Reflection Identities of Harmonic Sums of Weight Four
Abstract
:1. Introduction
2. Motivation: Restoring NLO Eigenvalue
3. Methods and Results
4. Discussion and Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BFKL equation | Balitsky–Fadin–Kuraev–Lipatov equation |
LO | leading order |
NLO | next-to-leading order |
NLO | next-to-leading order |
NNLO | next-to-next-to-leading order |
Appendix A
Appendix A.1. Reflection Identities Originating from
Appendix A.2. Reflection Identities Originating from
References
- Lipatov, L.N. Reggeization of the Vector Meson and the Vacuum Singularity in Nonabelian Gauge Theories. Sov. J. Nucl. Phys. 1976, 23, 338. [Google Scholar]
- Fadin, V.S.; Kuraev, E.A.; Lipatov, L.N. On the Pomeranchuk Singularity in Asymptotically Free Theories. Phys. Lett. B 1975, 60, 50–52. [Google Scholar] [CrossRef]
- Kuraev, E.A.; Lipatov, L.N.; Fadin, V.S. Multi-Reggeon Processes in the Yang-Mills Theory. Sov. Phys. JETP 1976, 44, 443–451. [Google Scholar]
- Kuraev, E.A.; Lipatov, L.N.; Fadin, V.S. The Pomeranchuk Singularity in Nonabelian Gauge Theories. Zhurnal Ehksperimental’noj i Teoreticheskoj Fiziki 1977, 72, 377–389. [Google Scholar]
- Balitsky, I.I.; Lipatov, L.N. The Pomeranchuk Singularity in Quantum Chromodynamics. Sov. J. Nucl. Phys. 1978, 28, 822–829. [Google Scholar]
- Ioffe, B.L.; Fadin, V.S.; Lipatov, L.N. Quantum Chromodynamics: Perturbative and Nonperturbative Aspects; Cambridge University Press: Cambridge, UK, 2010; Volume 30. [Google Scholar]
- Lipatov, L.N. High energy asymptotics of multi-colour QCD and exactly solvable lattice models. arXiv, 1993; arXiv:9311037. [Google Scholar]
- Prygarin, A. Reflection identities of harmonic sums up to weight three. arXiv, 2018; arXiv:1808.09307. [Google Scholar]
- Gromov, N.; Levkovich-Maslyuk, F.; Sizov, G. Pomeron Eigenvalue at Three Loops in Supersymmetric Yang-Mills Theory. Phys. Rev. Lett. 2015, 115, 251601. [Google Scholar] [CrossRef] [PubMed]
- Caron-Huot, S.; Herranen, M. High-energy evolution to three loops. J. High Energy Phys. 2018, 2018, 058. [Google Scholar] [CrossRef]
- Alfimov, M.; Gromov, N.; Sizov, G. BFKL spectrum of : Non-zero conformal spin. J. High Energy Phys. 2018, 2018, 181. [Google Scholar] [CrossRef]
- Nielsen, N. Handbuch der Theorie der Gammafunktion; Teubner: Leipzig, Germany, 1906; Reprinted by Chelsea Publishing Company: Bronx, NY, USA, 1965. [Google Scholar]
- Gonzalez-Arroyo, A.; Lopez, C.; Yndurain, F.J. Second Order Contributions to the Structure Functions in Deep Inelastic Scattering. 1. Theoretical Calculations. Nucl. Phys. B 1979, 153, 161. [Google Scholar] [CrossRef]
- Gonzalez-Arroyo, A.; Lopez, C. Second Order Contributions to the Structure Functions in Deep Inelastic Scattering. 3. The Singlet Case. Nucl. Phys. B 1980, 166, 429. [Google Scholar] [CrossRef]
- Vermaseren, J.A.M. Harmonic sums, Mellin transforms and integrals. Int. J. Mod. Phys. A 1999, 14, 2037–2076. [Google Scholar] [CrossRef]
- Blumlein, J.; Kurth, S. Harmonic sums and Mellin transforms up to two loop order. Phys. Rev. D 1999, 60, 014018. [Google Scholar] [CrossRef]
- Remiddi, E.; Vermaseren, J.A.M. Harmonic polylogarithms. Int. J. Mod. Phys. A 2000, 15, 725–754. [Google Scholar] [CrossRef]
- Kotikov, A.V.; Lipatov, L.N. On the highest transcendentality in N = 4 SUSY. Nucl. Phys. B 2007, 769, 217–255. [Google Scholar] [CrossRef]
- Bondarenko, S.; Prygarin, A. Hermitian separability and transition from singlet to adjoint BFKL equations in super Yang-Mills Theory. arXiv 2015, arXiv:1510.00589. [Google Scholar]
- Bondarenko, S.; Prygarin, A. On a residual freedom of the next-to-leading BFKL eigenvalue in color adjoint representation in planar SYM. J. High Energy Phys. 2016, 2016, 081. [Google Scholar] [CrossRef]
- Kotikov, A.V.; Lipatov, L.N.; Onishchenko, A.I.; Velizhanin, V.N. Three loop universal anomalous dimension of the Wilson operators in N = 4 SUSY Yang-Mills model. Phys. Lett. B 2006, 595, 521–529, Erratum in 2006, 632, 754. [Google Scholar] [CrossRef]
- Kotikov, A.V.; Velizhanin, V.N. Analytic continuation of the Mellin moments of deep inelastic structure functions. arXiv, 2005; arXiv:hep-ph/0501274. [Google Scholar]
- Blumlein, J. Structural Relations of Harmonic Sums and Mellin Transforms up to Weight w = 5. Comput. Phys. Commun. 2009, 180, 2218–2249. [Google Scholar] [CrossRef]
- Ablinger, J. Computer Algebra Algorithms for Special Functions in Particle Physics. Ph.D. Thesis, Johannes Kepler University Linz, Linz, Austria, April 2012. [Google Scholar]
- Ablinger, J.; Blumlein, J.; Schneider, C. Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials. J. Math. Phys. 2011, 52, 102301. [Google Scholar] [CrossRef]
- Blümlein, J. Structural Relations of Harmonic Sums and Mellin Transforms at Weight w = 6. Clay Math. Proc. 2010, 12, 167–186. [Google Scholar]
- Kotikov, A.V.; Lipatov, L.N. DGLAP and BFKL equations in the N = 4 supersymmetric gauge theory. Nucl. Phys. B 2003, 661, 19–61, Erratum in 2004, 685, 405–407. [Google Scholar] [CrossRef]
- Maitre, D. HPL, a mathematica implementation of the harmonic polylogarithms. Comput. Phys. Commun. 2006, 174, 222–240. [Google Scholar] [CrossRef]
1 | More precisely, the logarithm of the center-of-mass energy is similar to the imaginary time in the Schroedinger-like equation. |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prygarin, A. Reflection Identities of Harmonic Sums of Weight Four. Universe 2019, 5, 77. https://doi.org/10.3390/universe5030077
Prygarin A. Reflection Identities of Harmonic Sums of Weight Four. Universe. 2019; 5(3):77. https://doi.org/10.3390/universe5030077
Chicago/Turabian StylePrygarin, Alexander. 2019. "Reflection Identities of Harmonic Sums of Weight Four" Universe 5, no. 3: 77. https://doi.org/10.3390/universe5030077
APA StylePrygarin, A. (2019). Reflection Identities of Harmonic Sums of Weight Four. Universe, 5(3), 77. https://doi.org/10.3390/universe5030077