The Nuclear Astrophysics Program at the CERN n_TOF Facility: Results and Perspectives
Abstract
1. Introduction
2. The n_TOF Facility
3. Experimental Setups
3.1. C6D6 Liquid Scintillators
3.2. The Segmented Total Energy Detector
3.3. The Total Absorption Calorimeter
3.4. Solid-State Detectors
4. The Relevant Role of Neutron Capture Cross Sections Along the Nucleosynthesis Path
- The relatively small neutron capture cross section of nuclides with neutron magic numbers plays a crucial role along the nucleosynthesis path because they act as bottlenecks. The abundance of a stable isotope of mass A is determined by the respective rates for production and destruction, as follows:In a steady-state situation (typical of the s-process) with = 0, the product is constant for all A. Indeed, the distribution appears roughly constant in mass regions between magic neutron numbers (50, 82, 126), thus indicating that assumed flow equilibrium is at least partly reached. On the contrary, the very small neutron capture cross sections of neutron magic isotopes limit the reaction flow and give rise to structures in the distribution. As a consequence, three main peaks are present in the elemental abundance distribution close to neutron magic numbers.
- The branchings on the s-process path occurs due to unstable isotopes with a relatively long half-life () larger than about a year. The neutron capture process can proceed or not through these isotopes strictly depending on the stellar conditions (temperature and neutron density).
5. Bottlenecks Along the Nucleosynthesis Path
5.1. The Nucleosynthesis Path Around the Neutron Magic Number N = 50
5.2. The Nucleosynthesis Path Around the Neutron Magic Number N = 82
5.2.1. 139L
5.2.2. 140C
5.3. The Nucleosynthesis Path Around the Neutron Magic Number N = 126 and the End of the s-Process Nucleosynthesis
6. Branching Points
6.1. 63Ni(n, )
6.2. 79Se(n, )
6.3. 94Nb(n, )
6.4. 151Sm(n, )
6.5. 171Tm(n, )
6.6. 204Tl(n, )
7. Neutron Sources and Poisons in the Stars
7.1. 14N(n, p)
7.2. 25Mg(n, )
8. Primordial Nucleosynthesis
9. Cosmochronology
10. Cosmic -Ray Emitter 26Al
11. Future and Perspectives
- Measurements of highly radioactive samples or samples available in low amount of massAs mentioned earlier, the high instantaneous neutron flux and excellent neutron energy resolution make the n_TOF facility well suited for measuring radioactive isotopes to suppress backgrounds from radioactivity and sample impurities. In the past years, a collaboration with several laboratories (CERN-Isolde, ILL, Joint Research Center (JRC) Geel, Los Alamos National Laboratory (LANL), PSI) that are able to isolate desired isotopes has been fruitfully established. In general, isotopes with half-lives higher than about a hundred of days available in a sufficient amount can be measured using the time-of-flight technique, while the activation technique can be applied even in more challenging physics cases.One example is the first time-of-flight measurement of the 88Zr(n, ) reaction in 2024, during which a small amount of 88Zr, 1.68 μg, = 83 days, was placed in EAR2 [123]. This measurement was possible thanks to an efficient collaboration between LANL for the production of the sample material, PSI for handling and preparation of the sample, and CERN for the time-of-flight measurement. Given this success, new isotopes have been added to the list of possible measurements, opening a path to measure nuclei involved in the i-process nucleosynthesis.
- Possibility to measure gaseous samplesThanks to an in-house developed gas cell that can resist the pressure of hundreds of bar, a gas target, namely, 40Ar, was used for the first time in 2024 at n_TOF. Given that nucleosynthesis processes involving noble gases (Ne, Ar and Kr) take place for from few to hundreds keV, depending on the stellar conditions [124], new neutron capture measurements can be scheduled in the near future.An opportunity to work with liquid target will be definitely exploited too.
- Installation of a neutron transmission stationA full description of parameters of individual resonances, i.e., energy, neutron and widths, spin and parity, can be often extracted from the combined analysis of capture and transmission measurements. In transmission experiments, the observed quantity is the fraction of the neutron beam that passes through the sample without any interaction. The transmission factor is obtained from the ratio of a sample-in and a sample-out measurement, both corrected for dead-time effects and background contributions.Recent tests and engineering studies have been conducted to set up a transmission station in the neutron beamline leading to EAR1. The first measurement on 63,65Cu isotopes was performed in 2025.
- Use of activation measurementsAnother chance to overcome the limits of measurements on isotopes available with a very low mass and/or with a short decay time can be to exploit the activation technique, using the high neutron fluxes available at the NEAR station. The activation technique consists of irradiation of the sample of interest and subsequent radioactive decay counting. Hence, this technique is limited to cases where the reaction product is unstable.At the NEAR station, about 3 m from the neutron spallation target, the method of filtering the neutron spectrum has been developed. This method allows for using absorbers in the neutron beam to create quasi-stellar neutron spectra and hence directly measure an averaged cross section. Use of these “quasi-stellar” spectra corresponding to different T for measurements of MACS is planned. Such measurements will be particularly beneficial for unstable or low-mass samples, for cases in which extremely low reaction rates are expected. Furthermore, future plans include implementing the fast cyclic activation technique, allowing for performing activation measurements on short-lived reaction products, particularly important for new astrophysical scenarios such those envisaged by the i-process.In addition, the collaboration was recently proposed to install a neutron activation station n_ACT at the recently endorsed SPS Beam Dump Facility (BDF), which will operate the Search for Hidden Particles (SHiP) experiment [125]. At the core of this facility, a high-Z spallation target/dump will be located to absorb proton beams at 400 GeV/c with an intensity of 4 × 1013 protons per proton pulse, with an average beam power of roughly 350 kW, most of it fully deposited in the target. The expected neutron flux at n_ACT will be about a factor 1000 higher than at the NEAR activation station. An expression of interest has been submitted to the CERN SPS and PS Experiments Committee, and a full proposal is currently under preparation.
12. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AGB | Asymptotic Giant Branch |
| CERN | European Council for Nuclear Research |
| CLiP | Cosmological Lithium Problem |
| IAEA | International Atomic Energy Agency |
| ILL | Institute Laue–Langevin |
| JRC | Joint Research Center |
| LANL | Los Alamos National Laboratory |
| MACS | Maxwellian Averaged Cross Section |
| n_TOF | neutron Time Of Flight |
| PSI | Paul Scherrer Institute |
| SEF | Stellar Enhanced factor |
| sTED | segmented Total Energy Detector |
| TAC | Total Absorption Calorimeter |
Appendix A. Membership of The n_TOF Collaboration
Affiliations
- 1
- Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, 34149 Trieste, Italy
- 2
- European Organization for Nuclear Research (CERN), 1211 Geneva, Switzerland
- 3
- School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK
- 4
- Agenzia Nazionale per le Nuove Tecnologie (ENEA), 40129 Bologna, Italy
- 5
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
- 6
- University of Dallas, 1845 East Northgate Drive, Irving, Texas 75062-4736, USA
- 7
- Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, 95125 Catania, Italy
- 8
- Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
- 9
- University of Manchester, Manchester M13 9PL, UK
- 10
- Technische Universitát Wien, 1040 Vienna, Austria
- 11
- Instituto de Física Corpuscular, CSIC—Universidad de Valencia, 46980 Paterna, Spain
- 12
- Universidad de Sevilla, 41004 Sevilla, Spain
- 13
- CEA Irfu, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
- 14
- Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
- 15
- Horia Hulubei National Institute of Physics and Nuclear Engineering, P.O. Box MG-6, RO-76900 Bucharest, Romania
- 16
- University of Santiago de Compostela, Santiago de Compostela, 15705 Compostela, Spain
- 17
- Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, 40127 Bologna, Italy
- 18
- Department of Physics, University of Trieste, 34149 Trieste, Italy
- 19
- Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, 00044 Frascati (Roma), Italy
- 20
- Istituto Nazionale di Fisica Nucleare, Sezione di Torino, 10125 Torino, Italy
- 21
- Department of Physics, University of Torino, 10125 Torino, Italy
- 22
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70121 Bari, Italy
- 23
- Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, 06123 Perugia, Italy
- 24
- Istituto Nazionale di Astrofisica— Osservatorio Astronomico d’Abruzzo, 64100 Collurania, Italy
- 25
- Goethe University Frankfurt, 60323 Frankfurt am Main, Germany
- 26
- National Technical University of Athens, Athens, 10682, Greece
- 27
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany
- 28
- University of Ioannina, 451 10 Ioannina, Greece
- 29
- University of York, York YO10 5DD, UK
- 30
- Affiliated with an Institute Covered by a Cooperation Agreement with CERN
- 31
- University of Granada, 18010 Granada, Spain
- 32
- University of Lodz, 90-137 Łódź, Poland
- 33
- Istituto Nazionale di Fisica Nucleare, Sezione di Roma1, 00185 Roma, Italy
- 34
- European Commission, Joint Research Centre, Geel, Retieseweg 111, B-2440 Geel, Belgium
- 35
- Charles University, 11000 Prague, Czech Republic
- 36
- Dipartimento di Fisica e Astronomia, Universitá di Bologna, 40129 Bologna, Italy
- 37
- Istituto Nazionale di Fisica Nucleare, Laboratori nazionali di Legnaro, 35020 Legnaro (Padova), Italy
- 38
- Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
- 39
- Consiglio Nazionale delle Ricerche, 00185 Bari, Italy
- 40
- Istituto Nazionale di Fisica Nucleare, Sezione di Catania, 95123 Catania, Italy
- 41
- Department of Physics and Astronomy, University of Catania, 95131 Catania, Italy
- 42
- Instituto Superior Técnico, 1049-001 Lisbon, Portugal
- 43
- Japan Atomic Energy Agency (JAEA), Tokai-mura 319-1184, Japan
- 44
- Department of Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden
- *
- Correspondence: paolo.milazzo@ts.infn.it
References
- Wagoner, R.V.; Fowler, W.A.; Hoyle, F. Synthesis of Elements at very high Temperatures. Astrophys. J. 1967, 148, 3. [Google Scholar] [CrossRef]
- Schramm, D.N.; Turner, M.S. Big-bang nucleosynthesis enters the precision era. Rev. Mod. Phys. 1998, 70, 303. [Google Scholar] [CrossRef]
- Pitrou, C.; Coc, A.; Uzan, J.P.; Vangioni, E. Precision big bang nucleosynthesis with improved Helium-4 predictions. Phys. Rep. 2018, 754, 1. [Google Scholar] [CrossRef]
- Alpher, R.A.; Bethe, H.A.; Gamow, G. The Origin of Chemical Elements. Phys. Rev. 1948, 73, 803. [Google Scholar] [CrossRef]
- Burbidge, E.M.; Burbidge, G.R.; Fowler, W.A.; Hoyle, F. Synthesis of the Elements in Stars. Rev. Mod. Phys. 1957, 29, 547. [Google Scholar] [CrossRef]
- Cameron, A.G.W. Stellar Evolution, Nuclear Astrophysics, and Nucleogenesis, 2nd ed.; Technical Report; Courier Corporation: North Chelmsford, MA, USA, 1957. [Google Scholar]
- Suess, H.E.; Urey, H.C. Abundances of the Elements. Rev. Mod. Phys. 1956, 28, 53. [Google Scholar] [CrossRef]
- Cameron, A.G.W. Abundances of the elements in the solar system. Space Sci. Rev. 1973, 15, 121. [Google Scholar] [CrossRef]
- Anders, E.; Grevesse, N. Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta 1989, 53, 197. [Google Scholar] [CrossRef]
- Asplund, M.; Grevesse, N.; Jacques Sauval, A.; Scott, P. The Chemical Composition of the Sun. Annu. Rev. Astron. Astrophys. 2009, 47, 481. [Google Scholar] [CrossRef]
- Käppeler, F.; Gallino, R.; Bisterzo, S.; Aoki, W. The s-process: Nuclear physics, stellar models, and observations. Rev. Mod. Phys. 2011, 83, 157. [Google Scholar] [CrossRef]
- Lodders, K. Relative Atomic Solar System Abundances, Mass Fractions, and Atomic Masses of the Elements and Their Isotopes, Composition of the Solar Photosphere, and Compositions of the Major Chondritic Meteorite Groups. Space Sci. Rev. 2021, 217, 44. [Google Scholar] [CrossRef]
- Cowan, J.J.; Sneden, C.; Lawler, J.E.; Aprahamian, A.; Wiescher, M.; Langanke, K.; Martínez-Pinedo, G.; Thielemann, F.K. Origin of the heaviest elements: The rapid neutron-capture process. Rev. Mod. Phys. 2021, 93, 015002. [Google Scholar] [CrossRef]
- Arlandini, C.; Käppeler, F.; Wisshak, K.; Gallino, R.; Lugaro, M. Neutron capture in low mass asymptotic giant branch stars: Cross-sections and abundance signatures. Astrophys. J. 1999, 525, 886. [Google Scholar] [CrossRef]
- Sneden, C.; Cowan, J.J.; Gallino, R. Neutron-capture elements in the early galaxy. ARA&A 2008, 46, 241. [Google Scholar]
- Prantzos, N.; Abia, C.; Cristallo, S.; Limongi, M.; Chieffi, A. Chemical evolution with rotating massive star yields II. A new assessment of the solar s- and r-process components. Mon. Not. R. Astron. Soc. 2020, 491, 1832. [Google Scholar] [CrossRef]
- Straniero, O.; Gallino, R.; Cristallo, S. s-process in low-mass asymptotic giant branch stars. Nucl. Phys. A 2006, 777, 311. [Google Scholar] [CrossRef]
- Karakas, A.I.; Lattanzio, J.C. The dawes review 2: Nucleosynthesis and stellar yields of low- and intermediate-mass single stars. Pub. Astron. Soc. Aust. 2014, 31, e030. [Google Scholar] [CrossRef]
- Peters, J.G. Nucleosynthesis by the s-process in stars of 9 and 15 Solar Masses. Astrophys. J. 1968, 154, 225. [Google Scholar] [CrossRef]
- Heil, M.; Käppeler, F.; Uberseder, E.; Gallino, R.; Pignatari, M. The s process in massive stars. Prog. Part. Nucl. Phys. 2007, 59, 174. [Google Scholar] [CrossRef]
- Choplin, A.; Siess, L.; Goriely, S. The intermediate neutron capture process. Astron. Astrophys. 2021, 648, A119. [Google Scholar] [CrossRef]
- Vescovi, D.; Cristallo, S.; Busso, M.; Liu, N. Magnetic-buoyancy-induced Mixing in AGB Stars: Presolar SiC Grains. Astrophys. J. Lett. 2020, 897, L25. [Google Scholar] [CrossRef]
- Massimi, C.; Koehler, P.; Bisterzo, S.; Colonna, N.; Gallino, R.; Gunsing, F.; Käppeler, F.; Lorusso, G.; Mengoni, A.; Pignatari, M.; et al. Resonance neutron-capture cross sections of stable magnesium isotopes and their astrophysical implications. Phys. Rev. C 2012, 85, 044615. [Google Scholar] [CrossRef]
- Massimi, C.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Bisterzo, S.; et al. Neutron spectroscopy of 26Mg states: Constraining the stellar neutron source 22Ne(α, n)25Mg. Phys. Lett. B 2017, 768, 1. [Google Scholar] [CrossRef]
- Lederer-Woods, C.; Mengoni, A.; Andrzejewski, J.; Boromiza, M.; Casanovas, A.; Cristallo, S.; Dietz, M.; Domingo-Pardo, C.; Gawlik-Ramiega, A.; Gervino, G.; et al. CERN-INTC-2023-009; Measurement of 28,29,30Si(n, γ) Capture Cross Sections to Explain Isotopic Abundances in Presolar Grains, INTC-P-653. Available online: http://cds.cern.ch/record/2845928 (accessed on 19 September 2025).
- Andringa, S.; Bacak, M.; Bezawada, Y.; Boissevain, J.; Cano-Ott, D.; Carrara, N.; Casanovas, A.; Gollapinni, S.; Huang, J.; Johnson, W.; et al. Multiple Argon Experiments at n_TOF (the MArEX Initiative), CERN-INTC-2023-046; INTC-I-256. Available online: https://cds.cern.ch/record/2856506 (accessed on 19 September 2025).
- Giubrone, G.; Domingo-Pardo, C.; Taın, J.L.; Lederer, C.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; et al. Measurement of the 54,57Fe(n, γ) Cross Section in the Resolved Resonance Region at CERN n_TOF. Nucl. Data Sheets 2014, 119, 117. [Google Scholar] [CrossRef]
- Žugec, P.; Barbagallo, M.; Colonna, N.; Bosnar, D.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bečvář, F.; Belloni, F.; et al. Experimental neutron capture data of 58Ni from the CERN n_TOF facility. Phys. Rev. C 2014, 89, 014605. [Google Scholar] [CrossRef]
- Lederer, C.; Massimi, C.; Berthoumieux, E.; Colonna, N.; Dressler, R.; Guerrero, C.; Gunsing, F.; Käppeler, F.; Kivel, N.; Pignatari, M.; et al. 62Ni(n, γ) and 63Ni(n, γ) cross sections measured at the n_TOF facility at CERN. Phys. Rev. C 2014, 89, 025810. [Google Scholar] [CrossRef]
- Lederer, C.; Massimi, C.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; et al. Neutron Capture Cross Section of Unstable 63Ni: Implications for Stellar Nucleosynthesis. Phys. Rev. Lett. 2013, 110, 022501. [Google Scholar] [CrossRef]
- Tagliente, G.; Cescutti, G.; Colonna, N.; Cristallo, S.; Diacono, D.; Lederer-Wood, C.; Massimi, C.; Mastromarco, M.; Mazzone, A.M.; Milazzo, P.M.; et al. Measurement of the Neutron Capture Cross Section of 64Ni, CERN-INTC-2022-033; INTC-P-208-ADD-1. Available online: http://cds.cern.ch/record/2809947 (accessed on 19 September 2025).
- Gawlik, A.; Lederer-Woods, C.; Andrzejewski, J.; Battino, U.; Ferreira, P.; Gunsing, F.; Heinitz, S.; Krtička, M.; Massimi, C.; Mingrone, F.; et al. Measurement of the 70Ge(n, γ) cross section up to 300 keV at the CERN n_TOF facility. Phys. Rev. C 2019, 100, 045804. [Google Scholar] [CrossRef]
- Dietz, M.; Lederer-Woods, C.; Tattersall, A.; Battino, U.; Gunsing, F.; Heinitz, S.; Krtička, M.; Lerendegui-Marco, J.; Reifarth, R.; Valenta, S.; et al. Measurement of the 72Ge(n, γ) cross section over a wide neutron energy range at the CERN n_TOF facility. Phys. Rev. C 2021, 103, 045809. [Google Scholar] [CrossRef]
- Lederer-Woods, C.; Battino, U.; Ferreira, P.; Gawlik, A.; Guerrero, C.; Gunsing, F.; Heinitz, S.; Lerendegui-Marco, J.; Mengoni, A.; Reifarth, R.; et al. Measurement of 73Ge(n, γ) cross sections and implications for stellar nucleosynthesis. Phys. Lett. B 2019, 790, 458. [Google Scholar] [CrossRef]
- Lederer-Woods, C.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bacak, M.; Balibrea, J.; Barbagallo, M.; Barros, S.; Battino, U.; et al. 74Ge(n, γ) cross section below 70 keV measured at n_TOF CERN. Eur. Phys. J. A 2022, 58, 239. [Google Scholar] [CrossRef]
- Gawlik-Ramiega, A.; Lederer-Woods, C.; Krtička, M.; Valenta, S.; Battino, U.; Andrzejewski, J.; Perkowski, J.; Aberle, O.; Audouin, L.; Bacak, M.; et al. Measurement of the 76Ge(n, γ) cross section at the n_TOF facility at CERN. Phys. Rev. C 2021, 104, 044610. [Google Scholar] [CrossRef]
- Sosnin, N.V.; Lederer-Woods, C.; Krtička, M.; Garg, R.; Dietz, M.; Bacak, M.; Barbagallo, M.; Battino, U.; Cristallo, S.; Damone, L.A.; et al. Measurement of the 77Se(n, γ) cross section up to 200 keV at the n_TOF facility at CERN. Phys. Rev. C 2023, 107, 065805. [Google Scholar] [CrossRef]
- Sosnin, N.V.; Lederer-Woods, C.; Garg, R.; Battino, U.; Cristallo, S.; Dietz, M.; Heinitz, S.; Krtička, M.; Reifart, R.; Valenta, S.; et al. Measurement of the 78Se(n, γ)79Se cross section up to 600 keV at the n_TOF facility at CERN. Phys. Rev. C 2024, 110, 065805. [Google Scholar] [CrossRef]
- Lerendegui-Marco, J.; Babiano-Suárez, V.; Balibrea-Correa, J.; Domingo-Pardo, C.; Ladarescu, I.; Tarifeño-Saldivia, A.; Alcayne, V.; Cano-Ott, D.; González-Romero, E.; Martínez, T.; et al. New detection systems for an enhanced sensitivity in key stellar (n, γ) measurements. EPJ Web Conf. 2023, 279, 13001. [Google Scholar] [CrossRef]
- Babiano-Suarez, V.; Balibrea-Correa, J.; Caballero-Ontanaya, L.; Domingo-Pardo, C.; Ladarescu, I.; Lerendegui-Marco, J.; Tain, J.L.; Calviño, F.; Casanovas, A.; Tarifeño-Saldivia, A.; et al. First 80Se(n, γ) cross section measurement with high resolution in the full stellar energy range 1 eV - 100 keV and its astrophysical implications for the s-process. EPJ Web Conf. 2022, 260, 11026. [Google Scholar] [CrossRef]
- Gunsing, F.; Maugeri, E.A.; Berthoumieux, E.; Cahuzac, A.; Dupont, E.; Rochman, D.; Tsiledakis, G. Measurement of the Neutron Capture Cross Section of 87Sr, CERN-INTC-2024-062; INTC-P-717. Available online: https://cds.cern.ch/record/2912215 (accessed on 19 September 2025).
- Tagliente, G.; Milazzo, P.M.; Paradela, C.; Kopecky, S.; Vescovi, D.; Alaerts, G.; Damone, L.A.; Heyse, J.; Krtička, M.; Schillebeeckx, P.; et al. High-resolution cross section measurements for neutron interactions on 89Y with incident neutron energies up to 95 keV. Eur. Phys. J. A 2024, 60, 21. [Google Scholar] [CrossRef]
- Tagliente, G.; Fujii, K.; Milazzo, P.M.; Moreau, C.; Aerts, G.; Abbondanno, U.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; et al. Neutron capture cross section of 90Zr: Bottleneck in the s-process reaction flow. Phys. Rev. C 2008, 77, 035802. [Google Scholar] [CrossRef]
- Tagliente, G.; Milazzo, P.M.; Fujii, K.; Aerts, G.; Abbondanno, U.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; et al. Experimental study of the 91Zr(n, γ) reaction up to 26 keV. Phys. Rev. C 2008, 78, 045804. [Google Scholar] [CrossRef]
- Tagliente, G.; Milazzo, P.M.; Fujii, K.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, s.; Andrzejewski, J.; Audouin, L.; et al. The 92Zr(n, γ4) reaction and its implications for stellar nucleosynthesis. Phys. Rev. C 2010, 81, 055801. [Google Scholar] [CrossRef]
- Tagliente, G.; Kopecky, S.; Heyse, J.; Krtička, M.; Massimi, C.; Mengoni, A.; Milazzo, P.M.; Plompen, A.j.M.; Schillebeeckx, P.; Valenta, S.; et al. 92Zr(n, γ) and (n, tot) measurements at the GELINA and n_TOF facilities. Phys. Rev. C 2022, 105, 025805. [Google Scholar] [CrossRef]
- Tagliente, G.; Milazzo, P.M.; Fujii, K.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; et al. The 93Zr(n, γ) reaction up to 8 keV neutron energy. Phys. Rev. C 2013, 87, 014622. [Google Scholar] [CrossRef]
- Tagliente, G.; Milazzo, P.M.; Fujii, K.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; et al. Neutron capture on 94Zr: Resonance parameters and Maxwellian-averaged cross sections. Phys. Rev. C 2011, 84, 015801. [Google Scholar] [CrossRef]
- Tagliente, G.; Milazzo, P.M.; Fujii, K.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; et al. 96Zr(n, γ) measurement at the n TOF facility at CERN. Phys. Rev. C 2011, 84, 055802. [Google Scholar] [CrossRef]
- Babiano, V.; Balibrea-Correa, J.; Caballero, L.; Calviño, F.; Casanovas, A.; Cristallo, S.; Domingo-Pardo, C.; Dressler, R.; Guerrero, C.; Heinitz, S.; et al. First Measurement of the 94Nb(n, γ) Cross-Section, CERN-INTC-2020-062; INTC-P-577. Available online: https://cds.cern.ch/record/2731959 (accessed on 19 September 2025).
- Busso, M.; Castelluccio, D.M.; Console Camprini, P.; Colonna, N.; Cristallo, S.; Domingo-Pardo, C.; Guglielmelli, A.; Heyse, J.; Kopecky, S.; Lederer-Woods, C.; et al. Measurement of 92,97,98,100Mo(n, γ) Relevant to Astrophysics and Nuclear Technology, CERN-INTC-2024-032; INTC-P-569-ADD-1. Available online: https://cds.cern.ch/record/2894937 (accessed on 19 September 2025).
- Busso, M.; Castelluccio, D.M.; Console Camprini, P.; Colonna, N.; Cristallo, S.; Domingo-Pardo, C.; Guglielmelli, A.; Heyse, J.; Kopecky, S.; Lederer-Woods, C.; et al. Measurement of 94,95,96Mo(n, γ) Relevant to Astrophysics and Nuclear Technology, CERN-INTC-2020-052; INTC-P-569. Available online: https://cds.cern.ch/record/2730968 (accessed on 19 September 2025).
- Mucciola, R.; Tagliente, G.; Bacak, M.; Colonna, N.; Cristallo, S.; Eleme, Z.; Lugaro, M.; Manna, A.; Massimi, C.; Mastromarco, M.; et al. Measurement of 121,123Sb(n, γ) Relevant to Nuclear Astrophysics, CERN-INTC-2025-033; INTC-P-744. Available online: https://cds.cern.ch/record/2929687 (accessed on 19 September 2025).
- Terlizzi, R.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; et al. The 139La(n, γ) cross section: Key for the onset of the s-process. Phys. Rev. C 2007, 75, 033807. [Google Scholar] [CrossRef]
- Amaducci, S.; Colonna, N.; Cosentino, L.; Cristallo, S.; Finocchiaro, P.; Krtička, M.; Massimi, C.; Mastromarco, M.; Mazzone, A.; Maugeri, E.A.; et al. Measurement of the 140Ce(n, γ) Cross Section at n_TOF and Its Astrophysical Implications for the Chemical Evolution of the Universe. Phys. Rev. Lett. 2024, 132, 122701. [Google Scholar] [CrossRef]
- Amaducci, S.; Colonna, N.; Cosentino, L.; Cristallo, S.; Finocchiaro, P.; Krtička, M.; Massimi, C.; Mastromarco, M.; Mazzone, A.; Mengoni, A.; et al. First Results of the 140Ce(n, γ)141Ce Cross-Section Measurement at n_TOF. Universe 2021, 7, 200. [Google Scholar] [CrossRef]
- Lerendegui-Marco, J.; Domingo-Pardo, C.; Gameiro, B.; Babiano-Suárez, V.; Bacak, M.; Balibrea-Correa, J.; Calviño, F.; Casanovas, A.; Cortés, G.; Cristallo, S.; et al. New Measurement of the 146Nd(n, γ) Cross Section at n_TOF-EAR2, CERN-INTC-2023-055; INTC-P-671. Available online: https://cds.cern.ch/record/2872360 (accessed on 19 September 2025).
- Abbondanno, U.; Aerts, G.; Alvarez-Velarde, F.; Álvarez-Pol, H.A.; Andriamonje, S.; Andrzejewski, J.; Badurek, G.; Baumann, P.; Bečvář, F.; Benlliure, J.; et al. Neutron Capture Cross Section Measurement of 151Sm at the CERN Neutron Time of Flight Facility (n_TOF). Phys. Rev. Lett. 2004, 93, 161103. [Google Scholar] [CrossRef]
- Marrone, S.; Abbondanno, U.; Aerts, G.; Alvarez-Velarde, F.; Álvarez-Pol, H.A.; Andriamonje, S.; Andrzejewski, J.; Badurek, G.; Baumann, P.; Bečvář, F.; et al. Measurement of the 151Sm(n, γ) cross section from 0.6 eV to 1 MeV via the neutron time-of-flight technique at the CERN n_TOF facility. Phys. Rev. C 2006, 73, 034604. [Google Scholar] [CrossRef]
- Mazzone, A.; Cristallo, S.; Aberle, O.; Alaerts, G.; Alcayne, V.; Amaducci, S.; Andrzejewski, J.; Audouin, L.; Babiano-Suarez, V.; Bacak, M.; et al. Measurement of the 154Gd(n, γ) cross section and its astrophysical implications. Phys. Lett. B 2020, 804, 135405. [Google Scholar] [CrossRef]
- Mastromarco, M.; Colonna, N.; Cristallo, S.; Massimi, C.; Mengoni, A.; Tagliente, G. Measurement of the Neutron Capture Cross Section of Gadolinium-160, CERN-INTC-2021-052; INTC-P-437-ADD-1. Available online: http://cdsweb.cern.ch/record/2782347 (accessed on 19 September 2025).
- Gawlik-Ramiega, A.; Alcayne, V.; Cano-Ott, D.; González-Romero, E.; Köster, U.; Martínez, T.; Mendoza, E.; Pérez de Rada Fiol, A.; Perkowski, J.; Sánchez-Caballero, A.; et al. Measurement of the 164Er(n, γ) Cross-Section at n_TOF EAR1, CERN-INTC-2025-025; INTC-P-737. Available online: https://cds.cern.ch/record/2929553 (accessed on 19 September 2025).
- Guerrero, C.; Lerendegui-Marco, J.; Paul, M.; Tessler, M.; Heinitz, S.; Domingo-Pardo, C.; Cristallo, S.; Dressler, R.; Halfon, S.; Kivel, N.; et al. Neutron Capture on the s-Process Branching Point 171Tm via Time-of-Flight and Activation. Phys. Rev. Lett. 2020, 125, 142701. [Google Scholar] [CrossRef]
- García-Infantes, F.; Praena, J.; Casanovas-Hoste, A.; Henkelmann, R. Kø’ster, U.; Aberle, O.; Alcayne, V.; Altieri, S.; Amaducci, S.; Amar Es-Sghir, H.; et al. Measurement of the 176Yb(n, γ) cross section at the n_TOF facility at CERN. Phys. Rev. C 2024, 110, 064619. [Google Scholar] [CrossRef]
- Mosconi, M.; Fujii, K.; Mengoni, A.; Domingo-Pardo, C.; Käppeler, F.; Abbondanno, U.; Aerts, G.; Álvarez-Pol, H.; Alvarez-Velarde, F.; Andriamonje, S.; et al. Neutron physics of the Re/Os clock. I. Measurement of the (n, γ) cross sections of 186,187,188Os at the CERN n_TOF facility. Phys. Rev. C 2010, 82, 015802. [Google Scholar] [CrossRef]
- Fujii, K.; Mosconi, M.; Mengoni, A.; Domingo-Pardo, C.; Käppeler, F.; Abbondanno, U.; Aerts, G.; Álvarez-Pol, H.; Alvarez-Velarde, F.; Andriamonje, S.; et al. Neutron physics of the Re/Os clock. III. Resonance analyses and stellar (n, γ) cross sections of 186,187,188Os. Phys. Rev. C 2010, 82, 015804. [Google Scholar] [CrossRef]
- Massimi, C.; Domingo-Pardo, C.; Vannini, G.; Audouin, L.; Guerrero, C.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Álvarez-Velarde, F.; Andriamonje, S.; et al. 197Au(n, γ) cross section in the resonance region. Phys. Rev. C 2010, 81, 044616. [Google Scholar] [CrossRef]
- Lederer, C.; Colonna, N.; Domingo-Pardo, c.; Gunsing, F.; Käppeler, F.; Massimi, C.; Mengoni, A.; Wallner, A.; Abbondanno, U.; Aerts, G.; et al. 197Au(n, γ) cross section in the unresolve resonance region. Phys. Rev. C 2011, 83, 034608. [Google Scholar] [CrossRef]
- Casanovas-Hoste, A.; Domingo-Pardo, C.; Lerendegui-Marco, J.; Guerrero, C.; Tarifeño-Saldivia, A.; Krtička, M.; Pignatari, M.; Calviño, F.; Schumann, D.; Heinitz, S.; et al. Shedding Light on the Origin of 204Pb, the Heaviest s-Process–Only Isotope in the Solar System. Phys. Rev. Lett. 2024, 133, 052702. [Google Scholar] [CrossRef]
- Casanovas-Hoste, A.; Tarifeño-Saldivia, A.E.; Domingo-Pardo, C.; Calviño, F.; Maugeri, E.; Guerrero, C.; Lerendegui-Marco, J.; Dressler, R.; Heinitz, S.; Schumann, D.; et al. Neutron capture measurement at the n_TOF facility of the 204Tl and 205Tl s-process branching points. J. Phys. Conf. Ser. 2020, 1668, 012005. [Google Scholar] [CrossRef]
- Domingo-Pardo, C.; Abbondanno, U.; Aerts, G.; Álvarez-Pol, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; et al. Measurement of the neutron capture cross section of the s-only isotope 204Pb from 1 eV to 440 keV. Phys. Rev. C 2007, 76, 015806. [Google Scholar] [CrossRef]
- Domingo-Pardo, C.; Abbondanno, U.; Aerts, G.; Álvarez-Pol, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; et al. Measurement of the radiative neutron capture cross section of 206Pb and its astrophysical implications. Phys. Rev. C 2007, 76, 045805. [Google Scholar] [CrossRef]
- Domingo-Pardo, C.; Abbondanno, U.; Aerts, G.; Álvarez-Pol, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; et al. Resonance capture cross section of 207Pb. Phys. Rev. C 2006, 74, 055802. [Google Scholar] [CrossRef]
- Domingo-Pardo, C.; Abbondanno, U.; Aerts, G.; Álvarez-Pol, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; et al. New measurement of neutron capture resonances in 209Bi. Phys. Rev. C 2006, 74, 025807. [Google Scholar] [CrossRef]
- Damone, L.; Barbagallo, M.; Mastromarco, M.; Mengoni, A.; Cosentino, L.; Maugeri, E.; Heinitz, S.; Schumann, D.; Dressler, R.; Käppeler, F.; et al. 7Be(n, p)7Li Reaction and the Cosmological Lithium Problem: Measurement of the Cross Section in a Wide Energy Range at n_TOF at CERN. Phys. Rev. Lett. 2018, 121, 042701. [Google Scholar] [CrossRef] [PubMed]
- Torres-Sánchez, P.; Praena, J.; Porras, I.; Sabaté-Gilarte, M.; Lederer-Woods, C.; Aberle, O.; Alcayne, V.; Amaducci, S.; Andrzejewski, J.; Audouin, L.; et al. Measurement of the 14N(n, p)14C cross section at the CERN n_TOF facility from subthermal energy to 800 keV. Phys. Rev. C 2023, 107, 064617. [Google Scholar] [CrossRef]
- Lederer-Woods, C.; Woods, P.J.; Davinson, T.; Kahl, D.; Lonsdale, S.J.; Aberle, O.; Amaducci, S.; Andrzejewski, J.; Audouin, L.; Bacak, M.; et al. Destruction of the cosmic γ-ray emitter 26Al in massive stars: Study of the key 26Al(n, p) reaction. Phys. Rev. C 2021, 104, L022803. [Google Scholar] [CrossRef]
- Lederer-Woods, C.; Friedman, M.; Battino, U.; Köster, U.; Maugeri, E.; Bacak, M.; Mengoni, A.; Cocolios, T.E.; Cristallo, S.; Davinson, T.; et al. Measurement of 40K(n, p) and 40K(n, α) Cross Sections at n_TOF EAR-2, CERN-INTC-2022-047; INTC-P-645. Available online: http://cds.cern.ch/record/2834656 (accessed on 19 September 2025).
- Barbagallo, M.; Musumarra, A.; Cosentino, L.; Maugeri, E.; Heinitz, S.; Mengoni, A.; Dressler, R.; Schumann, D.; Käppeler, F.; Colonna, N.; et al. 7Be(n, α)4He Reaction and the Cosmological Lithium Problem: Measurement of the Cross Section in a Wide Energy Range at n_TOF at CERN. Phys. Rev. Lett. 2016, 117, 152701. [Google Scholar] [CrossRef]
- Lederer-Woods, C.; Woods, P.J.; Davinson, T.; Estrade1, A.; Heyse, J.; Kahl, D.; Lonsdale, S.J.; Paradela, C.; Schillebeeckx, P.; Aberle, O.; et al. Destruction of the cosmic γ-ray emitter 26Al in massive stars: Study of the key 26Al(n, α) reaction. Phys. Rev. C 2021, 104, L032803. [Google Scholar] [CrossRef]
- Infantes, F.G.; Lederer-Woods, C.; Battino, U.; Birincioglu, S.; Davinson, T.; Heyse, J.; Manna, A.; Mengoni, A.; Odusina, E.; Paradela, C.; et al. Measurement of 41Ca(n, α) cross sections at n_TOF EAR-2 Relevant to Ca-41 Abundances in the Early Solar System, CERN-INTC-2025-029; INTC-P-741. Available online: https://cds.cern.ch/record/2929624 (accessed on 19 September 2025).
- Rubbia, C.; Andriamonje, S.; Bouvet-Bensimon, D.; Buono, S.; Cappi, R.; Cennini, P.; Gelès, C.; Goulas, I.; Kadi, Y.; Pavlopoulos, P.; et al. CERN-LHC-98-002-EET—Addendum. 1998. Available online: https://cds.cern.ch/record/363828 (accessed on 19 September 2025).
- Mengoni, A.; Milazzo, P.M.; Patronis, N. n_TOF at CERN: Status and Perspectives. Nucl. Phys. News 2024, 34, 26. [Google Scholar] [CrossRef]
- Guerrero, C.; Tsinganis, A.; Berthoumieux, E.; Barbagallo, M.; Belloni, F.; Gunsing, F.; Weiss, C.; Chiaveri, C.; Calviani, M.; Vlachoudis, V.; et al. Performance of the neutron time-of-flight facility n_TOF at CERN. Eur. Phys. J. A 2013, 49, 27. [Google Scholar] [CrossRef]
- Weiss, C.; Chiaveri, E.; Girod, S.; Vlachoudis, V.; Aberle, O.; Barros, S.; Bergström, I.; Berthoumieux, E.; Calviani, M.; Guerrero, C.; et al. The new vertical neutron beam line at the CERN n_TOF facility design and outlook on the performance. Nucl. Instr. Meth. Phys. Res. A 2015, 799, 90. [Google Scholar] [CrossRef]
- Patronis, N.; Mengoni, A.; Colonna, N.; Cecchetto, M.; Lerendegui-Marco, J.; Aberle, O.; Domingo-Pardo, C.; Gervino, G.; Stamati, M.E.; Goula, S.; et al. The CERN n_TOF NEAR station for astrophysics and application-related neutron activation measurements. Eur. Phys. J. A 2025, 61, 215. [Google Scholar]
- Plag, R.; Heil, M.; Käppeler, F.; Pavlopoulos, P.; Reifarth, R.; Wisshak, K. An optimized C6D6 detector for studies of resonance-dominated (n, γ) cross-sections. Nucl. Instr. Meth. Phys. Res. A 2003, 496, 425. [Google Scholar] [CrossRef]
- Mastinu, P.F.; Baccomi, R.; Berthoumieux, E.; Cano-Ott, D.; Gramegna, F.; Guerrero, C.; Massimi, C.; Milazzo, P.M.; Mingrone, F.; Praena, J.; et al. New C6D6 Detectors: Reduced Neutron Sensitivity and Improved Safety. Available online: https://cds.cern.ch/record/1558147 (accessed on 19 September 2025).
- Borella, A.; Aerts, G.; Gunsing, F.; Moxon, W.; Schillebeeckx, P.; Wynants, R. The use of C6D6 detectors for neutron induced capture cross-section measurements in the resonance region. Nucl. Instr. Meth. Phys. Res.A 2007, 577, 626. [Google Scholar] [CrossRef]
- Corvi, F.; Prevignano, A.; Liskien, H.; Smith, P.B. An experimental method for determining the total efficiency and the response function of a gamma-ray detector in the range 0.5–10 MeV. Nucl. Instr. Meth. Phys. Res. A 1988, 263, 475. [Google Scholar] [CrossRef]
- Abbondanno, U.; Aerts, G.; Alvarez, H.; Andriamonje, S.; Angelopoulos, A.; Assimakopoulos, P.; Bacri, C.O.; Badurek, G.; Baumann, P.; Bečvář, F.; et al. New experimental validation of the pulse height weighting technique for capture cross-section measurements. Nucl. Instr. Meth. Phys. Res. A 2004, 263, 454. [Google Scholar] [CrossRef]
- Alcayne, V.; Cano-Ott, D.; Garcia, J.; González-Romero, E.; Martínez, T.; Pérez de Rada, A.; Plaza, J.; Sánchez-Caballero, A.; Balibrea-Correa, J.; Domingo-Pardo, C.; et al. A Segmented Total Energy Detector (sTED) optimized for (n, γ) cross-section measurements at n_TOF EAR2. Rad. Phys. Chem. 2024, 217, 111525. [Google Scholar] [CrossRef]
- Guerrero, C.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Álvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, L.; et al. The n_TOF Total Absorption Calorimeter for neutron capture measurements at CERN. Nucl. Instr. Meth. Phys. Res. A 2009, 608, 424. [Google Scholar] [CrossRef]
- Bao, Z.Y.; Beer, H.; Käppeler, F.; Voss, F.; Wisshak, K.; Rauscher, T. Neutron cross sections for nucleosynthesis studies. Nucl. Data Tables 2000, 76, 70. [Google Scholar] [CrossRef]
- Rauscher, T.; Mohr, P.; Dillmann, I.; Plag, R. Opportunities to constrain astrophysical reaction rates for the s-process via determination of the ground-state cross sections. Astrophys. J. 2011, 738, 143. [Google Scholar] [CrossRef]
- Lambert, D.L.; Smith, V.V.; Busso, M.; Gallino, R.; Straniero, O. The Chemical Composition of Red Giants. IV. The Neutron Density at the s-Process Site. Astrophys. J. 1995, 450, 302. [Google Scholar] [CrossRef]
- Lugaro, M.; Tagliente, G.; Karakas, A.I.; Milazzo, P.M.; Käppeler, F.; Davis, A.M.; Savina, M.R. The impact of updated Zr neutron-capture cross sections and new Asymptotic Giant Branch models on our understanding of the s-process and the origin of stardust. Astrophys. J. 2014, 780, 95. [Google Scholar] [CrossRef]
- Lawler, L.J.; Bonvallet, G.; Sneden, C. Experimental Radiative Lifetimes, Branching Fractions, and Oscillator Strengths for La II and a New Determination of the Solar Lanthanum Abundance. Astrophys. J. 2001, 556, 452. [Google Scholar] [CrossRef]
- Straniero, O.; Cristallo, S.; Piersanti, L. Heavy elements in globular clusters: The role of Asymptotic Giant Branch stars. Astrophys. J. 2014, 785, 77. [Google Scholar] [CrossRef]
- Dillmann, I.; Plag, R.; Käppeler, F.; Rauscher, T. Karlsruhe Astrophysical Database of Nucleosynthesis in Stars. Available online: http://www.kadonis.org (accessed on 19 September 2025).
- Domingo-Pardo, C.; Aberle, O.; Alcayne, V.; Alpar, G.; Al Halabi, M.; Amaducci, S.; Babiano, V.; Bacak, M.; Balibrea-Correa, J.; Bartolomé, J.; et al. Neutron capture measurements for s-process nucleosynthesis. Eur. Phys. J. A 2025, 61, 105. [Google Scholar] [CrossRef] [PubMed]
- Pignatari, M.; Gallino, R.; Heil, M.; Wiescher, M.; Käppeler, F.; Herwig, F.; Bisterzo, S. The weak s-process in massive stars and its dependence on the neutron capture cross sections. Astrophys. J. 2010, 710, 1557. [Google Scholar] [CrossRef]
- Harder, A.; Michaelsen, S.; Jungclaus, A.; Lieb, K.P.; Williams, A.P.; Börner, H.G.; Trautmannsheimer, M. Double neutron capture in 62Ni. Zeit. Physik A 1992, 343, 7. [Google Scholar] [CrossRef]
- Klay, N.; Käppeler, F. β-decay rate of 79mSe and its consequences for the s-process temperature. Phys. Rev. C 1988, 38, 295. [Google Scholar] [CrossRef]
- Lugaro, M.; Davis, A.M.; Gallino, R.; Pellin, M.J.; Straniero, O.; Käppeler, F. Isotopic Compositions of Strontium, Zirconium, Molybdenum, and Barium in Single Presolar SiC Grains and Asymptotic Giant Branch Stars. Astrophys. J. 2003, 593, 486. [Google Scholar] [CrossRef]
- Lerendegui-Marco, J.; Alcayne, V.; Babiano-Suarez, V.; Bacak, M.; Balibrea-Correa, J.; Casanovas, A.; Domingo-Pardo, C.; de la Fuente, G.; Gameiro, B.; García-Infantes, F.; et al. Recent highlights and prospects on (n, γ) measurements at the CERN n_TOF facility. EPJ Web Conf. 2025, 329, 03003. [Google Scholar] [CrossRef]
- Lerendegui-Marco, J.; Casanovas, A.; Alcayne, V.; Aberle, O.; Altieri, S.; Amaducci, S.; Andrzejewski, J.; Babiano-Suarez, V.; Bacak, M.; Balibrea, J.; et al. New perspectives for neutron capture measurements in the upgraded CERN-n_TOF Facility. EPJ Web Conf. 2023, 284, 01028. [Google Scholar] [CrossRef]
- Yin, Q.Z.; Aeolus Lee, C.T.; Ott, U. Signatures of the s-Process in Presolar Silicon Carbide Grains: Barium through Hafnium. Astrophys. J. 2006, 647, 676. [Google Scholar] [CrossRef]
- Cristallo, S.; Piersanti, L.; Straniero, O.; Gallino, R.; Domínguez, I.; Abia, C.; Di Rico, G.; Quintini, M.; Bisterzo, S. Evolution, Nucleosynthesis, and Yields of low-mass Asymptotic Giant Branch stars at different metallicities. II. THE FRUITY DATABASE. Astrophys. J. Suppl. 2011, 197, 17. [Google Scholar] [CrossRef]
- Wagemans, J.; Goeminne, G. Experimental determination of the 14N(n, p)14C reaction cross section for thermal neutrons. Phys. Rev. C 2000, 61, 064601. [Google Scholar] [CrossRef]
- Kitahara, R.; Hirota, K.; Ieki, S.; Ino, T.; Iwashita, Y.; Kitaguchi, M.; Koga, J.; Mishima, K.; Morishita, A.; Nagakura, N.; et al. Improved accuracy in the determination of the thermal cross section of 14N(n, p)14C for neutron lifetime measurement. Prog. Theor. Exp. Phys. 2019, 2019, 093C01. [Google Scholar] [CrossRef]
- Best, A.; Rapagnani, D.; Mercogliano, D. The Ongoing Deep Underground Measurement of 22Ne(α,n)25Mg at the Ion Beam Facility of the INFN-LNGS. Galaxies 2024, 12, 68. [Google Scholar] [CrossRef]
- Talwar, R.; Adachi, T.; Berg, G.P.A.; Bin, L.; Bisterzo, S.; Couder, M.; deBoer, R.J.; Fang, X.; Fujita, H. Probing astrophysically important states in the 26Mg nucleus to study neutron sources for the s-process. Phys. Rev. C 2016, 93, 055803. [Google Scholar] [CrossRef]
- Cyburt, R.H.; Fields, B.D.; Olive, K.A.; Yeh, T.H. Big bang nucleosynthesis: Present status. Rev. Mod. Phys. 2016, 88, 015004. [Google Scholar] [CrossRef]
- Fields, B.D.; Olive, K.A. Implications of the non-observation of 6Li in halo stars for the primordial 7Li problem. J. Cosmol. Astropart. Phys. 2022, 2022, 78. [Google Scholar] [CrossRef]
- Cosentino, L.; Musumarra, A.; Barbagallo, M.; Pappalardo, A.; Colonna, N.; Damone, L.; Piscopo, M.; Finocchiaro, P.; Maugeri, E.; Heinitz, S.; et al. Experimental setup and procedure for the measurement of the 7Be(n, α)α reaction at n_TOF. Nucl. Instr. Meth. Phys. Res. A 2016, 380, 197. [Google Scholar] [CrossRef]
- Clayton, D.D. Cosmoradiogenic Chronologies of nucleosynthesis. Astrophys. J. 1964, 139, 637. [Google Scholar] [CrossRef]
- Laird, A.M.; Lugaro, M.; Kankainen, A.; Adsley, P.; Bardayan, D.W.; Brinkman, H.E.; Côté, B.; Deibel, C.M.; Diehl, R.; Hammache, F. Progress on nuclear reaction rates affecting the stellar production of 26Al. J. Phys. G Nucl. Part. Phys. 2023, 50, 033002. [Google Scholar] [CrossRef]
- Iliadis, C.; Champagne, A.; Chieffi, A.; Limongi, M. The effects of Thermonuclear Reaction rate variations on 26Al production in massive stars: A sensitivity study. Astrophys. J. Suppl. Ser. 2011, 193, 16. [Google Scholar] [CrossRef]
- Limongi, M.; Chieffi, A. The Nucleosynthesis of 26Al and 60Fe in Solar Metallicity Stars Extending in Mass from 11 to 120 Msolar: The Hydrostatic and Explosive Contributions. Astrophys. J. 2006, 647, 483–500. [Google Scholar] [CrossRef]
- Battino, U.; Lederer-Woods, C.; Pignatari, M.; Soós, B.; Lugaro, M.; Vescovi, D.; Cristallo, S.; Woods, P.J.; Karakas, A. Impact of newly measured 26Al(n, p)26Mg and 26Al(n, α)23Na reaction rates on the nucleosynthesis of 26Al in stars. Mon. Not. R. Astron. Soc. 2023, 520, 2436–2444. [Google Scholar] [CrossRef]
- Ingelbrecht, C.; Moens, A.; Wagemans, J.; Denecke, B.; Altzitzoglou, T.; Johnston, P. An 26Al target for (n, p) and (n, α) cross-section measurements. Nucl. Instrum. Methods Phys. Res. Sect. A 2002, 480, 114. [Google Scholar] [CrossRef]
- Alpar, G.; Anderson, B.; Bacak, M.; Balibrea, J.; Catlett, D.; Charlton, W.; Domingo-Pardo, C.; Flanagan, W.; Kelly, I.; Lederer-Wood, C.; et al. Measurement of the Zirconium-88 Neutron Absorption Cross Section at EAR2, CERN-INTC-2024-011; INTC-P-693. Available online: https://cds.cern.ch/record/2886135 (accessed on 19 September 2025).
- Beer, H.; Sedyshev, P.V.; Rochow, W.; Mohr, P.; Oberhummer, H. Neutron capture measurements of the noble gas isotopes 22Ne, 40Ar and 78,80,84,86Kr in the keV energy region. Nucl. Phys. A 2002, 705, 239. [Google Scholar] [CrossRef]
- Aberle, O.; Alcayne, V.; Alpar, G.; Al Halabi, M.; Amaducci, S.; Babiano, V.; Bacak, M.; Balibrea-Correa, J.; Bartolomé, J.; Bernardes, A.P.; et al. Neutron Activation Station at the SPS Beam Dump Facility (BDF). Available online: https://cds.cern.ch/record/2913936 (accessed on 19 September 2025).










| Isotope | Astrophysical Implications | Measured Energy Range | Detectors Used | Ref. |
|---|---|---|---|---|
| 24Mg | Impact on abundance of cosmic gamma ray emitter 26Al | 0–700 keV | C6D6 | [23] |
| 25Mg | Constraints for the 22Ne(, n), neutron poison | 0–550 keV | C6D6 | [23] |
| 26Mg | Neutron poison | 0–500 keV | C6D6 | [23,24] |
| 28Si | Isotopic abundances in presolar grains, nucleosynthesis in massive stars | Under Analysis | C6D6, STED | [25] |
| 29Si | Isotopic abundances in presolar grains, nucleosynthesis in massive stars | Under Analysis | C6D6, STED | [25] |
| 30Si | Isotopic abundances in presolar grains, nucleosynthesis in massive stars | Under Analysis | C6D6, STED | [25] |
| 40Ar | Nucleosynthesis processes involving noble gases | Under Analysis | C6D6, STED | [26] |
| 54Fe | Seeds of the s-process nucleosynthesis path | 0–400 keV | C6D6 | [27] |
| 57Fe | Seeds of the s-process nucleosynthesis path | 0–400 keV | C6D6 | [27] |
| 58Ni | s-process nucleosynthesis in massive stars | 0–400 keV | C6D6 | [28] |
| 62Ni | s-process nucleosynthesis in massive stars | 0–200 keV | C6D6 | [29] |
| 63Ni | Branching point | 0–270 keV | C6D6 | [29,30] |
| 64Ni | s-process nucleosynthesis in massive stars | Under Analysis | C6D6 | [31] |
| 70Ge | s-Only isotope, test for s-process nucleosynthesis | 0–300 keV | C6D6 | [32] |
| 72Ge | s-process nucleosynthesis in massive stars | 0–300 keV | C6D6 | [33] |
| 73Ge | s-process nucleosynthesis in massive stars | 0–300 keV | C6D6 | [34] |
| 74Ge | s-process nucleosynthesis in massive stars | 0–70 keV | C6D6 | [35] |
| 76Ge | s-process nucleosynthesis in massive stars | 0–52 keV | C6D6 | [36] |
| 77Se | s-process nucleosynthesis in massive stars | 0–51 keV | C6D6 | [37] |
| 78Se | s-process nucleosynthesis in massive stars | 0–70 keV | C6D6 | [38] |
| 79Se | Branching point | Under Analysis | STED | [39] |
| 80Se | s-process nucleosynthesis in massive stars | 0–70 keV | C6D6 | [40] |
| 87Sr | 87Rb/87Sr cosmochronometer | Under Analysis | C6D6, STED | [41] |
| 89Y | Bottleneck around N = 50 | 0–95 keV | C6D6 | [42] |
| 90Zr | Bottleneck at N = 50 | 0–70 keV | C6D6 | [43] |
| 91Zr | Bottleneck at N = 50 | 0–26 keV | C6D6 | [44] |
| 92Zr | Bottleneck at N = 50 | 0–81 keV | C6D6 | [45,46] |
| 93Zr | Bottleneck at N = 50 | 0–8 keV | C6D6 | [47] |
| 94Zr | Bottleneck at N = 50 | 0–60 keV | C6D6 | [48] |
| 96Zr | Branching at 95Zr | 0–40 keV | C6D6 | [49] |
| 94Nb | Branching point | Under Analysis | C6D6, STED | [50] |
| 92Mo | Disentangling s-, r-, p-process contributions to Mo isotopes | Under Analysis | C6D6, STED | [51] |
| 94Mo | Mo abundances in presolar grains | Under Analysis | C6D6, STED | [52] |
| 95Mo | s-process nucleosynthesis in AGB stars | Under Analysis | C6D6, STED | [52] |
| 96Mo | Disentangling s-, r-, p-process contributions to Mo isotopes | Under Analysis | C6D6, STED | [51] |
| 97Mo | Disentangling s-, r-, p-process contributions to Mo isotopes | Under Analysis | C6D6, STED | [51] |
| 98Mo | Disentangling s-, r-, p-process contributions to Mo isotopes | Under Analysis | C6D6, STED | [51] |
| 100Mo | Disentangling s-, r-, p-process contributions to Mo isotopes | Under Analysis | C6D6, STED | [51] |
| 121Sb | Constraints on the s-nucleosynthesis path | Under Analysis | C6D6 | [53] |
| 122Sb | Constraints on the s-nucleosynthesis path | Under Analysis | C6D6 | [53] |
| 139La | Bottleneck at N = 82 | 0–9 keV | C6D6 | [54] |
| 140Ce | Bottleneck around N = 82 | 0–65 keV | C6D6 | [55,56] |
| 146Nd | s-process nucleosynthesis in AGB stars | Under Analysis | STED | [57] |
| 151Sm | Branching point | 0–1 MeV | C6D6 | [58,59] |
| 154Gd | s-only isotope, test for s-process nucleosynthesis | 0–300 keV | C6D6 | [60] |
| 160Gd | s-process nucleosynthesis in AGB stars | Under Analysis | C6D6 | [61] |
| 164Er | s-only isotope, test for s-process nucleosynthesis | Under Analysis | C6D6 | [62] |
| 171Tm | Branching point | 0–1 keV | C6D6 | [63] |
| 176Yb | s-process nucleosynthesis in AGB stars | 0–21 keV | C6D6 | [64] |
| 186Os | 187Re/187Os cosmochronometer | 0–1 MeV | C6D6 | [65,66] |
| 187Os | 187Re/187Os cosmochronometer | 0–1 MeV | C6D6 | [65,66] |
| 188Os | 187Re/187Os cosmochronometer | 0–1 MeV | C6D6 | [65,66] |
| 197Au | Standard (n, ) cross section | 0–400 keV | C6D6, TAC | [67,68] |
| 204Tl | Branching point | 0–1 keV | C6D6 | [69] |
| 205Tl | Part of branching point at A = 204 | 0–100 keV | C6D6 | [70] |
| 204Pb | Termination of s-nucleosynthesis path | 0–440 keV | C6D6 | [71] |
| 206Pb | Termination of s-nucleosynthesis path | 0–620 keV | C6D6 | [72] |
| 207Pb | Termination of s-nucleosynthesis path | 3–320 keV | C6D6 | [73] |
| 209Bi | Termination of s-nucleosynthesis path | 0–23 keV | C6D6 | [74] |
| Isotope | Astrophysical Implications | Measured Energy Range | Ref. |
|---|---|---|---|
| (n, p) reactions | |||
| 7Be | Cosmological Lithium Problem | 0–325 keV | [75] |
| 14N | Neutron poison | 0–800 keV | [76] |
| 26Al | Cosmic -ray emitter | 0–150 keV | [77] |
| >150 keV | |||
| Under Analysis | |||
| 40K | Radiogenic heating of Earth-like exoplanets | Under Analysis | [78] |
| (n, ) reactions | |||
| 7Be | Cosmological Lithium Problem | 0–10 keV | [79] |
| 26Al | Cosmic -ray emitter | 0–150 keV | [80] |
| >150 keV | |||
| Under Analysis | |||
| 40K | Radiogenic heating of Earth-like exoplanets | Under Analysis | [78] |
| 41Ca | Short-lived radionuclei in Early Solar System | Under Analysis | [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milazzo, P.M.; Lederer-Woods, C.; Mengoni, A., on behalf of The n_TOF Collaboration. The Nuclear Astrophysics Program at the CERN n_TOF Facility: Results and Perspectives. Universe 2025, 11, 329. https://doi.org/10.3390/universe11100329
Milazzo PM, Lederer-Woods C, Mengoni A on behalf of The n_TOF Collaboration. The Nuclear Astrophysics Program at the CERN n_TOF Facility: Results and Perspectives. Universe. 2025; 11(10):329. https://doi.org/10.3390/universe11100329
Chicago/Turabian StyleMilazzo, P. M., C. Lederer-Woods, and A. Mengoni on behalf of The n_TOF Collaboration. 2025. "The Nuclear Astrophysics Program at the CERN n_TOF Facility: Results and Perspectives" Universe 11, no. 10: 329. https://doi.org/10.3390/universe11100329
APA StyleMilazzo, P. M., Lederer-Woods, C., & Mengoni, A., on behalf of The n_TOF Collaboration. (2025). The Nuclear Astrophysics Program at the CERN n_TOF Facility: Results and Perspectives. Universe, 11(10), 329. https://doi.org/10.3390/universe11100329

