosmol. Astropart. Phys. 2018, 7, 026. [Google Scholar] [CrossRef]
- Krššák, M.; van den Hoogen, R.J.; Pereira, J.G.; Böhmer, C.G.; Coley, A.A. Teleparallel theories of gravity: Illuminating a fully invariant approach. Class. Quantum Grav. 2019, 36, 183001. [Google Scholar] [CrossRef]
- Järv, L.; Kuusk, P. Conventionalism, Cosmology and Teleparallel Gravity. Universe 2024, 10, 1. [Google Scholar] [CrossRef]
- Beltrán Jiménez, J.; Heisenberg, L.; Koivisto, T. Coincident General Relativity. Phys. Rev. D 2018, 98, 044048. [Google Scholar] [CrossRef]
- Capozziello, S.; De Falco, V.; Ferrara, C. Comparing equivalent gravities: Common features and differences. Eur. Phys. J. C 2022, 82, 865. [Google Scholar] [CrossRef]
- Saburov, S.; Ketov, S.V. Improved Model of Primordial Black Hole Formation after Starobinsky Inflation. Universe 2023, 9, 323. [Google Scholar] [CrossRef]
- Appleby, S.A.; Battye, R.A.; Starobinsky, A.A. Curing singularities in cosmological evolution of F(R) gravity. J. Cosmol. Astropart. Phys. 2010, 6, 5. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Faraoni, V. f(R) Theories of Gravity. Rev. Mod. Phys. 2010, 82, 451–497. [Google Scholar] [CrossRef]
- Papanikolaou, T.; Tzerefos, C.; Basilakos, S.; Saridakis, E.N. Scalar induced gravitational waves from primordial black hole Poisson fluctuations in f(R) gravity. J. Cosmol. Astropart. Phys. 2022, 10, 13. [Google Scholar] [CrossRef]
- Chiba, T. 1/R gravity and scalar-tensor gravity. Phys. Lett. B 2003, 575, 1–3. [Google Scholar] [CrossRef]
- Brans, C.; Dicke, R.H. Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 1961, 124, 925–935. [Google Scholar] [CrossRef]
- Kofinas, G. The complete Brans-Dicke theories. Ann. Phys. 2017, 376, 425–435. [Google Scholar] [CrossRef]
- Sola, J.; Gomez-Valent, A.; de Cruz Perez, J.; Moreno-Pulido, C. Brans-Dicke cosmology with a Λ-term: A possible solution to ΛCDM tensions. Class. Quantum Grav. 2020, 37, 245003. [Google Scholar]
- Fabris, J.C.; Falciano, F.T.; Guimarães, L.F.; Pinto-Neto, N. On the Possibility of a Static Universe. Universe 2024, 10, 92. [Google Scholar] [CrossRef]
- Singh, V.; Jokweni, S.; Beesham, A. FRLW transit cosmological model in f(R,T) gravity. Universe 2024, 10, 272. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N.; Nojiri, S.; Odintsov, S.D. f(R,T) gravity. Phys. Rev. D 2011, 84, 024020. [Google Scholar] [CrossRef]
- Tretyakov, P.V. Cosmology in modified f(R,T)-gravity. Eur. Phys. J. C 2018, 78, 896. [Google Scholar] [CrossRef]
- Rudra, P.; Giri, K. Observational constraint in f(R,T) gravity from the cosmic chronometers and some standard distance measurement parameters. Nucl. Phys. B 2021, 967, 115428. [Google Scholar] [CrossRef]
- Bouali, A.; Chaudhary, H.; Harko, T.; Lobo, F.S.N.; Ouali, T.; Pinto, M.A.S. Observational constraints and cosmological implications of scalar-tensor f(R,T) gravity. Month. Not. Roy. Astron. Soc. 2023, 526, 4192–4208. [Google Scholar] [CrossRef]
- Balakin, A.; Shakirzyanov, A. An Isotropic Cosmological Model with Aetherically Active Axionic Dark Matter. Universe 2024, 10, 74. [Google Scholar] [CrossRef]
- Popov, A.A.; Rubin, S.G.; Sakharov, A.S. Primordial Black Holes from Spatially Varying Cosmological Constant Induced by Field Fluctuations in Extra Dimensions. Universe 2024, 10, 166. [Google Scholar] [CrossRef]
- Jacobson, T.; Mattingly, D. Einstein-aether waves. Phys. Rev. D 2004, 70, 024003. [Google Scholar] [CrossRef]
- Heinicke, C.; Baekler, P.; Hehl, F.W. Einstein-aether theory, violation of Lorentz invariance, and metric-affine gravity. Phys. Rev. D 2005, 72, 025012. [Google Scholar] [CrossRef]
- Carr, B.; Kohri, K.; Sendouda, Y.; Yokoyama, J. Constraints on primordial black holes. Rept. Prog. Phys. 2021, 84, 116902. [Google Scholar] [CrossRef] [PubMed]
- Ivanchik, A.V.; Kurichin, O.A.; Yurchenko, V.Y. Neutrino at Different Epochs of the Friedmann Universe. Universe 2024, 10, 169. [Google Scholar] [CrossRef]
- Boyarsky, A.; Ruchayskiy, O.; Shaposhnikov, M. The Role of Sterile Neutrinos in Cosmology and Astrophysics. Ann. Rev. Nucl. Part. Sci. 2009, 59, 191–214. [Google Scholar] [CrossRef]
- Chernikov, P.; Ivanchik, A. The influence of the effective number of active and sterile neutrinos on the determination of the values of cosmological parameters. Astron. Lett. 2022, 48, 689–701. [Google Scholar] [CrossRef]
- Serebrov, A.; Samoilov, R.; Ivochkin, V.; Fomin, A.K.; Zinoviev, V.G.; Neustroev, P.V.; Golovtsov, V.L.; Volkov, S.S.; Chernyj, A.V.; Zherebtsov, O.M.; et al. Search for sterile neutrinos with the Neutrino-4 experiment and measurement results. Phys. Rev. D 2021, 104, 032003. [Google Scholar] [CrossRef]
- Barinov, V.; Cleveland, B.; Danshin, S.; Ejiri, H.; Elliott, S.R.; Frekers, D.; Gavrin, V.N.; Gorbachev, V.V.; Gorbunov, D.S.; Haxton, W.C.; et al. Results from the Baksan Experiment on Sterile Transitions (BEST). Phys. Rev. Lett. 2022, 128, 232501. [Google Scholar] [CrossRef]
- Capozziello, S.; Sarracino, G.; De Somma, G. A Critical Discussion on the H0 Tension. Universe 2024, 10, 140. [Google Scholar] [CrossRef]
- Riess, A.G.; Yuan, W.; Macri, L.M.; Scolnic, D.; Brout, D.; Casertano, S.; Jones, D.O.; Murakami, Y.; Anand, G.S.; Breuval, L.; et al. A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km/s/Mpc Uncertainty from the Hubble Space Telescope and the SH0ES Team. Astrophys. J. Lett. 2022, 934, L7. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Mostepanenko, V.M. The Nature of Dark Energy and Constraints on Its Hypothetical Constituents from Force Measurements. Universe 2024, 10, 119. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Mostepanenko, V.M. Improved constraints on the coupling constants of axion-like particles to nucleons from recent Casimir-less experiment. Eur. Phys. J. C 2015, 75, 164. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Mostepanenko, V.M. Constraints on axionlike particles and non-Newtonian gravity from measuring the difference of Casimir forces. Phys. Rev. D 2017, 95, 123013. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L. Recent breakthrough and outlook in constraining the non-Newtonian gravity and axion-like particles from Casimir physics. Eur. Phys. J. C 2017, 77, 315. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Kuusk, P.; Mostepanenko, V.M. Constraints on non-Newtonian gravity and axionlike particles from measuring the Casimir force in nanometer separation range. Phys. Rev. D 2020, 101, 056013. [Google Scholar] [CrossRef]
- Brax, P.; van de Bruck, C.; Davis, A.-C.; Mota, D.F.; Shaw, D. Detecting chameleons through Casimir force measurements. Phys. Rev. D 2007, 76, 124034. [Google Scholar] [CrossRef]
- Almasi, A.; Brax, P.; Iannuzzi, D.; Sedmik, R.I.P. Force sensor for chameleon and Casimir force experiments with parallel-plate configuration. Phys. Rev. D 2015, 91, 102002. [Google Scholar] [CrossRef]
- Fischer, H.; Käding, C.; Sedmik, R.I.P.; Abele, H.; Brax, P.; Pitschmann, M. Search for environment-dependent dilatons. Phys. Dark Univ. 2024, 43, 101419. [Google Scholar] [CrossRef]
- Bambi, C. Can the supermassive objects at the centers of galaxies be traversable wormholes? The first test of strong gravity for mm/sub-mm very long baseline interferometry facilities. Phys. Rev. D 2013, 87, 107501. [Google Scholar] [CrossRef]
- Zhou, M.; Cardenas-Avendano, A.; Bambi, C.; Kleihaus, B.; Kunz, J. Search for astrophysical rotating Ellis wormholes with X-ray reflection spectroscopy. Phys. Rev. D 2016, 94, 024036. [Google Scholar] [CrossRef]
- Tripathi, A.; Zhou, B.; Abdikamalov, A.B.; Ayzenberg, D.; Bambi, C. Search for traversable wormholes in active galactic nuclei using X-ray data. Phys. Rev. D 2020, 101, 064030. [Google Scholar] [CrossRef]
- Paul, S.; Shaikh, R.; Banerjee, P.; Sarkar, T. Observational signatures of wormholes with thin accretion disks. J. Cosmol. Astropart. Phys. 2020, 2020, 055. [Google Scholar] [CrossRef]
- Piotrovich, M.; Krasnikov, S.; Buliga, S.; Natsvlishvili, T. Search for Wormhole Candidates: Accreting Wormholes with Monopole Magnetic Fields. Universe 2024, 10, 108. [Google Scholar] [CrossRef]
- Parker, L. Quantized fields and particle creation in expanding universes. I. Phys. Rev. 1969, 183, 1057–1068. [Google Scholar] [CrossRef]
- Parker, L. Quantized fields and particle creation in expanding universes. II. Phys. Rev. D 1971, 3, 346–356. [Google Scholar] [CrossRef]
- Grib, A.A.; Mamayev, S.G.; Mostepanenko, V.M. Particle creation from vacuum in homogeneous isotropic models of the Universe. Gen. Relat. Gravit. 1976, 7, 535–547. [Google Scholar] [CrossRef]
- Mamayev, S.G.; Mostepanenko, V.M.; Starobinskii, A.A. Particle creation from the vacuum near a homogeneous isotropic singularity. Zh. Eksp. Teor. Fiz. 1976, 70, 1577–1591, Translated in Sov. Phys. JETP 1976, 43, 823–830. [Google Scholar]
- Grib, A.A.; Mamayev, S.G.; Mostepanenko, V.M. Vacuum stress-energy tensor and particle creation in isotropic cosmological models. Fortschr. Der Phys. 1980, 28, 173–199. [Google Scholar] [CrossRef]
- Berezin, V.; Ivanova, I. Conformally Invariant Gravity and Gravitating Mirages. Universe 2024, 10, 147. [Google Scholar] [CrossRef]
- Ray, J.R. Lagrangian Density for Perfect Fluids in General Relativity. J. Math. Phys. 1972, 13, 1451–1453. [Google Scholar] [CrossRef]
- Berezin, V.A. Unusual Hydrodynamics. Int. J. Mod. Phys. A 1987, 2, 1591–1615. [Google Scholar] [CrossRef]
- Boccaletti, D.; De Sabbata, V.; Fortini, P.; Gualdi, C. Space-Time Curvature Mode Quanta. Nuovo Cimento. 1970, 70, 129–146. [Google Scholar] [CrossRef]
- Raffelt, G.; Stodolsky, L. Mixing of the Photon with Low Mass Particles. Phys. Rev. D 1988, 37, 1237–1249. [Google Scholar] [CrossRef]
- Dolgov, A.D.; Ejlli, D. Resonant high energy graviton to photon conversion at post recombination epoch. Phys. Rev. D 2013, 87, 104007. [Google Scholar] [CrossRef]
- Dolgov, A.D.; Panasenko, L.A.; Bochko, V.A. Graviton to Photon Conversion in Curved Space-Time and External Magnetic Field. Universe 2024, 10, 7. [Google Scholar] [CrossRef]
- Jenkovszky, L.; Kurochkin, Y.A.; Shaikovskaya, N.D.; Soloviev, V.O. Nonrelativistic Quantum Mechanical Problem for the Cornell Potential in Lobachevsky Space. Universe 2024, 10, 76. [Google Scholar] [CrossRef]
- Sergeenko, M.N. Masses and widths of Resonances for the Cornell Potential. Adv. High Energy Phys. 2013, 2013, 325431. [Google Scholar] [CrossRef]
- Moschella, U. The Spectral Condition, Plane Waves, and Harmonic Analysis in de Sitter and Anti-de Sitter Quantum Field Theories. Universe 2024, 10, 199. [Google Scholar] [CrossRef]
- Bros, J.; Moschella, U. Two point functions and quantum fields in de Sitter universe. Rev. Math. Phys. 1996, 8, 327–392. [Google Scholar] [CrossRef]
- Bros, J.; Epstein, H.; Moschella, U. Analyticity properties and thermal effects for general quantum field theory on de Sitter space-time. Commun. Math. Phys. 1998, 196, 535–570. [Google Scholar] [CrossRef]
- Bros, J.; Epstein, H.; Moschella, U. Towards a general theory of quantized fields on the anti-de Sitter space-time. Commun. Math. Phys. 2002, 231, 481–528. [Google Scholar] [CrossRef]
- Barvinsky, A.O.; Vilkovisky, G.A. The Generalized Schwinger-DeWitt Technique in Gauge Theories and Quantum Gravity. Phys. Rep. 1985, 119, 1–74. [Google Scholar] [CrossRef]
- Green, M.B.; Schwarz, J.H.; Witten, E. Superstring Theory. Vol. l; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Carlip, S. Quantum Gravity: A Progress Report. Rep. Progr. Phys. 2001, 64, 885–942. [Google Scholar] [CrossRef]
- Rovelli, C. Quantum Gravity; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Kiefer, C. Quantum Gravity, 3rd ed.; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- DeWitt, B.S. Quantum Theory of Gravity. I. The Canonical Theory. Phys. Rev. 1967, 160, 1113–1148, Erratum in Phys. Rev. 1968, 171, 1834. [Google Scholar] [CrossRef]
- DeWitt, B.S. Quantum Theory of Gravity. II. The Manifestly Covariant Theory. Phys. Rev. 1967, 162, 1195–1238, Erratum in Phys. Rev. 1968, 171, 1834. [Google Scholar] [CrossRef]
- DeWitt, B.S. Quantum Theory of Gravity. III. Applications of the Covariant Theory. Phys. Rev. 1967, 162, 1239–1255, Erratum in Phys. Rev. 1968, 171, 1834. [Google Scholar] [CrossRef]
- Esposito, G. DeWitt Boundary Condition in One-Loop Quantum Cosmology. Universe 2023, 9, 187. [Google Scholar] [CrossRef]
- Hartle, J.B.; Hawking, S.W.; Hertog, T. Classical universes of the no-boundary quantum state. Phys. Rev. D 2008, 77, 123537. [Google Scholar] [CrossRef]
- Gorobey, N.; Lukyanenko, A.; Goltsev, A.V. No-Boundary Wave Functional and Own Mass of the Universe. Universe 2024, 10, 101. [Google Scholar] [CrossRef]
- Abdalla, E.; Abellán, G.F.; Aboubrahim, A.; Agnello, A.; Akarsu, Ö.; Akrami, Y.; Alestas, G.; Aloni, D.; Amendola, L.; Anchordoqui, L.A.; et al. Cosmology Intertwined: A Review of the Particle Physics, Astrophysics, and Cosmology Associated with the Cosmological Tensions and Anomalies. J. High Energy Astrophys. 2022, 34, 49–211. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klimchitskaya, G.L.; Mostepanenko, V.M.; Sushkov, S.V. Centenary of Alexander Friedmann’s Prediction of Universe Expansion and the Prospects of Modern Cosmology. Universe 2024, 10, 329. https://doi.org/10.3390/universe10080329
Klimchitskaya GL, Mostepanenko VM, Sushkov SV. Centenary of Alexander Friedmann’s Prediction of Universe Expansion and the Prospects of Modern Cosmology. Universe. 2024; 10(8):329. https://doi.org/10.3390/universe10080329
Chicago/Turabian StyleKlimchitskaya, Galina L., Vladimir M. Mostepanenko, and Sergey V. Sushkov. 2024. "Centenary of Alexander Friedmann’s Prediction of Universe Expansion and the Prospects of Modern Cosmology" Universe 10, no. 8: 329. https://doi.org/10.3390/universe10080329
APA StyleKlimchitskaya, G. L., Mostepanenko, V. M., & Sushkov, S. V. (2024). Centenary of Alexander Friedmann’s Prediction of Universe Expansion and the Prospects of Modern Cosmology. Universe, 10(8), 329. https://doi.org/10.3390/universe10080329