Nuclear Matter and Finite Nuclei: Relativistic Thomas–Fermi Approximation Versus Relativistic Mean-Field Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Self-Consistent Thomas–Fermi Approximation for Finite Nuclei
2.2. Relativistic Mean-Field Approach for Finite Nuclei
2.3. Parameter Sets
3. Results and Discussion
3.1. Energy per Nucleon
TM1m* | TM1m | SFHo | TM1e | TM1 | NL3 | ||
---|---|---|---|---|---|---|---|
RMF | 166,769.60 | 166,089.04 | 162,865.60 | 142,452.45 | 143,515.32 | 139,231.87 | |
15,992.34 | 16,354.71 | 18,091.24 | 27,858.89 | 27,318.40 | 29,462.69 | ||
11,116.80 | 11,403.13 | 13,079.89 | 22,986.98 | 22,508.88 | 24,682.22 | ||
−1382.97 | −1439.95 | −1309.33 | −1325.01 | −1279.22 | −628.92 | ||
0.00 | 0.0005 | −4.80 | 500.71 | 475.07 | 0.00 | ||
123.10 | 124.82 | 108.20 | 116.78 | 109.43 | 103.85 | ||
820.30 | 822.60 | 840.33 | 819.93 | 823.42 | 827.17 | ||
39.32 | 40.88 | 29.53 | 60.89 | 0.00 | 0.00 | ||
193,473.30 | 193,390.03 | 193,695.47 | 193,466.42 | 193,466.11 | 193,673.69 | ||
−7.84 | −8.24 | −7.83 | −7.87 | −7.87 | −7.88 | ||
STF | 165,995.23 (−774.37) | 165,157.89 (−931.15) | 162,479.36 (−386.24) | 143,555.73 (1103.28) | 144,583.83 (1068.51) | 141,928.88 (2697.02) | |
16,371.93 (379.59) | 16,818.50 (463.79) | 18,258.43 (167.19) | 27,250.99 (−607.89) | 26,730.02 (−588.38) | 28,076.58 (−1386.11) | ||
11,405.32 (288.52) | 11,752.04 (348.91) | 13,208.84 (128.95) | 22,474.92 (−512.06) | 22,014.45 (−494.43) | 23,445.06 (−1237.16) | ||
−1386.61 (−3.64) | −1449.11 (−9.16) | −1300.66 (8.67) | −1237.30 (87.71) | −1194.37 (84.85) | −663.57 (−34.65) | ||
0.00 (0.00) | 0.00 (0.00) | −4.49 (0.31) | 437.48 (−63.23) | 414.95 (−60.12) | 0.00 (0.00) | ||
135.23 (12.13) | 139.01 (14.19) | 117.64 (9.44) | 124.98 (8.20) | 113.85 (4.42) | 105.69 (1.84) | ||
816.16 (−4.15) | 816.24 (−6.37) | 833.75 (−6.58) | 807.26 (−12.67) | 810.17 (−13.25) | 808.37 (−18.80) | ||
43.59 (4.28) | 46.21 (5.33) | 31.28 (1.75) | 64.05 (3.16) | 0.00 (0.00) | 0.00 (0.00) | ||
193,380.85 (−97.64) | 193,280.77 (−114.45) | 193,624.16 (−76.50) | 193,478.11 (6.50) | 193,472.89 (1.59) | 193,701.01 (22.14) | ||
−8.28 | −8.77 | −8.17 | −7.82 | −7.84 | −7.75 |
3.2. Charge Radius
3.3. Nucleon Density Distribution
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bethe, H.A. Thomas-Fermi Theory of Nuclei. Phys. Rev. 1968, 167, 879–907. [Google Scholar] [CrossRef]
- Brack, M.; Guet, C.; Håkansson, H.B. Selfconsistent semiclassical description of average nuclear properties—A link between microscopic and macroscopic models. Phys. Rep. 1985, 123, 275–364. [Google Scholar] [CrossRef]
- Centelles, M.; Pi, M.; Viñas, X.; Garcias, F.; Barranco, M. Self-consistent extended Thomas-Fermi calculations in nuclei. Nucl. Phys. A 1990, 510, 397–416. [Google Scholar] [CrossRef]
- Boguta, J.; Rafelski, J. Thomas Fermi model of finite nuclei. Phys. Lett. B 1977, 71, 22–26. [Google Scholar] [CrossRef]
- Boguta, J.; Bodmer, A. Relativistic calculation of nuclear matter and the nuclear surface. Nucl. Phys. A 1977, 292, 413–428. [Google Scholar] [CrossRef]
- Serr, F.; Walecka, J. A relativistic quantum field theory of finite nuclei. Phys. Lett. B 1978, 79, 10–14. [Google Scholar] [CrossRef]
- Serot, B.D.; Walecka, J. Properties of finite nuclei in a relativistic quantum field theory. Phys. Lett. B 1979, 87, 172–176. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Bao, S.S.; Hu, J.N.; Shen, H. Symmetry energy of hot nuclei in the relativistic Thomas-Fermi approximation. Phys. Rev. C 2014, 90, 054302. [Google Scholar] [CrossRef]
- Avancini, S.S.; Menezes, D.P.; Alloy, M.D.; Marinelli, J.R.; Moraes, M.M.W.; Providência, C. Warm and cold pasta phase in relativistic mean field theory. Phys. Rev. C 2008, 78, 015802. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Shen, H. Relativistic equation of state at subnuclear densities in the Thomas–Fermi approximation. Astrophys. J. 2014, 788, 185. [Google Scholar] [CrossRef]
- Oertel, M.; Hempel, M.; Klähn, T.; Typel, S. Equations of state for supernovae and compact stars. Rev. Mod. Phys. 2017, 89, 015007. [Google Scholar] [CrossRef]
- Shen, H.; Toki, H.; Oyamatsu, K.; Sumiyoshi, K. Relativistic Equation of State of Nuclear Matter for Supernova Explosion. Prog. Theor. Phys. 1998, 100, 1013–1031. [Google Scholar] [CrossRef]
- Shen, H.; Toki, H.; Oyamatsu, K.; Sumiyoshi, K. Relativistic equation of state for core-collapse supernova simulations. Astrophys. J. Suppl. Ser. 2011, 197, 20. [Google Scholar] [CrossRef]
- Shen, H.; Ji, F.; Hu, J.; Sumiyoshi, K. Effects of Symmetry Energy on the Equation of State for Simulations of Core-collapse Supernovae and Neutron-star Mergers. Astrophys. J. 2020, 891, 148. [Google Scholar] [CrossRef]
- Avancini, S.S.; Brito, L.; Marinelli, J.R.; Menezes, D.P.; de Moraes, M.M.W.; Providência, C.; Santos, A.M. Nuclear “pasta” phase within density dependent hadronic models. Phys. Rev. C 2009, 79, 035804. [Google Scholar] [CrossRef]
- Avancini, S.S.; Chiacchiera, S.; Menezes, D.P.; Providência, C.m.c. Warm “pasta” phase in the Thomas-Fermi approximation. Phys. Rev. C 2010, 82, 055807. [Google Scholar] [CrossRef]
- Ring, P. Relativistic mean field theory in finite nuclei. Prog. Part. Nucl. Phys. 1996, 37, 193–263. [Google Scholar] [CrossRef]
- Rufa, M.; Reinhard, P.G.; Maruhn, J.A.; Greiner, W.; Strayer, M.R. Optimal parametrization for the relativistic mean-field model of the nucleus. Phys. Rev. C 1988, 38, 390–409. [Google Scholar] [CrossRef]
- Reinhard, P.G.; Rufa, M.; Maruhn, J.; Greiner, W.; Friedrich, J. Nuclear ground-state properties in a relativistic Meson-Field theory. Z. Phys. A At. Nucl. 1986, 323, 13–25. [Google Scholar] [CrossRef]
- Von-Eiff, D.; Weigel, M.K. Relativistic Thomas-Fermi calculations of finite nuclei including quantum corrections. Phys. Rev. C 1992, 46, 1797–1810. [Google Scholar] [CrossRef]
- Gambhir, Y.; Ring, P.; Thimet, A. Relativistic mean field theory for finite nuclei. Ann. Phys. 1990, 198, 132–179. [Google Scholar] [CrossRef]
- Ebran, J.P.; Mutschler, A.; Khan, E.; Vretenar, D. Spin-orbit interaction in relativistic nuclear structure models. Phys. Rev. C 2016, 94, 024304. [Google Scholar] [CrossRef]
- Bao, S.S.; Hu, J.N.; Zhang, Z.W.; Shen, H. Effects of the symmetry energy on properties of neutron star crusts near the neutron drip density. Phys. Rev. C 2014, 90, 045802. [Google Scholar] [CrossRef]
- Sugahara, Y.; Toki, H. Relativistic mean-field theory for unstable nuclei with non-linear sigma and omega terms. Nucl. Phys. A 1994, 579, 557–572. [Google Scholar] [CrossRef]
- Fattoyev, F.J.; Horowitz, C.J.; Piekarewicz, J.; Shen, G. Relativistic effective interaction for nuclei, giant resonances, and neutron stars. Phys. Rev. C 2010, 82, 055803. [Google Scholar] [CrossRef]
- Schneider, A.S.; Roberts, L.F.; Ott, C.D.; O’Connor, E. Equation of state effects in the core collapse of a 20-M⨀ star. Phys. Rev. C 2019, 100, 055802. [Google Scholar] [CrossRef]
- Yasin, H.; Schäfer, S.; Arcones, A.; Schwenk, A. Equation of State Effects in Core-Collapse Supernovae. Phys. Rev. Lett. 2020, 124, 092701. [Google Scholar] [CrossRef]
- Li, S.; Pang, J.; Shen, H.; Hu, J.; Sumiyoshi, K. Influence of Effective Nucleon Mass on Equation of State for Supernova Simulations and Neutron Stars. Astrophys. J. 2025, 980, 54. [Google Scholar] [CrossRef]
- Wang, M.; Huang, W.; Kondev, F.; Audi, G.; Naimi, S. The AME 2020 atomic mass evaluation (II). Tables, graphs and references*. Chin. Phys. C 2021, 45, 030003. [Google Scholar] [CrossRef]
- Angeli, I.; Marinova, K. Table of experimental nuclear ground state charge radii: An update. At. Data Nucl. Data Tables 2013, 99, 69–95. [Google Scholar] [CrossRef]
- Lalazissis, G.A.; König, J.; Ring, P. New parametrization for the Lagrangian density of relativistic mean field theory. Phys. Rev. C 1997, 55, 540–543. [Google Scholar] [CrossRef]
- Steiner, A.W.; Hempel, M.; Fischer, T. Core-collapse supernova equations of state based on neutron star observations. Astrophys. J. 2013, 774, 17. [Google Scholar] [CrossRef]
- Lalazissis, G.; Raman, S.; Ring, P. Ground-state properties of even–even nuclei in the relativistic mean-field theory. At. Data Nucl. Data Tables 1999, 71, 1–40. [Google Scholar] [CrossRef]
- Priyanka, S.; Chauhan, A.; Mehta, M.S.; Bhuyan, M. Ground state properties and bubble structure of the isotopic chains of Z = 125 and 126 using the relativistic mean-field formalism. J. Phys. Nucl. Part. Phys. 2024, 51, 095104. [Google Scholar] [CrossRef]
- Figura, A.; Lu, J.J.; Burgio, G.F.; Li, Z.H.; Schulze, H.J. Hybrid equation of state approach in binary neutron-star merger simulations. Phys. Rev. D 2020, 102, 043006. [Google Scholar] [CrossRef]
- Boukari, O.; Pais, H.; Antić, S.; Providência, C. Critical properties of calibrated relativistic mean-field models for the transition to warm, nonhomogeneous nuclear and stellar matter. Phys. Rev. C 2021, 103, 055804. [Google Scholar] [CrossRef]
- Typel, S.; Wolter, H. Relativistic mean field calculations with density-dependent meson-nucleon coupling. Nucl. Phys. A 1999, 656, 331–364. [Google Scholar] [CrossRef]
- Typel, S.; Alvear Terrero, D. Parametrisations of relativistic energy density functionals with tensor couplings. Eur. Phys. J. A 2020, 56, 1–20. [Google Scholar] [CrossRef]
- Del Estal, M.; Centelles, M.; Viñas, X.; Patra, S.K. Effects of new nonlinear couplings in relativistic effective field theory. Phys. Rev. C 2001, 63, 024314. [Google Scholar] [CrossRef]
- Long, W.; Meng, J.; Giai, N.V.; Zhou, S.G. New effective interactions in relativistic mean field theory with nonlinear terms and density-dependent meson-nucleon coupling. Phys. Rev. C 2004, 69, 034319. [Google Scholar] [CrossRef]
- Stone, J.R.; Stone, N.J.; Moszkowski, S.A. Incompressibility in finite nuclei and nuclear matter. Phys. Rev. C 2014, 89, 044316. [Google Scholar] [CrossRef]
- Sharma, M.; Nagarajan, M.; Ring, P. The Relativistic Mean-Field, Effective Mass and the Compression Properties of Nuclei. Ann. Phys. 1994, 231, 110–126. [Google Scholar] [CrossRef]
- Liliani, N.; Nugraha, A.; Diningrum, J.; Sulaksono, A. Impacts of the tensor couplings of ω and ρ mesons and Coulomb-exchange terms on superheavy nuclei and their relation to the symmetry energy. Phys. Rev. C 2016, 93, 054322. [Google Scholar] [CrossRef]
- Long, W.; Meng, J.; Zhou, S.G. Structure of the new nuclide 259Db and its α-decay daughter nuclei. Phys. Rev. C 2002, 65, 047306. [Google Scholar] [CrossRef]
- Reinhard, P.G.; Agrawal, B. Energy systematics of heavy nuclei-mean field models in comparison. Int. J. Mod. Phys. E 2011, 20, 1379–1390. [Google Scholar] [CrossRef]
- Rana, S.; Bhuyan, M.; Kumar, R. Systematic study of fusion barrier characteristics within the relativistic mean-field formalism. Phys. Rev. C 2022, 105, 054613. [Google Scholar] [CrossRef]
- Bao, S.; Shen, H. Impact of the symmetry energy on nuclear pasta phases and crust-core transition in neutron stars. Phys. Rev. C 2015, 91, 015807. [Google Scholar] [CrossRef]
- Jiang, W.Z. Effects of the density dependence of the nuclear symmetry energy on the properties of superheavy nuclei. Phys. Rev. C 2010, 81, 044306. [Google Scholar] [CrossRef]
- Waldhauser, B.M.; Maruhn, J.A.; Stöcker, H.; Greiner, W. Nuclear equation of state from the nonlinear relativistic mean field theory. Phys. Rev. C 1988, 38, 1003–1009. [Google Scholar] [CrossRef]
- Reinhard, P.G. The nonlinearity of the scalar field in a relativistic mean-field theory of the nucleus. Z. Phys. A At. Nucl. 1988, 329, 257–266. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, S.; Kumar, M.; Queena; Thakur, G.; Mittal; Dhiman, S.K. Relativistic description of dense matter equation of state and neutron star observables constrained by recent astrophysical observations. J. Phys. G Nucl. Part. Phys. 2024, 51, 085201. [Google Scholar] [CrossRef]
- Miyatsu, T.; Cheoun, M.K.; Saito, K. Equation of state for neutron stars in SU(3) flavor symmetry. Phys. Rev. C 2013, 88, 015802. [Google Scholar] [CrossRef]
- Kumar, A.; Das, H.C.; Patra, S.K. Incompressibility and symmetry energy of a neutron star. Phys. Rev. C 2021, 104, 055804. [Google Scholar] [CrossRef]
- Adhikari, D.; Albataineh, H.; Androic, D.; Aniol, K.A.; Armstrong, D.S.; Averett, T.; Ayerbe Gayoso, C.; Barcus, S.K.; Bellini, V.; Beminiwattha, R.S.; et al. Precision Determination of the Neutral Weak Form Factor of 48Ca. Phys. Rev. Lett. 2022, 129, 042501. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, D.; Albataineh, H.; Androic, D.; Aniol, K.; Armstrong, D.S.; Averett, T.; Ayerbe Gayoso, C.; Barcus, S.; Bellini, V.; Beminiwattha, R.S.; et al. Accurate Determination of the Neutron Skin Thickness of 208Pb through Parity-Violation in Electron Scattering. Phys. Rev. Lett. 2021, 126, 172502. [Google Scholar] [CrossRef]
- De Vries, H.; De Jager, C.; De Vries, C. Nuclear charge-density-distribution parameters from elastic electron scattering. At. Data Nucl. Data Tables 1987, 36, 495–536. [Google Scholar] [CrossRef]
TM1m* | TM1m | TM1e | TM1 | NL3 | |
---|---|---|---|---|---|
(MeV) | 463.680 | 511.198 | 511.198 | 511.198 | 508.194 |
7.15454 | 7.9353 | 10.0289 | 10.0289 | 10.217 | |
8.59221 | 8.6317 | 12.6139 | 12.6139 | 12.868 | |
11.52164 | 11.5130 | 13.9714 | 9.2644 | 8.948 | |
() | −7.86677 | −11.5163 | −7.2325 | −7.2325 | −10.431 |
40.55692 | 54.8872 | 0.6183 | 0.6183 | −28.885 | |
0 | 0.00025 | 71.3075 | 71.3075 | 0 | |
0.09465 | 0.0933 | 0.0429 | 0 | 0 |
TM1m* | TM1m | TM1e | TM1 | NL3 | SFHo | |
---|---|---|---|---|---|---|
0.145 | 0.145 | 0.145 | 0.145 | 0.148 | 0.158 | |
−16.2 | −16.3 | −16.3 | −16.3 | −16.2 | −16.2 | |
282 | 281 | 281 | 281 | 272 | 245 | |
31.4 | 31.4 | 31.4 | 36.9 | 37.4 | 31.6 | |
40 | 40 | 40 | 111 | 118 | 47 | |
0.794 | 0.793 | 0.634 | 0.634 | 0.595 | 0.761 |
48Ca | 208Pb | ||
---|---|---|---|
RMF | TM1m* | 0.1934 | 0.1782 |
TM1m | 0.1807 | 0.1659 | |
SFHo | 0.1992 | 0.1931 | |
TM1e | 0.1712 | 0.1579 | |
TM1 | 0.2274 | 0.2709 | |
NL3 | 0.2271 | 0.2808 | |
STF | TM1m* | 0.117 | 0.104 |
TM1m | 0.098 | 0.082 | |
SFHo | 0.135 | 0.129 | |
TM1e | 0.121 | 0.103 | |
TM1 | 0.184 | 0.211 | |
NL3 | 0.189 | 0.222 | |
Experimental data | (exp) ± 0.024 (model) | ||
() | () |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Shen, H.; Hu, J. Nuclear Matter and Finite Nuclei: Relativistic Thomas–Fermi Approximation Versus Relativistic Mean-Field Approach. Universe 2025, 11, 255. https://doi.org/10.3390/universe11080255
Li S, Shen H, Hu J. Nuclear Matter and Finite Nuclei: Relativistic Thomas–Fermi Approximation Versus Relativistic Mean-Field Approach. Universe. 2025; 11(8):255. https://doi.org/10.3390/universe11080255
Chicago/Turabian StyleLi, Shuying, Hong Shen, and Jinniu Hu. 2025. "Nuclear Matter and Finite Nuclei: Relativistic Thomas–Fermi Approximation Versus Relativistic Mean-Field Approach" Universe 11, no. 8: 255. https://doi.org/10.3390/universe11080255
APA StyleLi, S., Shen, H., & Hu, J. (2025). Nuclear Matter and Finite Nuclei: Relativistic Thomas–Fermi Approximation Versus Relativistic Mean-Field Approach. Universe, 11(8), 255. https://doi.org/10.3390/universe11080255