Present and Future Contributions of Reactor Experiments to Mass Ordering and Neutrino Oscillation Studies
Abstract
:1. Introduction: Milestones of Reactor Antineutrino Experiments
2. Short-Baseline Reactor Experiments
2.1. Daya Bay, RENO and Double CHOOZ
- All of the three make use of near and far detectors, that is detectors (the near ones) placed at relatively short distances from the nuclear reactor emitting the antineutrino flux and other bigger detectors (the far ones) settled at larger distances from the source, but with a baseline L that, anyhow, is of the order of 1 km (or similar values). The presence of a near detector is fundamental for a better direct check and monitoring of the reactor flux and because, by comparing the number of events collected at the near and at the far detectors, and considering the natural flux reduction (proportional to ) due to geometrical reasons, one can study the L dependence of the oscillation phenomenon and reduce the systematic uncertainty associated with the partial knowledge of the flux and of its time evolution. The addition of the near detector has guaranteed a significant increase in the statistical significance of the results obtained by all the three SBL experiments.
- All of these experiments are designed as a nested structure with three main parts:
- (a)
- An internal Gd-LS (Gadolinium-loaded liquid scintillator) detector, that is a liquid scintillator, acting as target, with the addition of a relatively small quantity ( by mass in the Daya-Bay case) of Gadolinium, having the purpose to increase the neutron capture rate, essential for the inverse decay study. The presence of Gadolinium determines a significant shortening of the neutron-capture time, which is reduced to values around 30 s as compared to ~200 s, typical for a liquid scintillator. This reduces the accidental background rate by almost one order of magnitude.
- (b)
- A pure liquid scintillator, which is useful to increase the resolution and guarantees a better energy measurement.
- (c)
- An external mineral oil radioactivity shield, with the function to reduce as much as possible the impact of the natural radioactivity background and improve the signal to background ratio.
- In all the cases the detector is surrounded by an array of photomultipliers and an external water pool, acting as a shield and cosmic ray detector.
2.2. Recent Results of the SBL Experiments
2.3. Open Issues in SBL Reactor Experiments
2.4. Future of Reactor Neutrino Experiments: From SBL to Medium-Baseline Experiments
3. Reactor Neutrino Experiments and Neutrino Mass Ordering
3.1. The Neutrino Mass Ordering
3.2. Present Status of the Mass Ordering Determination
3.3. Reactor Neutrino Physics and Mass Ordering Determination
4. The JUNO Experiment and Its Potentialities
4.1. The JUNO Detector Main Features
- The medium baseline, settled at the value (53 km) ideal for the mass ordering analysis, as discussed in Section 3.
- The very good energy resolution, reaching the level , essential to discriminate the spectrum wiggles and perform an efficient statistical analysis. In order to satisfy this requirement, it’s important to take under control also the non-stochastic contribution to the energy resolution, that must be reduced below 1%. This unprecedented level of accuracy can be reached thanks to the optimal detector coverage by the PMT (about 75 %), their vey high light yield ( photon/MeV) and the good value of the attenuation length (>20 m for a wavelength of 430 nm).
- The use of small PMTs, that can operate in photon-counting mode, in addition to the large ones, guarantees an improved systematic control and an increase of the dynamic range, useful mainly to treat potential large signals, like in case of Supernova neutrino detection.
- The cosmogenic background reduction. The overburden (about 700 m) guarantees by itself a significant reduction of the cosmic ray fluxes. Moreover, the pool containing 35 ktons of ultrapure water, instrumented with 2400 PMTs, in which the central detector is immersed, offers a shield against the natural radioactivity from the rock and the neutrons from cosmic rays and an efficient veto to cosmic-ray muons. The muon veto system includes also a top tracker composed by three layers of plastic scintillators.
- The use of a near detector, named TAO (Taishan Antineutrino Observatory)3, is very important for a better detailed knowledge of the reactor antineutrino beam spectrum and of its time stability. As a matter of fact the “standard” reactor shape uncertainties have a minor impact on the mass ordering sensitivity, but, in any case, a continuos monitoring of the flux is important because in principle the reactor spectrum might have not yet observed micro-structures that could degrade the mass ordering sensitivity, by mimicking periodic oscillation patterns. The JUNO-TAO detector is a Gadolinium doped liquid scintillator detector, with a 1 ton fiducial volume, settled at a distance of 30 m from the reactor core. It will have a full coverage of SiPM (Silicon photomultipliers) that will operate at −50 C, in such a way to drastically reduce the dark noise.
4.2. Mass Ordering Study with JUNO Experiment
4.3. Mass and Mixing Parameters Measurement
4.4. Solar Neutrino Physics at JUNO
4.5. Geoneutrinos and SuperNova Neutrinos Measurements with a Reactor Experiment
4.6. Atmospheric Neutrino Studies at JUNO
4.7. Search for LIV Signals and Other Exotic Studies at JUNO
5. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cowan, C.L.; Reines, F.; Harrison, F.B.; Kruse, H.W.; McGuire, A.D. Detection of the free neutrino: A Confirmation. Science 1956, 124, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reines, F.; Cowan, C.L. The neutrino. Nature 1956, 178, 446. [Google Scholar] [CrossRef]
- Achkar, B.; Aleksan, R.; Avenier, M.; Bagieu, G.; Bouchez, J.; Brissot, R.; Cavaignac, J.F.; Collot, J.; Cousinou, M.C.; Cussonneau, J.P.; et al. Search for neutrino oscillations at 15-meters, 40-meters, and 95-meters from a nuclear power reactor at Bugey. Nucl. Phys. B 1995, 434, 503–532. [Google Scholar] [CrossRef]
- Zacek, G.; et al. [CALTECH-SIN-TUM Collaboration] Neutrino Oscillation Experiments at the Gosgen Nuclear Power Reactor. Phys. Rev. D 1986, 34, 2621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, H.; Boehm, F.; Hahn, A.A.; Henrikson, H.E.; Vuilleumier, J.L.; Cavaignac, J.F.; Koang, D.H.; Vignon, B.; Feilitzsch, F.V.; Mossbauer, R.L.; et al. Search for neutrino oscillations at a fission reactor. Phys. Rev. D 1981, 24, 1097. [Google Scholar] [CrossRef] [Green Version]
- Kuvshinnikov, A.A.; Mikaelyan, L.A.; Nikolaev, S.V.; Skorokhvatov, M.D.; Etenko, A.V. Measuring the anti-electron-neutrino + p —> n + e+ cross-section and beta decay axial constant in a new experiment at Rovno NPP reactor. JETP Lett. 1990, 54, 300–304. (In Russian) [Google Scholar]
- Vidyakin, G.S.; Vyrodov, V.N.; Kozlov, Y.V.; Martem’yanov, A.V.; Martem’yanov, V.P.; Odinokov, A.N.; Sukhotin, S.V.; Tarasenkov, V.G.; Turbin, E.V.; Tyurenkov, S.G.; et al. Limitations on the characteristics of neutrino oscillations. JETP Lett. 1994, 59, 6–25. [Google Scholar]
- Greenwood, Z.D.; Kropp, W.R.; Mandelkern, M.A.; Nakamura, S.; Pasierb-Love, E.L.; Price, L.R.; Reines, F.; Riley, S.P.; Sobel, H.W.; Baumann, N.; et al. Results of a two position reactor neutrino oscillation experiment. Phys. Rev. D 1996, 53, 6054. [Google Scholar] [CrossRef]
- Boehm, F.; Busenitz, J.; Cook, B.; Gratta, G.; Henrikson, H.; Kornis, J.; Lawrence, D.; Lee, K.B.; McKinny, K.; Miller, L.; et al. Final results from the Palo Verde neutrino oscillation experiment. Phys. Rev. D 2001, 64, 112001. [Google Scholar] [CrossRef] [Green Version]
- Apollonio, M.; et al. [CHOOZ Collaboration] Limits on neutrino oscillations from the CHOOZ experiment. Phys. Lett. B 1999, 466, 415. [Google Scholar] [CrossRef] [Green Version]
- Huber, P. On the determination of anti-neutrino spectra from nuclear reactors. Phys. Rev. C 2011, 84, 024617, Erratum: 2012, 85, 029901. [Google Scholar]
- Mueller, T.A.; Lhuillier, D.; Fallot, M.; Letourneau, A.; Cormon, S.; Fechner, M.; Giot, L.; Lasserre, T.; Martino, J.; Mention, G.; et al. Improved Predictions of Reactor Antineutrino Spectra. Phys. Rev. C 2011, 83, 054615. [Google Scholar] [CrossRef] [Green Version]
- Mention, G.; Fechner, M.; Lasserre, T.; Mueller, T.A.; Lhuillier, D.; Cribier, M.; Letourneau, A. The Reactor Antineutrino Anomaly. Phys. Rev. D 2011, 83, 073006. [Google Scholar] [CrossRef] [Green Version]
- Dentler, M.; Hernandez-Cabezudo, A.; Kopp, J.; Machado, P.A.N.; Maltoni, M.; Martinez-Soler, I.; Schwetz, T. Updated Global Analysis of Neutrino Oscillations in the Presence of eV-Scale Sterile Neutrinos. J. High Energy Phys. 2018, 2018, 010. [Google Scholar] [CrossRef] [Green Version]
- Giunti, C.; Lasserre, T. eV-scale Sterile Neutrinos. Ann. Rev. Nucl. Part. Sci. 2019, 69, 163. [Google Scholar] [CrossRef] [Green Version]
- Hayes, A.C.; Friar, J.L.; Garvey, G.T.; Jungman, G.; Jonkmans, G. Systematic Uncertainties in the Analysis of the Reactor Neutrino Anomaly. Phys. Rev. Lett. 2014, 112, 202501. [Google Scholar] [CrossRef]
- Sonzogni, A.A.; McCutchan, E.A.; Hayes, A.C. Dissecting Reactor Antineutrino Flux Calculations. Phys. Rev. Lett. 2017, 119, 112501. [Google Scholar] [CrossRef]
- Hayes, A. Status of Reactor Antineutrino Flux Predictions. Available online: https://www.mpi-hd.mpg.de/nu2018/programme (accessed on 31 December 2019).
- Piepke, A.; et al. [KamLAND Collaboration] KamLAND: A reactor neutrino experiment testing the solar neutrino anomaly. Nucl. Phys. Proc. Suppl. 1999, 91, 99. [Google Scholar]
- Eguchi, K.; et al. [KamLAND Collaboration] First results from KamLAND: Evidence for reactor anti-neutrino disappearance. Phys. Rev. Lett. 2003, 90, 021802. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, Q.R.; et al. [SNO Collaboration] Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett. 2002, 89, 011301. [Google Scholar] [CrossRef]
- Ahmad, Q.R.; et al. [SNO Collaboration] Measurement of day and night neutrino energy spectra at SNO and constraints on neutrino mixing parameters. Phys. Rev. Lett. 2002, 89, 011302. [Google Scholar] [CrossRef] [PubMed]
- Aharmim, B.; et al. [SNO Collaboration] Combined Analysis of all Three Phases of Solar Neutrino Data from the Sudbury Neutrino Observatory. Phys. Rev. C 2013, 88, 025501. [Google Scholar] [CrossRef]
- McDonald, A.B. Nobel Lecture: The Sudbury Neutrino Observatory: Observation of flavor change for solar neutrinos. Rev. Mod. Phys. 2016, 88, 030502. [Google Scholar] [CrossRef]
- Abe, S.; et al. [KamLAND Collaboration] Precision Measurement of Neutrino Oscillation Parameters with KamLAND. Phys. Rev. Lett. 2008, 100, 221803. [Google Scholar] [CrossRef] [PubMed]
- Mikheyev, S.P.; Smirnov, A.Y. Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos. Sov. J. Nucl. Phys. 1985, 42, 305–309. [Google Scholar]
- Wolfenstein, L. Neutrino Oscillations in Matter. Phys. Rev. D 1978, 17, 2369. [Google Scholar] [CrossRef]
- Barger, V.D.; Whisnant, K.; Pakvasa, S.; Phillips, R.J.N. Matter Effects on Three-Neutrino Oscillations. Phys. Rev. D 1980, 22, 2718. [Google Scholar] [CrossRef]
- Langacker, P.; Petcov, S.T.; Steigman, G.; Toshev, S. On the Mikheev-Smirnov-Wolfenstein (MSW) Mechanism of Amplification of Neutrino Oscillations in Matter. Nucl. Phys. B 1987, 282, 589. [Google Scholar] [CrossRef] [Green Version]
- Fogli, G.L.; Lisi, E.; Marrone, A.; Montanino, D.; Palazzo, A.; Rotunno, A.M. Solar neutrino oscillation parameters after first KamLAND results. Phys. Rev. D 2003, 67, 073002. [Google Scholar] [CrossRef] [Green Version]
- Barger, V.; Marfatia, D. KamLAND and solar neutrino data eliminate the LOW solution. Phys. Lett. B 2003, 555, 144. [Google Scholar] [CrossRef] [Green Version]
- Maltoni, M.; Schwetz, T.; Valle, J.W.F. Combining first KamLAND results with solar neutrino data. Phys. Rev. D 2003, 67, 093003. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, A.; Choubey, S.; Gandhi, R.; Goswami, S.; Roy, D.P. The Solar neutrino problem after the first results from KamLAND. Phys. Lett. B 2003, 559, 121. [Google Scholar] [CrossRef] [Green Version]
- Bahcall, J.N.; Gonzalez-Garcia, M.C.; Pena-Garay, C. Solar neutrinos before and after KamLAND. J. High Energy Phys. 2003, 2003, 009. [Google Scholar] [CrossRef]
- De Holanda, P.C.; Smirnov, A.Y. LMA MSW solution of the solar neutrino problem and first KamLAND results. J. Cosmol. Astropart. Phys. 2003, 2003, 001. [Google Scholar] [CrossRef]
- Aliani, P.; Antonelli, V.; Picariello, M.; Torrente-Lujan, E. Neutrino mass parameters from Kamland, SNO and other solar evidence. Phys. Rev. D 2004, 69, 013005. [Google Scholar] [CrossRef] [Green Version]
- Nunokawa, H.; Teves, W.J.C.; Funchal, R.Z. Determining the oscillation parameters by solar neutrinos and KamLAND. Phys. Lett. B 2003, 562, 28. [Google Scholar] [CrossRef] [Green Version]
- Aliani, P.; Antonelli, V.; Ferrari, R.; Picariello, M.; Torrente-Lujan, E. Analysis of neutrino oscillation data with the recent KamLAND results. arXiv 2004, arXiv:hep-ph/0406182. [Google Scholar]
- An, F.P.; et al. [Daya Bay Collaboration] Observation of electron-antineutrino disappearance at Daya Bay. Phys. Rev. Lett. 2012, 108, 171803. [Google Scholar] [CrossRef] [Green Version]
- Abe, Y.; et al. [Double Chooz Collaboration] Indication of Reactor Disappearance in the Double Chooz Experiment. Phys. Rev. Lett. 2012, 108, 131801. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.K.; et al. [RENO Collaboration] Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment. Phys. Rev. Lett. 2012, 108, 191802. [Google Scholar] [CrossRef] [Green Version]
- An, F.; et al. [JUNO Collaboration] Neutrino Physics with JUNO. J. Phys. G 2016, 43, 030401. [Google Scholar] [CrossRef]
- Guo, X.; et al. [Daya Bay Collaboration] A Precision measurement of the neutrino mixing angle θ13 using reactor antineutrinos at Daya-Bay. arXiv 2007, arXiv:hep-ex/0701029. [Google Scholar]
- Ardellier, F.; et al. [Double Chooz Collaboration] Double Chooz: A Search for the neutrino mixing angle theta(13). arXiv 2006, arXiv:hep-ex/0606025. [Google Scholar]
- Ahn, K.; et al. [RENO Collaboration] RENO: An Experiment for Neutrino Oscillation Parameter θ13 Using Reactor Neutrinos at Yonggwang. arXiv 2010, arXiv:1003.1391. [Google Scholar]
- Ochoa-Ricoux, J.P. Neutrino Physics with Nuclear Reactors: An Overview. Int. J. Mod. Phys. Conf. Ser. 2018, 46, 18600001. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; et al. [T2K Collaboration] Indication of Electron Neutrino Appearance from an Accelerator-produced Off-axis Muon Neutrino Beam. Phys. Rev. Lett. 2011, 107, 041801. [Google Scholar] [CrossRef]
- Adamson, P.; et al. [MINOS Collaboration] First Direct Observation of Muon Antineutrino Disappearance. Phys. Rev. Lett. 2011, 107, 021801. [Google Scholar] [CrossRef] [Green Version]
- Fogli, G.L.; Lisi, E.; Marrone, A.; Palazzo, A.; Rotunno, A.M. Evidence of θ13>0 from global neutrino data analysis. Phys. Rev. D 2011, 84, 053007. [Google Scholar] [CrossRef] [Green Version]
- Schwetz, T.; Tortola, M.; Valle, J.W.F. Where we are on θ13: Addendum to ‘Global neutrino data and recent reactor fluxes: Status of three-flavour oscillation parameters’. New J. Phys. 2011, 13, 109401. [Google Scholar]
- Adey, D.; et al. [Daya Bay Collaboration] Measurement of the Electron Antineutrino Oscillation with 1958 Days of Operation at Daya Bay. Phys. Rev. Lett. 2018, 121, 241805. [Google Scholar] [CrossRef] [Green Version]
- de Kerret, H.; et al. [Double Chooz Collaboration] First Double Chooz θ13 Measurement via Total Neutron Capture Detection. arXiv 2019, arXiv:1901.09445. [Google Scholar]
- Bak, G.; et al. [RENO Collaboration] Measurement of Reactor Antineutrino Oscillation Amplitude and Frequency at RENO. Phys. Rev. Lett. 2018, 121, 201801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, K.; et al. [T2K Collaboration] Measurement of neutrino and antineutrino oscillations by the T2K experiment including a new additional sample of νe interactions at the far detector. Phys. Rev. D 2017, 96, 092006, Erratum: Phys. Rev. D 2018, 98, 019902].. [Google Scholar]
- De Rijck, S.; et al. [MINOS and MINOS+ Collaborations] Latest Results from MINOS and MINOS+. J. Phys. Conf. Ser. 2017, 873, 012032. [Google Scholar] [CrossRef] [Green Version]
- Acero, M.A.; et al. [NOvA Collaboration] First Measurement of Neutrino Oscillation Parameters using Neutrinos and Antineutrinos by NOvA. Phys. Rev. Lett. 2019, 123, 151803. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.; et al. [Super-Kamiokande Collaboration] Atmospheric Neutrino Oscillation Analysis with Improved Event Reconstruction in Super-Kamiokande IV. PTEP 2019, 2019, 053F01. [Google Scholar]
- An, F.P.; et al. [Daya Bay Collaboration] New measurement of θ13 via neutron capture on hydrogen at Daya Bay. Phys. Rev. D 2016, 93, 072011. [Google Scholar] [CrossRef] [Green Version]
- Shin, C.D.; et al. [RENO Collaboration] Observation of Reactor Antineutrino Disappearance Using Delayed Neutron Capture on Hydrogen at RENO. arXiv 2019, arXiv:1911.04601. [Google Scholar]
- Ko, Y.J.; et al. [NEOS Collaboration] Sterile Neutrino Search at the NEOS Experiment. Phys. Rev. Lett. 2017, 118, 121802. [Google Scholar] [CrossRef] [Green Version]
- Huber, P. NEOS Data and the Origin of the 5 MeV Bump in the Reactor Antineutrino Spectrum. Phys. Rev. Lett. 2017, 118, 042502. [Google Scholar] [CrossRef] [Green Version]
- Adey, D.; et al. [Daya Bay Collaboration] Extraction of the 235U and 239Pu Antineutrino Spectra at Daya Bay. Phys. Rev. Lett. 2019, 123, 111801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, T.; Tachibana, T.; Okumura, S.; Chiba, S. Spectral anomaly of reactor antineutrinos based on theoretical energy spectra. Phys. Rev. C 2018, 98, 041303. [Google Scholar] [CrossRef]
- Berryman, J.M.; Brdar, V.; Huber, P. Particle physics origin of the 5 MeV bump in the reactor antineutrino spectrum? Phys. Rev. D 2019, 99, 055045. [Google Scholar] [CrossRef] [Green Version]
- Giunti, C.; Li, Y.F.; Littlejohn, B.R.; Surukuchi, P.T. Diagnosing the Reactor Antineutrino Anomaly with Global Antineutrino Flux Data. Phys. Rev. D 2019, 99, 073005. [Google Scholar] [CrossRef] [Green Version]
- Giunti, C. Improved Determination of the 235U and 239Pu Reactor Antineutrino Cross Sections per Fission. Phys. Rev. D 2017, 96, 033005. [Google Scholar] [CrossRef] [Green Version]
- Gariazzo, S.; Giunti, C.; Laveder, M.; Li, Y.F. Model-independent short-baseline oscillations from reactor spectral ratios. Phys. Lett. B 2018, 782, 13. [Google Scholar] [CrossRef]
- An, F.P.; et al. [Daya Bay Collaboration] Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay. Phys. Rev. Lett. 2017, 118, 251801. [Google Scholar] [CrossRef] [Green Version]
- Helaine, V. [STEREO Collaboration]. Sterile neutrino search at the ILL nuclear reactor: The STEREO experiment. arXiv 2016, arXiv:1604.08877. [Google Scholar]
- Almazan, H.; et al. [STEREO Collaboration] Sterile Neutrino Constraints from the STEREO Experiment with 66 Days of Reactor-On Data. Phys. Rev. Lett. 2018, 121, 161801. [Google Scholar] [CrossRef] [Green Version]
- Alekseev, I.; et al. [DANSS Collaboration] Search for sterile neutrinos at the DANSS experiment. Phys. Lett. B 2018, 787, 56. [Google Scholar] [CrossRef]
- Serebrov, A.P.; Fomin, A.K.; Zinoviev, V.G.; Loginov, Y.E.; Onegin, M.S.; Gagarsky, A.M.; Petrov, G.A.; Solovey, V.A.; Chernyi, A.V.; Zherebtsov, O.M. NEUTRINO4 experiment: Preparations for search for sterile neutrino at 100 MW Reactor SM-3 at 6-12 Meters. arXiv 2012, arXiv:1205.2955. [Google Scholar]
- Serebrov, A.P.; et al. [NEUTRINO-4 Collaboration] First Observation of the Oscillation Effect in the Neutrino-4 Experiment on the Search for the Sterile Neutrino. Pisma Zh. Eksp. Teor. Fiz. 2019, 109, 209. [Google Scholar]
- Ashenfelter, J.; et al. [PROSPECT Collaboration] The PROSPECT Reactor Antineutrino Experiment. Nucl. Instrum. Meth. A 2019, 922, 287. [Google Scholar] [CrossRef] [Green Version]
- Lasserre, T. eV Scale Sterile Neutrino Searches at Reactor. Available online: https://indico.cern.ch/event/740296/contributions/3160800/attachments/1739370/2814170/Lasserre-EuropeanNeutrinoTownMeeting2018-Reactor.pdf#search=lasserre (accessed on 31 December 2019).
- Dell’Acqua, A.; Aduszkiewicz, A.; Ahlers, M.; Aihara, H.; Alion, T.; Monsalve, S.A.; Ruso, L.A.; Antonelli, V.; Babicz, M.; Barbano, A.M.; et al. Future Opportunities in Accelerator-based Neutrino Physics. arXiv 2018, arXiv:1812.06739. [Google Scholar]
- Pontecorvo, B. Inverse beta processes and nonconservation of lepton charge. J. Exptl. Theoret. Phys. 1958, 34, 247. [Google Scholar]
- Pontecorvo, B. Mesonium and antimesonium. J. Exptl. Theoret. Phys. 1957, 33, 549. [Google Scholar]
- Capozzi, F.; Valentino, E.D.; Lisi, E.; Marrone, A.; Melchiorri, A.; Palazzo, A. Global constraints on absolute neutrino masses and their ordering. Phys. Rev. D 2017, 95, 096014. [Google Scholar] [CrossRef] [Green Version]
- Esteban, I.; Gonzalez-Garcia, M.C.; Hernandez-Cabezudo, A.; Maltoni, M.; Schwetz, T. Global analysis of three-flavour neutrino oscillations: Synergies and tensions in the determination of θ23, δCP, and the mass ordering. J. High Energy Phys. 2019, 1901, 106. [Google Scholar] [CrossRef]
- De Salas, P.F.; Forero, D.V.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity. Phys. Lett. B 2018, 782, 633. [Google Scholar] [CrossRef]
- Abe, K.; et al. [T2K Collaboration] Search for CP Violation in Neutrino and Antineutrino Oscillations by the T2K Experiment with 2.2 × 1021 Protons on Target. Phys. Rev. Lett. 2018, 121, 171802. [Google Scholar] [CrossRef] [Green Version]
- Karlen, D.; et al. [T2K Collaboration] Latest Results from the T2K Neutrino Experiment. Universe 2019, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- Acero, M.A.; et al. [NOvA Collaboration] New constraints on oscillation parameters from νe appearance and νμ disappearance in the NOvA experiment. Phys. Rev. D 2018, 98, 032012. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; et al. [Super-Kamiokande Collaboration] Atmospheric neutrino oscillation analysis with external constraints in Super-Kamiokande I-IV. Phys. Rev. D 2018, 97, 072001. [Google Scholar] [CrossRef] [Green Version]
- Koshio, Y.; et al. [Super-Kamiokande Collaboration] Solar and atmospheric neutrino oscillations in Super-Kamiokande. PoS NOW 2016 2017, 283, 001. [Google Scholar]
- Aartsen, M.G.; et al. [IceCube Collaboration] Probing the Neutrino Mass Ordering with Atmospheric Neutrinos from Three Years of IceCube DeepCore Data. arXiv 2019, arXiv:1902.07771. [Google Scholar]
- Ternes, C.A.; Gariazzo, S.; Hajjar, R.; Mena, O.; Sorel, M.; Tortola, M. Neutrino mass ordering at DUNE: An extra ν bonus. Phys. Rev. D 2019, 100, 093004. [Google Scholar] [CrossRef] [Green Version]
- Raut, S.K. Matter effects at the T2HK and T2HKK experiments. Phys. Rev. D 2017, 96, 075029. [Google Scholar] [CrossRef] [Green Version]
- Abi, B.; et al. [DUNE Collaboration] The DUNE Far Detector Interim Design Report Volume 1: Physics, Technology and Strategies. arXiv 2018, arXiv:1807.10334. [Google Scholar]
- Abi, B.; et al. [DUNE Collaboration] The DUNE Far Detector Interim Design Report, Volume 2: Single-Phase Module. arXiv 2018, arXiv:1807.10327. [Google Scholar]
- Abi, B.; et al. [DUNE Collaboration] The DUNE Far Detector Interim Design Report, Volume 3: Dual-Phase Module. arXiv 2018, arXiv:1807.10340. [Google Scholar]
- Abe, K.; et al. [Hyper-Kamiokande Working Group] A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande. arXiv 2014, arXiv:1412.4673. [Google Scholar]
- Ballett, P.; King, S.F.; Pascoli, S.; Prouse, N.W.; Wang, T. Sensitivities and synergies of DUNE and T2HK. Phys. Rev. D 2017, 96, 033003. [Google Scholar] [CrossRef] [Green Version]
- Baussan, E.; et al. [ESSnuSB Collaboration] A very intense neutrino super beam experiment for leptonic CP violation discovery based on the European spallation source linac. Nucl. Phys. B 2014, 885, 127. [Google Scholar] [CrossRef]
- Capozzi, F.; Lisi, E.; Marrone, A. Probing the neutrino mass ordering with KM3NeT-ORCA: Analysis and perspectives. J. Phys. G 2018, 45, 024003. [Google Scholar] [CrossRef] [Green Version]
- Choubey, S.; Petcov, S.T.; Piai, M. Precision neutrino oscillation physics with an intermediate baseline reactor neutrino experiment. Phys. Rev. D 2003, 68, 113006. [Google Scholar] [CrossRef] [Green Version]
- Minakata, H.; Nunokawa, H.; Parke, S.J.; Zukanovich Funchal, R. Advancement or Retardation of Phase of Neutrino Oscillation; Another Method for Determining Mass Hierarchy. Phys. Rev. D 2007, 76, 053004, Erratum: Phys. Rev. D 2007, 76, 079901.. [Google Scholar]
- Qian, X.; Dwyer, D.A.; McKeown, R.D.; Vogel, P.; Wang, W.; Zhang, C. Mass hierarchy resolution in reactor anti-neutrino experiments: Parameter degeneracies and detector energy response. Phys. Rev. D 2013, 87, 033005. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.F.; Cao, J.; Wang, Y.; Zhan, L. Unambiguous determination of the neutrino mass hierarchy using reactor neutrinos. Phys. Rev. D 2013, 88, 013008. [Google Scholar] [CrossRef] [Green Version]
- Zhan, L.; Wang, Y.; Cao, J.; Wen, L. Determination of the neutrino mass hierarchy at an intermediate baseline. Phys. Rev. D 2008, 78, 111103. [Google Scholar] [CrossRef] [Green Version]
- Miramonti, L.; et al. [on behalf of the JUNO Collaboration]. Status and the Perspectives of the Jiangmen Underground Neutrino Observatory (JUNO). In Proceedings of the 20th International Workshop on Next generation Nucleon Decay and Neutrino Detectors (NNN19), Medellin, Colombia, 7–9 November 2019. [Google Scholar]
- Wang, W. [on behalf of JUNO Collaboration]. Taishan Antineutrino Observatory. In Proceedings of the 20th International Workshop on Next generation Nucleon Decay and Neutrino Detectors (NNN19), Medellin, Colombia, 7–9 November 2019. [Google Scholar]
- Capozzi, F.; Lisi, E.; Marrone, A. Neutrino mass hierarchy and electron neutrino oscillation parameters with one hundred thousand reactor events. Phys. Rev. D 2014, 89, 013001. [Google Scholar] [CrossRef] [Green Version]
- Ciuffoli, E. Statistical Methods for the Neutrino Mass Hierarchy. arXiv 2017, arXiv:1704.08043. [Google Scholar]
- Ciuffoli, E. Statistical Methods for the Neutrino Mass Hierarchy Determination. PoS 2017, 633. [Google Scholar] [CrossRef] [Green Version]
- Stanco, L.; Salamanna, G.; Sawy, F.; Sirignano, C. A new way to determine the neutrino mass hierarchy at reactors. arXiv 2017, arXiv:1707.07651. [Google Scholar]
- Tenti, M.; Stanco, L.; Dusini, S. Determination of the neutrino mass hierarchy with a new statistical method. Phys. Rev. D 2017, 95, 053002. [Google Scholar]
- Tanabashi, M.; et al. [Particle Data Group] Review of Particle Physics. Phys. Rev. D 2018, 98, 030001, and references therein. [Google Scholar] [CrossRef] [Green Version]
- Davis, R., Jr.; Harmer, D.S.; Hoffman, K.C. Search for neutrinos from the sun. Phys. Rev. Lett. 1968, 20, 1205. [Google Scholar] [CrossRef]
- Cleveland, B.T.; Daily, T.; Davis, R., Jr.; Distel, J.R.; Lande, K.; Lee, C.K.; Wildenhain, P.S.; Ullman, J. Measurement of the solar electron neutrino flux with the Homestake chlorine detector. Astrophys. J. 1998, 496, 505. [Google Scholar] [CrossRef]
- Anselmann, P.; et al. [GALLEX Collaboration] Solar neutrinos observed by GALLEX at Gran Sasso. Phys. Lett. B 1992, 285, 376. [Google Scholar] [CrossRef]
- Hampel, W.; et al. [GALLEX Collaboration] GALLEX solar neutrino observations: Results for GALLEX IV. Phys. Lett. B 1999, 447, 127. [Google Scholar] [CrossRef] [Green Version]
- Abdurashitov, J.N.; et al. [SAGE Collaboration] Results from SAGE. Phys. Lett. B 1994, 328, 234. [Google Scholar]
- Abdurashitov, J.N.; et al. [SAGE Collaboration] Solar neutrino flux measurements by the Soviet-American Gallium Experiment (SAGE) for half the 22 year solar cycle. J. Exp. Theor. Phys. 2002, 95, 181–193. [Google Scholar] [CrossRef]
- Altmann, M.; et al. [GNO Collaboration] GNO solar neutrino observations: Results for GNO I. Phys. Lett. B 2000, 490, 16. [Google Scholar] [CrossRef] [Green Version]
- Altmann, M.; et al. [GNO Collaboration] Complete results for five years of GNO solar neutrino observations. Phys. Lett. B 2005, 616, 174. [Google Scholar] [CrossRef]
- Hirata, K.S.; et al. [Kamiokande-II Collaboration] Observation of B-8 Solar Neutrinos in the Kamiokande-II Detector. Phys. Rev. Lett. 1989, 63, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukuda, Y.; et al. [Super-Kamiokande Collaboration] Measurements of the solar neutrino flux from Super-Kamiokande’s first 300 days. Phys. Rev. Lett. 1998, 81, 1158, Erratum: 1998, 81, 4279. [Google Scholar]
- Fukuda, S.; et al. [Super-Kamiokande Collaboration] Solar B-8 and hep neutrino measurements from 1258 days of Super-Kamiokande data. Phys. Rev. Lett. 2001, 86, 5651. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, S.; et al. [Super-Kamiokande Collaboration] Constraints on neutrino oscillations using 1258 days of Super-Kamiokande solar neutrino data. Phys. Rev. Lett. 2001, 86, 5656. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, S.; et al. [Super-Kamiokande Collaboration] Determination of solar neutrino oscillation parameters using 1496 days of Super-Kamiokande I data. Phys. Lett. B 2002, 539, 179. [Google Scholar] [CrossRef] [Green Version]
- Alimonti, G.; et al. [Borexino Collaboration] The Borexino detector at the Laboratori Nazionali del Gran Sasso. Nucl. Instrum. Meth. A 2009, 600, 568. [Google Scholar] [CrossRef] [Green Version]
- Bellini, G.; et al. [BOREXINO Collaboration] Neutrinos from the primary proton-proton fusion process in the Sun. Nature 2014, 512, 383. [Google Scholar] [CrossRef]
- Bellini, G.; et al. [Borexino Collaboration] Final results of Borexino Phase-I on low energy solar neutrino spectroscopy. Phys. Rev. D 2014, 89, 112007. [Google Scholar] [CrossRef] [Green Version]
- Agostini, M.; et al. [Borexino Collaboration] First Simultaneous Precision Spectroscopy of pp, 7Be, and pep Solar Neutrinos with Borexino Phase-II. Phys. Rev. D 2019, 100, 082004. [Google Scholar] [CrossRef] [Green Version]
- Miramonti, L.; Agostini, M.; Altenmueller, K.; Appel, S.; Atroshchenko, V.; Bagdasarian, Z.; Basilico, D.; Bellini, G.; Benziger, J.; Bick, D. Solar Neutrinos Spectroscopy with Borexino Phase-II. Universe 2018, 4, 118. [Google Scholar] [CrossRef] [Green Version]
- Antonelli, V.; Miramonti, L.; Pena-Garay, C.; Serenelli, A. Solar Neutrinos. Adv. High Energy Phys. 2013, 2013, 351926. [Google Scholar] [CrossRef] [Green Version]
- Miramonti, L.; Antonelli, V. Advancements in solar neutrino physics. Int. J. Mod. Phys. E 2013, 22, 1330009. [Google Scholar] [CrossRef] [Green Version]
- Haxton, W.C.; Robertson, R.G.H.; Serenelli, A.M. Solar Neutrinos: Status and Prospects. Ann. Rev. Astron. Astrophys. 2013, 51, 21. [Google Scholar] [CrossRef] [Green Version]
- Bahcall, J.N.; Pinsonneault, M.H.; Basu, S. Solar models: Current epoch and time dependences, neutrinos, and helioseismological properties. Astrophys. J. 2001, 555, 990. [Google Scholar] [CrossRef] [Green Version]
- Grevesse, N.; Sauval, A.J. Standard Solar Composition. Space Sci. Rev. 1998, 85, 161. [Google Scholar] [CrossRef]
- Asplund, M.; Grevesse, N.; Sauval, A.J.; Scott, P. The chemical composition of the Sun. Ann. Rev. Astron. Astrophys. 2009, 47, 481. [Google Scholar] [CrossRef] [Green Version]
- Asplund, M.; Grevesse, N.; Sauval, J. The Solar chemical composition. Nucl. Phys. A 2006, 777, 1. [Google Scholar] [CrossRef] [Green Version]
- Pena-Garay, C.; Serenelli, A. Solar neutrinos and the solar composition problem. arXiv 2008, arXiv:0811.2424. [Google Scholar]
- Villante, F.L.; Serenelli, A.M.; Delahaye, F.; Pinsonneault, M.H. The chemical composition of the Sun from helioseismic and solar neutrino data. Astrophys. J. 2014, 787, 13. [Google Scholar] [CrossRef] [Green Version]
- Antonelli, V.; Miramonti, L. Impact on Astrophysics and Elementary Particle Physics of recent and future solar neutrino data. arXiv 2013, arXiv:1311.2575. [Google Scholar]
- Roulet, E. MSW effect with flavor changing neutrino interactions. Phys. Rev. D 1991, 44, R935(R). [Google Scholar] [CrossRef] [PubMed]
- Guzzo, M.M.; Masiero, A.; Petcov, S.T. On the MSW effect with massless neutrinos and no mixing in the vacuum. Phys. Lett. B 1991, 260, 154. [Google Scholar] [CrossRef]
- Friedland, A.; Lunardini, C.; Pena-Garay, C. Solar neutrinos as probes of neutrino matter interactions. Phys. Lett. B 2004, 594, 347. [Google Scholar] [CrossRef] [Green Version]
- De Holanda, P.C.; Smirnov, A.Y. Solar neutrino spectrum, sterile neutrinos and additional radiation in the Universe. Phys. Rev. D 2011, 83, 113011. [Google Scholar] [CrossRef] [Green Version]
- Barranco, J.; Miranda, O.G.; Moura, C.A.; Valle, J.W.F. Constraining non-standard interactions in nu(e) e or anti-nu(e) e scattering. Phys. Rev. D 2006, 73, 113001, and Phys. Rev. D 2008, 77, 093014. [Google Scholar]
- Biggio, C.; Blennow, M.; Fernandez-Martinez, E. General bounds on non-standard neutrino interactions. J. High Energy Phys. 2009, 0908, 090. [Google Scholar] [CrossRef] [Green Version]
- Ohlsson, T. Status of non-standard neutrino interactions. Rept. Prog. Phys. 2013, 76, 044201. [Google Scholar] [CrossRef]
- Miranda, O.G.; Nunokawa, H. Non standard neutrino interactions: Current status and future prospects. New J. Phys. 2015, 17, 095002. [Google Scholar] [CrossRef]
- Ding, X. High Precision Solar Neutrino Spectroscopy with Borexino and JUNO. Available online: http://inspirehep.net/record/1763930/files/Ding.pdf (accessed on 31 December 2019).
- Strati, V.; Baldoncini, M.; Callegari, I.; Mantovani, F.; McDonough, W.F.; Ricci, B.; Xhixha, G. Expected geoneutrino signal at JUNO. arXiv 2014, arXiv:1412.3324. [Google Scholar] [CrossRef] [Green Version]
- Han, R.; Li, Y.F.; Zhan, L.; McDonough, W.F.; Cao, J.; Ludhova, L. Potential of Geo-neutrino Measurements at JUNO. Chin. Phys. C 2016, 40, 033003. [Google Scholar] [CrossRef]
- Reguzzoni, M.; Rossi, L.; Baldoncini, M.; Callegari, I.; Poli, P.; Sampietro, D.; Strati, V.; Mantovani, F.; Andronico, G.; Antonelli, V.; et al. GIGJ: A crustal gravity model of the Guangdong Province for predicting the geoneutrino signal at the JUNO experiment. J. Geophys. Res. Solid Earth 2019, 124, 4231–4249. [Google Scholar] [CrossRef] [Green Version]
- Araki, T.; Enomoto, S.; Furuno, K.; Gando, Y.; Ichimura, K.; Ikeda, H.; Inoue, K.; Kishimoto, Y.; Koga, M.; Koseki, Y.; et al. Experimental investigation of geologically produced antineutrinos with KamLAND. Nature 2005, 436, 499. [Google Scholar] [CrossRef]
- Agostini, M.; et al. [Borexino Collaboration] Spectroscopy of geoneutrinos from 2056 days of Borexino data. Phys. Rev. D 2015, 92, 031101. [Google Scholar] [CrossRef] [Green Version]
- Fiorentini, G.; Fogli, G.L.; Lisi, E.; Mantovani, F.; Rotunno, A.M. Mantle geoneutrinos in KamLAND and Borexino. Phys. Rev. D 2012, 86, 033004. [Google Scholar] [CrossRef] [Green Version]
- Belloni, F.; Miramonti, L.; Antonelli, V.; Parravicini, G. Il Calore Della Terra e del Sole. Dalle Dispute tra Kelvin e Darwin ai Neutrini; Aracne Editrice: Rome, Italy, 2017; ISBN 978-88-255-0165-0. [Google Scholar]
- Lu, J.S.; Cao, J.; Li, Y.F.; Zhou, S. Constraining Absolute Neutrino Masses via Detection of Galactic Supernova Neutrinos at JUNO. J. Cosmol. Astropart. Phys. 2015, 2015, 044. [Google Scholar] [CrossRef]
- Martellini, C.; Mari, S.M.; Montini, P.; Settanta, G. Towards a reconstruction of Supernova Neutrino Spectra in JUNO. EPJ Web Conf. 2019, 209, 01012. [Google Scholar] [CrossRef]
- Lujan-Peschard, C.; Pagliaroli, G.; Vissani, F. Spectrum of Supernova Neutrinos in Ultra-pure Scintillators. J. Cosmol. Astropart. Phys. 2014, 2014, 051. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, Y.; et al. [Super-Kamiokande Collaboration] Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 1998, 81, 1562. [Google Scholar] [CrossRef] [Green Version]
- Ashie, Y.; et al. [Super-Kamiokande Collaboration] A Measurement of atmospheric neutrino oscillation parameters by SUPER-KAMIOKANDE I. Phys. Rev. D 2005, 71, 112005. [Google Scholar] [CrossRef] [Green Version]
- Settanta, G.; et al. [JUNO Collaboration] Atmospheric neutrino spectrum reconstruction with JUNO. arXiv 2019, arXiv:1910.11172. [Google Scholar]
- Bietenholz, W. Cosmic Rays and the Search for a Lorentz Invariance Violation. Phys. Rep. 2011, 505, 145. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, T.; Liberati, S.; Mattingly, D. Lorentz violation at high energy: Concepts, phenomena, and astrophysical constraints. Ann. Phys. 2006, 321, 150. [Google Scholar] [CrossRef] [Green Version]
- Sotiriou, T.P.; Visser, M.; Weinfurtner, S. Phenomenologically viable Lorentz-violating quantum gravity. Phys. Rev. Lett. 2009, 102, 251601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colladay, D.; Kostelecky, V.A. Lorentz violating extension of the standard model. Phys. Rev. D 1998, 58, 116002. [Google Scholar] [CrossRef] [Green Version]
- Colladay, D.; Kostelecky, V.A. CPT violation and the standard model. Phys. Rev. D 1997, 55, 6760. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.F.; Zhao, Z.H. Tests of Lorentz and CPT Violation in the Medium Baseline Reactor Antineutrino Experiment. Phys. Rev. D 2014, 90, 113014. [Google Scholar] [CrossRef] [Green Version]
- Antonelli, V.; Miramonti, L.; Torri, M.D.C. Neutrino oscillations and Lorentz Invariance Violation in a Finslerian Geometrical model. Eur. Phys. J. C 2018, 78, 667. [Google Scholar] [CrossRef] [Green Version]
- Torri, M.D.C.; Antonelli, V.; Miramonti, L. Homogeneously Modified Special relativity (HMSR): A new possible way to introduce an isotropic Lorentz invariance violation in particle standard model. Eur. Phys. J. C 2019, 79, 808. [Google Scholar] [CrossRef] [Green Version]
- Antonelli, V.; Miramonti, L.; Torri, M.D.C. Geometrical Models with Lorentz Invariance Violation and Neutrino Oscillations. In Proceedings of the 14th JUNO Collaboration Meeting, Beijing, China, 22–26 July 2019; Available online: https://agenda.infn.it/event/17945/contributions/87816/attachments/62276/74590/poster-ifae-2019-Antonelli-LIV.pdf (accessed on 31 December 2019).
- Antonelli, V.; Miramonti, L.; Torri, M.D.C. Search for Isotropic LIV Effects in the High Energy Atmospheric Neutrino Signal at JUNO; 2020; Unpublished work, in preparation. [Google Scholar]
- Fornengo, N.; Giunti, C.; Kim, C.W.; Song, J. Gravitational effects on the neutrino oscillation. Phys. Rev. D 1997, 56, 1895. [Google Scholar] [CrossRef] [Green Version]
- Piriz, D.; Roy, M.; Wudka, J. Neutrino oscillations in strong gravitational fields. Phys. Rev. D 1996, 54, 1587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharya, T.; Habib, S.; Mottola, E. Gravitationally induced neutrino oscillation phases in static space-times. Phys. Rev. D 1999, 59, 067301. [Google Scholar] [CrossRef] [Green Version]
- Lambiase, G.; Papini, G.; Punzi, R.; Scarpetta, G. Neutrino optics and oscillations in gravitational fields. Phys. Rev. D 2005, 71, 073011. [Google Scholar] [CrossRef] [Green Version]
- Geralico, A.; Luongo, O. Neutrino oscillations in the field of a rotating deformed mass. Phys. Lett. A 2012, 376, 1239. [Google Scholar] [CrossRef] [Green Version]
- Ahluwalia, D.V.; Burgard, C. Gravitationally induced quantum mechanical phases and neutrino oscillations in astrophysical environments. Gen. Rel. Grav. 1996, 28, 1161. [Google Scholar] [CrossRef]
- Ahluwalia, D.V.; Burgard, C. Interplay of gravitation and linear superposition of different mass eigenstates. Phys. Rev. D 1998, 57, 4724. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.; Pasechnik, R. Quasi-Classical Gravity Effect on Neutrino Oscillations in a Gravitational Field of a Heavy Astrophysical Object. Adv. High Energy Phys. 2015, 2015, 381569. [Google Scholar] [CrossRef] [Green Version]
- Blasone, M.; Lambiase, G.; Luciano, G.G.; Petruzziello, L. Neutrino oscillations in accelerated frames. EPL 2018, 124, 51001. [Google Scholar] [CrossRef] [Green Version]
- Buoninfante, L.; Luciano, G.G.; Petruzziello, L.; Smaldone, L. Neutrino oscillations in extended theories of gravity. Phys. Rev. D 2020, 101, 024016. [Google Scholar] [CrossRef] [Green Version]
- Swami, H.; Lochan, K.; Patel, K.M. Signature of neutrino mass hierarchy in gravitational lensing. arXiv 2020, arXiv:2002.00977. [Google Scholar]
1. | |
2. | |
3. | For a more detailed description of JUNO-TAO project and detector see, for instance: [103]. |
4. | |
5. | |
6. | The antineutrinos emitted by K radioactive decays are not directly measurable, because their energy is below the threshold for inverse decay. |
7. | For a review on this topic, see for instance: [160]. |
8. | For a non exhaustive, but rich and interesting discussion about the impact of quantum gravity effects on neutrino oscillations, see also: [174]. |
(GW) | Target Mass at Far Site (tons) | Overburden (Near/Far) (mwe) | Data Taking (Start-End) | |
---|---|---|---|---|
Double CHOOZ | 8.6 | 8.3 | 80/300 | 2011–2017 |
RENO | 16.4 | 15.4 | 90/440 | 2011–2021 |
Daya Bay | 17.4 | 80 | 250/860 | 2011–2020 |
Oscillation | Current Accuracy [109] | Dominant | JUNO |
---|---|---|---|
Parameter | (Global ) | Experiment(s) | Potentiality |
2.3 % | KamLAND | ||
1.8 % | MINOS, MINOS+, T2K | ||
SNO |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonelli, V.; Miramonti, L.; Ranucci, G. Present and Future Contributions of Reactor Experiments to Mass Ordering and Neutrino Oscillation Studies. Universe 2020, 6, 52. https://doi.org/10.3390/universe6040052
Antonelli V, Miramonti L, Ranucci G. Present and Future Contributions of Reactor Experiments to Mass Ordering and Neutrino Oscillation Studies. Universe. 2020; 6(4):52. https://doi.org/10.3390/universe6040052
Chicago/Turabian StyleAntonelli, Vito, Lino Miramonti, and Gioacchino Ranucci. 2020. "Present and Future Contributions of Reactor Experiments to Mass Ordering and Neutrino Oscillation Studies" Universe 6, no. 4: 52. https://doi.org/10.3390/universe6040052
APA StyleAntonelli, V., Miramonti, L., & Ranucci, G. (2020). Present and Future Contributions of Reactor Experiments to Mass Ordering and Neutrino Oscillation Studies. Universe, 6(4), 52. https://doi.org/10.3390/universe6040052