Taming the Beast: Diffusion Method in Nonlocal Gravity †
Abstract
:1. Introduction
- Is the Cauchy problem well-defined?
- If so, how many initial conditions must one specify for a solution?
- How many degrees of freedom are there?
- How to construct nontrivial solutions?
- Is causality violated?
- Are singularities resolved at the classical or quantum level?
- Yes, for the form factors appearing in fundamental theories (not for all conceivable form factors).
- Two or higher (depending on the form factor), but finite.
- Eight (in dimensions).
- Via the diffusion method.
2. Action and Form Factors
3. The Wild Beast of Nonlocality
4. Diffusion Method
5. Initial Conditions and Degrees of Freedom
- Graviton : symmetric matrix with independent entries, to which one subtracts D Bianchi identities and D diffeomorphisms (the theory is fully diffeomorphism invariant). Total: . In , there are 2 degrees of freedom, the usual polarization modes.
- Tensor : symmetric matrix with independent entries, to which one subtracts D transverse conditions . Total: . In , there are 6 degrees of freedom.
- Grand total: .
6. Quasi-Uniqueness in Nonlocal Gravity
7. Discussion
- (i)
- (ii)
- (iii)
- Diffusion solutions as those described in this paper. Diffusing solutions are usually approximate with a high degree of accuracy, although exact solutions of scalar-field toy models also exist.
- (iv)
Funding
Conflicts of Interest
References
- Deser, S.; Woodard, R.P. Nonlocal cosmology. Phys. Rev. Lett. 2007, 99, 111301. [Google Scholar] [CrossRef] [PubMed]
- Deser, S.; Woodard, R.P. Observational viability and stability of nonlocal cosmology. J. Cosmol. Astropart. Phys. 2013, 2016, 036. [Google Scholar] [CrossRef]
- Tan, L.; Woodard, R.P. Structure Formation in nonlocal MOND. J. Cosmol. Astropart. Phys. 2018, 2018, 037. [Google Scholar] [CrossRef]
- Maggiore, M.; Mancarella, M. Nonlocal gravity and dark energy. Phys. Rev. D 2014, 90, 023005. [Google Scholar] [CrossRef]
- Belgacem, E.; Dirian, Y.; Foffa, S.; Maggiore, M. Nonlocal gravity. Conceptual aspects and cosmological predictions. J. Cosmol. Astropart. Phys. 2018, 2018, 002. [Google Scholar] [CrossRef]
- Alebastrov, V.A.; Efimov, G.V. A proof of the unitarity of S-matrix in a nonlocal quantum field theory. Commun. Math. Phys. 1973, 31, 1–24. [Google Scholar] [CrossRef]
- Alebastrov, V.A.; Efimov, G.V. Causality in quantum field theory with nonlocal interaction. Commun. Math. Phys. 1974, 38, 11–28. [Google Scholar] [CrossRef]
- Efimov, G.V. Nonlocal Interactions of Quantized Fields; Nauka: Moscow, Russia, 1977. (In Russian) [Google Scholar]
- Krasnikov, N.V. Nonlocal gauge theories. Theor. Math. Phys. 1987, 73, 1184–1190. [Google Scholar] [CrossRef]
- Tomboulis, E.T. Super-renormalizable gauge and gravitational theories. arXiv, 1997; arXiv:hep-th/9702146. [Google Scholar]
- Kuz’min, Y.V. The convergent nonlocal gravitation. Sov. J. Nucl. Phys. 1989, 50, 1011–1014. [Google Scholar]
- Moffat, J.W. Finite nonlocal gauge field theory. Phys. Rev. D 1990, 41, 1177. [Google Scholar] [CrossRef]
- Brekke, L.; Freund, P.G.O.; Olson, M.; Witten, E. Nonarchimedean string dynamics. Nucl. Phys. B 1988, 302, 365–402. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Samuel, S. The static tachyon potential in the open bosonic string theory. Phys. Lett. B 1988, 207, 169–173. [Google Scholar] [CrossRef]
- Eliezer, D.A.; Woodard, R.P. The problem of nonlocality in string theory. Nucl. Phys. B 1989, 325, 389–469. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Samuel, S. On a nonperturbative vacuum for the open bosonic string. Nucl. Phys. B 1990, 336, 263–296. [Google Scholar] [CrossRef]
- Aref’eva, I.Y.; Medvedev, P.B.; Zubarev, A.P. New representation for string field solves the consistency problem for open superstring field theory. Nucl. Phys. B 1990, 341, 464–498. [Google Scholar] [CrossRef]
- Brekke, L.; Freund, P.G.O. p-adic numbers in physics. Phys. Rep. 1993, 233, 1–66. [Google Scholar] [CrossRef]
- Tseytlin, A.A. On singularities of spherically symmetric backgrounds in string theory. Phys. Lett. B 1995, 363, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Siegel, W. Stringy gravity at short distances. arXiv, 2003; arXiv:hep-th/0309093. [Google Scholar]
- Aref’eva, I.Y.; Koshelev, A.S.; Belov, D.M.; Medvedev, P.B. Tachyon condensation in cubic superstring field theory. Nucl. Phys. B 2002, 638, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Moeller, N.; Zwiebach, B. Dynamics with infinitely many time derivatives and rolling tachyons. J. High Energy Phys. 2002, 2002, 034. [Google Scholar] [CrossRef]
- Aref’eva, I.Y.; Joukovskaya, L.V.; Koshelev, A.S. Time evolution in superstring field theory on nonBPS brane. 1. Rolling tachyon and energy momentum conservation. J. High Energy Phys. 2003, 2003, 012. [Google Scholar] [CrossRef]
- Ohmori, K. Toward open-closed string theoretical description of rolling tachyon. Phys. Rev. D 2004, 69, 026008. [Google Scholar] [CrossRef]
- Modesto, L.; Rachwał, L. Super-renormalizable and finite gravitational theories. Nucl. Phys. B 2014, 889, 228–248. [Google Scholar] [CrossRef]
- Modesto, L.; Rachwał, L. Universally finite gravitational and gauge theories. Nucl. Phys. B 2015, 900, 147–169. [Google Scholar] [CrossRef]
- Calcagni, G.; Modesto, L.; Nardelli, G. Initial conditions and degrees of freedom of non-local gravity. J. High Energy Phys. 2018, 2018, 087. [Google Scholar] [CrossRef] [Green Version]
- Calcagni, G.; Modesto, L.; Nardelli, G. Nonperturbative spectrum of nonlocal gravity. arXiv, 2018; arXiv:1803.07848. [Google Scholar]
- Calcagni, G.; Montobbio, M.; Nardelli, G. Route to nonlocal cosmology. Phys. Rev. D 2007, 76, 126001. [Google Scholar] [CrossRef]
- Tomboulis, E.T. Renormalization and unitarity in higher derivative and nonlocal gravity theories. Mod. Phys. Lett. A 2015, 30, 1540005. [Google Scholar] [CrossRef]
- Asorey, M.; López, J.L.; Shapiro, I.L. Some remarks on high derivative quantum gravity. Int. J. Mod. Phys. A 1997, 12, 5711. [Google Scholar] [CrossRef]
- Modesto, L. Super-renormalizable quantum gravity. Phys. Rev. D 2012, 86, 044005. [Google Scholar] [CrossRef]
- Biswas, T.; Mazumdar, A.; Siegel, W. Bouncing universes in string-inspired gravity. J. Cosmol. Astropart. Phys. 2006, 2006, 009. [Google Scholar] [CrossRef]
- Calcagni, G.; Modesto, L. Nonlocal quantum gravity and M-theory. Phys. Rev. D 2015, 91, 124059. [Google Scholar] [CrossRef]
- Talaganis, S.; Biswas, T.; Mazumdar, A. Towards understanding the ultraviolet behavior of quantum loops in infinite-derivative theories of gravity. Class. Quantum Gravity 2015, 32, 215017. [Google Scholar] [CrossRef] [Green Version]
- Calcagni, G.; Montobbio, M.; Nardelli, G. Localization of nonlocal theories. Phys. Lett. B 2008, 662, 285–289. [Google Scholar] [CrossRef]
- Mulryne, D.J.; Nunes, N.J. Diffusing nonlocal inflation: solving the field equations as an initial value problem. Phys. Rev. D 2008, 78, 063519. [Google Scholar] [CrossRef]
- Calcagni, G.; Nardelli, G. String theory as a diffusing system. J. High Energy Phys. 2010, 2010, 093. [Google Scholar] [CrossRef]
- Calcagni, G.; Nardelli, G. Tachyon solutions in boundary and cubic string field theory. Phys. Rev. D 2008, 78, 126010. [Google Scholar] [CrossRef]
- Calcagni, G.; Nardelli, G. Nonlocal instantons and solitons in string models. Phys. Lett. B 2008, 669, 102–106. [Google Scholar] [CrossRef] [Green Version]
- Calcagni, G.; Nardelli, G. Kinks of open superstring field theory. Nucl. Phys. B 2009, 823, 234–253. [Google Scholar] [CrossRef] [Green Version]
- Calcagni, G.; Nardelli, G. Cosmological rolling solutions of nonlocal theories. Int. J. Mod. Phys. D 2010, 19, 329. [Google Scholar] [CrossRef]
- Calcagni, G.; Nardelli, G. Nonlocal gravity and the diffusion equation. Phys. Rev. D 2010, 82, 123518. [Google Scholar] [CrossRef]
- Ulmer, W. Inverse problem of linear combinations of Gaussian convolution kernels (deconvolution) and some applications to proton/photon dosimetry and image processing. Inverse Probl. 2010, 26, 085002. [Google Scholar] [CrossRef]
- Li, Y.D.; Modesto, L.; Rachwał, L. Exact solutions and spacetime singularities in nonlocal gravity. J. High Energy Phys. 2015, 2015, 173. [Google Scholar] [CrossRef]
- Calcagni, G.; Modesto, L.; Myung, Y.S. Black-hole stability in non-local gravity. Phys. Lett. B 2018, 783, 19–23. [Google Scholar] [CrossRef]
- Koshelev, A.S.; Kumar, K.S.; Starobinsky, A.A. tiaR2 inflation to probe non-perturbative quantum gravity. J. High Energy Phys. 2018, 2018, 071. [Google Scholar] [CrossRef]
- Frolov, V.P.; Zelnikov, A.; de Paula Netto, T. Spherical collapse of small masses in the ghost-free gravity. J. High Energy Phys. 2015, 2015, 107. [Google Scholar] [CrossRef]
- Frolov, V.P. Mass gap for black-hole formation in higher-derivative and ghost-free gravity. Phys. Rev. Lett. 2015, 115, 051102. [Google Scholar] [CrossRef] [PubMed]
- Frolov, V.P.; Zelnikov, A. Head-on collision of ultrarelativistic particles in ghost-free theories of gravity. Phys. Rev. D 2016, 93, 064048. [Google Scholar] [CrossRef] [Green Version]
- Frolov, V.P. Notes on nonsingular models of black holes. Phys. Rev. D 2016, 94, 104056. [Google Scholar] [CrossRef] [Green Version]
- Frolov, V.P.; Zelnikov, A. Quantum radiation from an evaporating nonsingular black hole. Phys. Rev. D 2017, 95, 124028. [Google Scholar] [CrossRef] [Green Version]
- Calcagni, G.; Modesto, L.; Nicolini, P. Super-accelerating bouncing cosmology in asymptotically-free non-local gravity. Eur. Phys. J. C 2014, 74, 2999. [Google Scholar] [CrossRef]
1 | Generalizing to yields the same expression with and , but since we will keep P generic we do not need this complication. |
2 | Again, the generalization to is straightforward and not very instructive. |
3 | In the case of gravity, one has an Ansatz of the form or similar [33]. |
4 | The kernels that appear in nonlocal quantum gravity obey a set of master equations among which there is a diffusion equation. This is the reason we still call the generalized procedure of Section 6 diffusion method. |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calcagni, G. Taming the Beast: Diffusion Method in Nonlocal Gravity. Universe 2018, 4, 95. https://doi.org/10.3390/universe4090095
Calcagni G. Taming the Beast: Diffusion Method in Nonlocal Gravity. Universe. 2018; 4(9):95. https://doi.org/10.3390/universe4090095
Chicago/Turabian StyleCalcagni, Gianluca. 2018. "Taming the Beast: Diffusion Method in Nonlocal Gravity" Universe 4, no. 9: 95. https://doi.org/10.3390/universe4090095
APA StyleCalcagni, G. (2018). Taming the Beast: Diffusion Method in Nonlocal Gravity. Universe, 4(9), 95. https://doi.org/10.3390/universe4090095