Scale Transformations in Metric-Affine Geometry
Abstract
:1. Introduction
2. The Geometrical Framework
2.1. Scale Transformations in the Palatini Formalism
- Only the connection is transformed. This is called the projective transformation:
- Only the metric is transformed. This is called the conformal transformation:
- Both the metric and the connection are transformed. This is called the frame rescaling:
2.2. Scale Transformation in Metric-Affine Gauge Geometry
3. A Simple Scale-Invariant Theory
- projective invariance:
- conformal invariance:
- frame rescaling invariance:
4. The Parity-Even Quadratic Action
4.1. The Scale-Covariant Scalars
4.2. The Field Equations
5. The General Quadratic Theory
5.1. The Parity-Odd Scalars
5.2. On Applications to Theory
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
GR | General theory of Relativity |
MAG | Metric Affine Gauge theory |
Appendix A. The Quadratic Non-Metricity and Torsion Scalars
Appendix A.1. On Quartic Invariants
Appendix B. Variational Identities
Appendix B.1. Variations
Appendix B.2. Projective Invariance and Tracelessness
Appendix B.3. Conformal Invariance and Tracelessness
Appendix B.4. The Case of Frame Rescalings
Appendix C. Transformation Identities
Appendix C.1. Projective Transformations
Appendix C.2. Conformal Transformations
Appendix C.3. Frame Rescaling
References
- Weyl, H. Gravitation and electricity. Sitzungsber. Preuss. Akad. Wiss. 1918, 26, 465–480. [Google Scholar] [CrossRef]
- Weyl, H. Electron and gravitation. Z. Phys. 1929, 56, 330–352. (In German) [Google Scholar] [CrossRef]
- O’Raifeartaigh, L. The Dawning of Gauge Theory; Princeton University Press: Princeton, NJ, USA, 1997. [Google Scholar]
- Koivisto, T. An integrable geometrical foundation of gravity. arXiv, 2018; arXiv:1802.006502018. [Google Scholar] [CrossRef]
- Blagojević, M.; Hehl, F.W. (Eds.) Gauge Theories of Gravitation; World Scientific: Singapore, 2013. [Google Scholar]
- Hooft, T.G. Local conformal symmetry: The missing symmetry component for space and time. Int. J. Mod. Phys. D 2015, 24, 1543001. [Google Scholar] [CrossRef]
- Hehl, F.W.; McCrea, J.D.; Mielke, E.W.; Ne’eman, Y. Metric affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys. Rept. 1995, 258, 1–171. [Google Scholar] [CrossRef]
- Mannheim, P.D. Making the case for conformal gravity. Found. Phys. 2012, 42, 388–420. [Google Scholar] [CrossRef]
- Scholz, E. Weyl geometry in late 20th century physics. arXiv, 2011; arXiv:1111.3220. [Google Scholar]
- Nakayama, Y. Scale invariance vs. conformal invariance. Phys. Rept. 2015, 569, 1–93. [Google Scholar] [CrossRef]
- Rachwał, L. Conformal symmetry in field theory and in quantum gravity. Universe 2018, 4, 125. [Google Scholar] [CrossRef]
- Olmo, G.J. Palatini approach to modified gravity: f(R) theories and beyond. Int. J. Mod. Phys. D 2011, 20, 413–462. [Google Scholar] [CrossRef]
- Heisenberg, L. A systematic approach to generalisations of General Relativity and their cosmological implications. arXiv, 2018; arXiv:1807.01725. [Google Scholar] [CrossRef]
- Shapiro, I.L. Physical aspects of the space-time torsion. Phys. Rept. 2002, 357, 113. [Google Scholar] [CrossRef]
- Hehl, F.W.; Obukhov, Y.N. Elie Cartan’s torsion in geometry and in field theory, an essay. Annales Fond. Broglie 2007, 32, 157–194. [Google Scholar]
- Vitagliano, V. The role of nonmetricity in metric-affine theories of gravity. Class. Quantum Gravity 2014, 31, 045006. [Google Scholar] [CrossRef]
- Weyl, H. A remark on the coupling of gravitation and electron. Phys. Rev. 1950, 77, 699–701. [Google Scholar] [CrossRef]
- Goenner, H.F.M. On the history of unified field theories. Part II. (ca. 1930–ca. 1965). Living Rev. Rel. 2014, 17, 5. [Google Scholar] [CrossRef]
- Ehlers, J.; Pirani, F.A.E.; Schild, A. Republication of: The geometry of free fall and light propagation. Gen. Relat. Gravitity 2012, 44, 1587–1609. [Google Scholar] [CrossRef]
- Magnano, G.; Sokolowski, L.M. On physical equivalence between nonlinear gravity theories and a general relativistic selfgravitating scalar field. Phys. Rev. D 1994, 50, 5039–5059. [Google Scholar] [CrossRef]
- Faraoni, V.; Gunzig, E.; Nardone, P. Conformal transformations in classical gravitational theories and in cosmology. Fund. Cosmic Phys. 1999, 20, 121. [Google Scholar]
- Allemandi, G.; Capone, M.; Capozziello, S.; Francaviglia, M. Conformal aspects of Palatini approach in extended theories of gravity. Gen. Rel. Gravity 2006, 38, 33–60. [Google Scholar] [CrossRef]
- Iosifidis, D.; Petkou, A.C.; Tsagas, C.G. Torsion/non-metricity duality in f(R) gravity. arXiv, 2018; arXiv:1810.06602. [Google Scholar]
- Amendola, L.; Enqvist, K.; Koivisto, T. Unifying Einstein and Palatini gravities. Phys. Rev. D 2011, 83, 044016. [Google Scholar] [CrossRef]
- Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J. Hybrid metric-Palatini gravity. Universe 2015, 1, 199–238. [Google Scholar] [CrossRef]
- Beltran Jimenez, J.; Heisenberg, L.; Koivisto, T.S. Cosmology for quadratic gravity in generalized Weyl geometry. J. Cosmol. Astropart. Phys. 2016, 2016, 46. [Google Scholar] [CrossRef]
- Iosifidis, D.; Tsagas, C.G.; Petkou, A.C. The Raychaudhuri equation in spacetimes with torsion and non-metricity. arXiv, 2018; arXiv:1809.04992. [Google Scholar]
- Shaposhnikov, M.; Zenhausern, D. Quantum scale invariance, cosmological constant and hierarchy problem. Phys. Lett. B 2009, 671, 162–166. [Google Scholar] [CrossRef]
- Kannike, K.; Hütsi, G.; Pizza, L.; Racioppi, A.; Raidal, M.; Salvio, A.; Strumia, A. Dynamically induced Planck scale and inflation. J. High Energy Phys. 2015, 2015, 65. [Google Scholar] [CrossRef]
- De Martini, F. The Higgs field and the resolution of the Cosmological Constant Paradox in the Weyl-geometrical Universe. Philos. Trans. R. Soc. Lond. A 2017, 375, 388. [Google Scholar] [CrossRef]
- Lucat, S.; Prokopec, T.; Swiezewska, B. Conformal symmetry and the cosmological constant problem. arXiv, 2018; arXiv:1804.00926. [Google Scholar] [CrossRef]
- Bamba, K.; Odintsov, S.D.; Sáez-Gómez, D. Conformal symmetry and accelerating cosmology in teleparallel gravity. Phys. Rev. D 2013, 88, 084042. [Google Scholar] [CrossRef]
- Momeni, D.; Myrzakulov, R. Conformal invariant teleparallel cosmology. Eur. Phys. J. Plus 2014, 129, 137. [Google Scholar] [CrossRef]
- Silva, J.G.; Santos, A.F.; Ulhoa, S.C. On Friedmann-Robertson-Walker model in conformal teleparallel gravity. Eur. Phys. J. C 2016, 76, 167. [Google Scholar] [CrossRef]
- Israelit, M. Quintessence and dark matter created by Weyl-Dirac geometry. Found. Phys. 2002, 32, 945–961. [Google Scholar] [CrossRef]
- Lewandowski, A.; Meissner, K.A.; Nicolai, H. Conformal standard model, leptogenesis and dark matter. Phys. Rev. D 2018, 97, 035024. [Google Scholar] [CrossRef]
- Lobo, F.S.N. General class of wormhole geometries in conformal Weyl gravity. Class. Quantum Gravity 2008, 25, 175006. [Google Scholar] [CrossRef]
- Hohmann, M.; Pfeifer, C.; Raidal, M.; Veermäe, H. Wormholes in conformal gravity. J. Cosmol. Astropart. Phys. 2018, 2018, 3. [Google Scholar] [CrossRef]
- Modesto, L.; Rachwal, L. Finite conformal quantum gravity and nonsingular spacetimes. arXiv, 2016; arXiv:1605.04173. [Google Scholar]
- Bambi, C.; Modesto, L.; Rachwał, L. Spacetime completeness of non-singular black holes in conformal gravity. J. Cosmol. Astropart. Phys. 2017, 2017, 3. [Google Scholar] [CrossRef]
- Bambi, C.; Modesto, L.; Porey, S.; Rachwał, L. Black hole evaporation in conformal gravity. J. Cosmol. Astropart. Phys. 2017, 2017, 33. [Google Scholar] [CrossRef]
- Bambi, C.; Modesto, L.; Porey, S.; Rachwał, L. Formation and evaporation of an electrically charged black hole in conformal gravity. Eur. Phys. J. C 2018, 78, 116. [Google Scholar] [CrossRef]
- Hazboun, J.S.; Wheeler, J.T. Time and dark matter from the conformal symmetries of Euclidean space. Class. Quantum Gravity 2014, 31, 215001. [Google Scholar] [CrossRef]
- Bezrukov, F.; Karananas, G.K.; Rubio, J.; Shaposhnikov, M. Higgs-Dilaton cosmology: An effective field theory approach. Phys. Rev. D 2013, 87, 096001. [Google Scholar] [CrossRef]
- Ferreira, P.G.; Hill, C.T.; Ross, G.G. Weyl current, scale-invariant inflation and Planck scale generation. Phys. Rev. D 2017, 95, 043507. [Google Scholar] [CrossRef]
- Gegenberg, J.; Rahmati, S.; Seahra, S.S. Big bounce, slow-roll inflation, and dark energy from conformal gravity. Phys. Rev. D 2017, 95, 043509. [Google Scholar] [CrossRef]
- Bars, I.; Steinhardt, P.; Turok, N. Local conformal symmetry in physics and cosmology. Phys. Rev. D 2014, 89, 043515. [Google Scholar] [CrossRef]
- Obukhov, Y.N. Conformal invariance and space-time torsion. Phys. Lett. A 1982, 90, 13–16. [Google Scholar] [CrossRef]
- Zhytnikov, V.V. Conformally invariant Lagrangians in metric affine and Riemann-Cartan spaces. Int. J. Mod. Phys. A 1993, 8, 5141–5152. [Google Scholar] [CrossRef]
- Shtanov, Y.V.; Yushchenko, S.A. Conformally invariant cosmology based on Riemann-Cartan space-time. Class. Quantum Gravity 1994, 11, 2455–2482. [Google Scholar] [CrossRef]
- Karahan, C.N.; Dogangun, O.; Demir, D.A. Conformal transformations in metric-affine gravity and ghosts. Annalen Phys. 2012, 524, 461–469. [Google Scholar] [CrossRef]
- Moon, T.Y.; Lee, J.; Oh, P. Conformal invariance in Einstein-Cartan-Weyl space. Mod. Phys. Lett. A 2010, 25, 3129–3143. [Google Scholar] [CrossRef]
- Vazirian, R.; Tanhayi, M.R.; Motahar, Z.A. Weyl-invariant extension of the Metric-Affine Gravity. Adv. High Energy Phys. 2015, 2015, 902396. [Google Scholar] [CrossRef]
- Wright, M. Conformal transformations in modified teleparallel theories of gravity revisited. Phys. Rev. D 2016, 93, 103002. [Google Scholar] [CrossRef]
- Lucat, S.; Prokopec, T. The role of conformal symmetry in gravity and the standard model. Class. Quantum Gravity 2016, 33, 245002. [Google Scholar] [CrossRef]
- Barnaveli, A.; Lucat, S.; Prokopec, T. Inflation as a spontaneous symmetry breaking of Weyl symmetry. arXiv, 2018; arXiv:1809.10586. [Google Scholar] [CrossRef]
- Afonso, V.I.; Bejarano, C.; Beltran Jimenez, J.; Olmo, G.J.; Orazi, E. The trivial role of torsion in projective invariant theories of gravity with non-minimally coupled matter fields. Class. Quantum Gravity 2017, 34, 235003. [Google Scholar] [CrossRef]
- Aoki, K.; Shimada, K. Galileon and generalized Galileon with projective invariance in a metric-affine formalism. Phys. Rev. D 2018, 98, 044038. [Google Scholar] [CrossRef]
- Janssen, B.; Jimenez-Cano, A. Projective symmetries and induced electromagnetism in metric-affine gravity. arXiv, 2018; arXiv:1807.10168. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Long range forces and broken symmetries. Proc. R. Soc. Lond. A 1973, 333, 403–418. [Google Scholar] [CrossRef]
- Israelit, M. The Weyl-Dirac Theory and Our Universe; Nova Science Publishers: Hauppauge, NY, USA, 1999. [Google Scholar]
- Faraoni, V.; Nadeau, S. The (pseudo)issue of the conformal frame revisited. Phys. Rev. D 2007, 75, 023501. [Google Scholar] [CrossRef]
- Brans, C.; Dicke, R.H. Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 1961, 124, 925–935. [Google Scholar] [CrossRef]
- Beltrán Jiménez, J.; Heisenberg, L.; Koivisto, T.S. Teleparallel Palatini theories. J. Cosmol. Astropart. Phys. 2018, 2018, 39. [Google Scholar] [CrossRef]
- Beltran Jimenez, J.; Koivisto, T.S. Extended Gauss-Bonnet gravities in Weyl geometry. Class. Quantum Gravity 2014, 31, 135002. [Google Scholar] [CrossRef]
- Beltran Jimenez, J.; Koivisto, T.S. Spacetimes with vector distortion: Inflation from generalised Weyl geometry. Phys. Lett. B 2016, 756, 400–404. [Google Scholar] [CrossRef]
- Aringazin, A.K.; Mikhailov, A.L. Matter fields in spacetime with vector nonmetricity. Class. Quantum Gravity 1991, 8, 1685. [Google Scholar] [CrossRef]
- Haghani, Z.; Khosravi, N.; Shahidi, S. The Weyl-Cartan Gauss-Bonnet gravity. Class. Quantum Gravity 2015, 32, 215016. [Google Scholar] [CrossRef]
- Shahidi, S. Axionic extension of the Proca action. Phys. Rev. D 2018, 98, 084004. [Google Scholar] [CrossRef]
- Beltrán Jiménez, J.; Koivisto, T.S. Modified gravity with vector distortion and cosmological applications. Universe 2017, 3, 47. [Google Scholar] [CrossRef]
- Pagani, C.; Percacci, R. Quantum gravity with torsion and non-metricity. Class. Quantum Gravity 2015, 32, 195019. [Google Scholar] [CrossRef]
- Jiménez, J.B.; Heisenberg, L.; Koivisto, T. Coincident general relativity. Phys. Rev. D 2018, 98, 044048. [Google Scholar] [CrossRef]
- Nester, J.M.; Yo, H.J. Symmetric teleparallel general relativity. Chin. J. Phys. 1999, 37, 113. [Google Scholar]
- Adak, M.; Sert, O.; Kalay, M.; Sari, M. Symmetric teleparallel gravity: Some exact solutions and spinor couplings. Int. J. Mod. Phys. A 2013, 28, 1350167. [Google Scholar] [CrossRef]
- Rünkla, M.; Vilson, O. Family of scalar-nonmetricity theories of gravity. Phys. Rev. D 2018, 98, 084034. [Google Scholar] [CrossRef]
- Golovnev, A.; Koivisto, T.; Sandstad, M. On the covariance of teleparallel gravity theories. Class. Quantum Gravity 2017, 34, 145013. [Google Scholar] [CrossRef]
- Conroy, A.; Koivisto, T. The spectrum of symmetric teleparallel gravity. arXiv, 2017; arXiv:1710.05708. [Google Scholar] [CrossRef]
- Järv, L.; Rünkla, M.; Saal, M.; Vilson, O. Nonmetricity formulation of general relativity and its scalar-tensor extension. Phys. Rev. D 2018, 97, 124025. [Google Scholar] [CrossRef]
- Hohmann, M. Polarization of gravitational waves in general teleparallel theories of gravity. In Proceedings of the 3rd Zeldovich Meeting: An International Conference in Honor of Ya. B. Zeldovich, Minsk, Belarus, 23–27 April 2018. [Google Scholar]
- Hohmann, M.; Pfeifer, C.; Said, J.L.; Ualikhanova, U. Propagation of gravitational waves in symmetric teleparallel gravity theories. arXiv, 2018; arXiv:1808.02894. [Google Scholar] [CrossRef]
- Soudi, I.; Farrugia, G.; Gakis, V.; Said, J.L.; Saridakis, E.N. Polarization of gravitational waves in symmetric teleparallel theories of gravity and their modifications. arXiv, 2018; arXiv:1810.08220. [Google Scholar]
- Adak, M. Gauge Approach to the symmetric teleparallel gravity. arXiv, arXiv:1809.01385. [CrossRef]
1. | As is a usual practice, we refer to tensors by their components. Thus, e.g., the Weyl (co)vector will be referred to as from now on. |
2. | |
3. | In this paper we focus on scale invariance, but one could generalise these considerations to more general transformations. However, a theory that would be postulated to be invariant under a completely general transformation such as Equation (18), with no restrictions on , would have to be topological in the sense of being invariant under arbitrary transformations of the metric. |
4. | Needless to say, this terminology is not systematically used in the literature, but typically any version that is adopted is referred to as “the conformal transformation”. However, our definition of the conformal transformation Equation (12) agrees with the review [7], since the transformation Equation (19) can be seen as the volume changing part of the proper linear transformation Equation (26) (which is appropriately called “the local scale transformation” in [7]) that is generalised “by admitting arbitrary exponents” of the rescaling factor , in the case of Equation (19) in particular giving the metric the rescaling weight 2. In the same way, the frame rescaling Equation (13) is simply the local scale transformation, i.e., the trace part of Equation (26), accompanied with the non-trivial rescaling weight 1 for the frame field and for the coframe field. In the context of torsion transformations, the -transformation Equation (13) and the -transformation Equation (12) correspond to the “strong conformal symmetry” and the “weak conformal symmetry” [14], respectively. |
5. | Please note that both and , that is any Palatini tensor that is built from a metric conformally related to is also traceless in its first two indices. We shortly return to study this systematically in Appendix B. |
6. | There is 1 linear and 10 scalars in the quadratic and parity-even case [65], and in the general case there is an infinite number of such scalars. |
7. | This is consistent with Equation (A7) in Reference [75]. From their Equation (B4) one sees that the constitutive relation becomes non-invertible in the case of additional conformal symmetry. |
8. | This is so because in this case the gauge covariant derivative is constructed in terms of and the latter is independent of the metric tensor. |
9. | Assuming that the determinant of the matrix corresponding to the system does not vanish. |
10. | If there is hypermomentum, the situation changes, though the connection remains undynamical, as indeed is known from the seminal example of the Einstein-Cartan-Sciama-Kibble theory. Adding non-minimal derivative interactions of the connection to the matter sector could of course make the connection dynamical. |
11. | An alternative method is the Golovnev’s “inertial variation” [76] wherein instead of the connection one varies a gauge transformation parameter. However, it is against the spirit of the Palatini formalism to set the connection a priori into the purely inertial form. |
12. | |
13. | denotes a projective variation of the connection, and in the following will denote the variation under the conformal transformation and the variation under the frame rescaling. |
14. | This of course generalizes to any dimension and takes the form where n is the dimension of the space. |
15. | This is most important because one can also have projective and conformal transformations that are powered by different fields. Then invariance means that both metric and connection conjugates have zero traces and they are not related. As an example consider which is independently invariant under and (where and are not related to any way) and as a result and . |
Transformation | Geometry | |||
---|---|---|---|---|
conformal metric | Riemannian | |||
conformal MAG | 0 | 0 | 0 | orthonormal |
projective | 0 | 1 | 0 | holonomic |
projective | 0 | teleparallel | ||
projective | 0 | symmetric telep. |
Invariance | Constraints | g-EoM | -EoM | -EoM | Total | |
---|---|---|---|---|---|---|
projective | Equation (63) | Equation (73) where | Equation (82a) | Equation (83a) | Equation (96) | |
conformal | Equation (56) | Equation (73) with Equation (77a) | Equation (82b) | Equation (83b) | Equation (92) | |
frame rescaling | Equation (60) | Equation (73) where | Equation (82c) | Equation (83c) | Equation (94) |
Covariance | ∑ | |||
---|---|---|---|---|
coordinate + | , , , , | , , | , , | 11 |
coordinate − | , | , , | 6 | |
projective + | , , , , , , , | 8 | ||
projective − | , , , | 5 | ||
conformal + | , , | , , | , | 8 |
conformal − | , | , | 5 | |
rescaling + | , , , , | , | 8 | |
rescaling − | , , | 5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iosifidis, D.; Koivisto, T. Scale Transformations in Metric-Affine Geometry. Universe 2019, 5, 82. https://doi.org/10.3390/universe5030082
Iosifidis D, Koivisto T. Scale Transformations in Metric-Affine Geometry. Universe. 2019; 5(3):82. https://doi.org/10.3390/universe5030082
Chicago/Turabian StyleIosifidis, Damianos, and Tomi Koivisto. 2019. "Scale Transformations in Metric-Affine Geometry" Universe 5, no. 3: 82. https://doi.org/10.3390/universe5030082
APA StyleIosifidis, D., & Koivisto, T. (2019). Scale Transformations in Metric-Affine Geometry. Universe, 5(3), 82. https://doi.org/10.3390/universe5030082