High-Energy Alerts in the Multi-Messenger Era
Abstract
:1. Introduction
2. Historical Perspective
A New Multi-Messenger Era
3. Paving the Way
3.1. Ground-Based Gamma-Ray Telescopes
3.2. Neutrino Telescopes
3.3. The GCN/TAN System
3.4. ATels
4. Current Situation
4.1. Sending Alerts
4.2. AMON Pass-Through Alerts
4.2.1. IceCube Tracks
4.2.2. IceCube Cascades
4.2.3. HAWC GRB-like Triggers
4.3. Gravitational Wave Alerts
4.4. Multi-Messenger Alerts
4.4.1. ANTARES-Fermi
4.4.2. IceCube-HAWC
4.5. Offline Updates, Revisions of Alerts
4.6. Receiving Alerts, Follow-Ups
5. Highlight Results
5.1. Gamma-Ray Bursts
5.2. TXS 0506+056—Neutrino Blazar?
5.3. GW170817
6. Discussion
6.1. Real-Time Tools, Alerts, and Follow-Up Campaigns
6.2. The Big Data Challenge and Real-Time Analyses
7. Outlook
7.1. Multi-Messenger Alerts
7.2. VHE Rays
7.3. HE Neutrinos
7.4. Gravitational Waves
7.5. Supporting Infrastructure
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANTARES | Astronomy with a Neutrino Telescope and Abyss environmental RESearch |
AMON | Astrophysical Multimessenger Observatory Network |
Baikal-GVD | Baikal-Gigaton Volume Detector |
CR | Cosmic Ray |
CTA | Cherenkov Telescope Array |
FACT | First G-APD Cherenkov Telescope |
FAR | False Alarm Rate |
G-APD | Geiger-mode Avalanche Photodiodes |
GCN/TAN | GRB Coordinates Network/Transient Astronomy Network |
GFU | Gamma-ray Follow-Up |
GRB | Gamma-Ray Burst |
GW | Gravitational Wave |
HAWC | High Altitude Water Cherenkov |
H.E.S.S. | High Energy Stereoscopic System |
IACT | Imaging Atmospheric Cherenkov Telescope |
KAGRA | Kamioka Gravitational Wave Detector |
KM3NeT | Cubic Kilometre Neutrino Telescope |
LHAASO | Large High Altitude Air Shower Observatory |
LVC | LIGO/Virgo Collaboration |
MAGIC | Major Atmospheric Gamma Imaging Cherenkov Telescopes |
P-ONE | Pacific Ocean Neutrino Experiment |
VERITAS | Very Energetic Radiation Imaging Telescope Array System |
VHE | Very-High-Energy |
1 | The GCN document describing the IceCube high-energy neutrino track alerts can be found at: https://gcn.gsfc.nasa.gov/doc/IceCube_High_Energy_Neutrino_Track_Alerts_v2.pdf (accessed on 19 October 2021). |
2 | The LAT photon data are located at: https://heasarc.gsfc.nasa.gov/FTP/fermi/data/lat/weekly/photon/ (accessed on 19 October 2021). |
3 | https://gcn.gsfc.nasa.gov/gcn3/21153.gcn3 (accessed on 19 October 2021). |
4 | https://gcn.gsfc.nasa.gov/gcn3/21673.gcn3 (accessed on 19 October 2021). |
5 | https://gcn.gsfc.nasa.gov/other/201216C.gcn3 (accessed on 19 October 2021). |
6 | IceCube Collaboration, GRB Coordinates Network/AMON Notices 50579430_130033 (2017). |
7 | www.asdc.asi.it (accessed on 19 October 2021). |
8 | openuniverse.asi.it (accessed on 19 October 2021). |
9 | ivoa.net (accessed on 19 October 2021). |
References
- Nishiyama, T. Detection of a new TeV gamma-ray source of BL Lac object 1ES 1959+650. In Proceedings of the 26th International Cosmic Ray Conference (ICRC26), Salt Lake City, UT, USA, 17–25 August 1999; Volume 3, p. 370. [Google Scholar]
- Krawczynski, H.; Hughes, S.B.; Horan, D.; Aharonian, F.; Aller, M.F.; Aller, H.; Boltwood, P.; Buckley, J.; Coppi, P.; Fossati, G.; et al. Multiwavelength Observations of Strong Flares from the TeV Blazar 1ES 1959+650. Astrophys. J. 2004, 601, 151–164. [Google Scholar] [CrossRef]
- Böttcher, M. A Hadronic Synchrotron Mirror Model for the “Orphan” TeV Flare in 1ES 1959+650. Astrophys. J. 2005, 621, 176–180. [Google Scholar] [CrossRef]
- Resconi, E. High energy neutrinos as cosmic messengers: AMANDA & IceCube. In Proceedings of the Talk Given at the Aspen Winter Conference: The Highest Energy Physics, Aspen, CO, USA, 13–19 February 2005; Available online: http://conferences.fnal.gov/aspen05/ (accessed on 19 October 2021).
- Bernardini, E. Search for High Energy Astrophysical Neutrinos with the AMANDA Detector at the South Pole. In Proceedings of the Talk Given at the International Workshop on Particles and Radiation from Cosmic Accelerators, Chiba, Japan, 2–5 March 2005; Available online: http://www.astro.phys.s.chiba-u.ac.jp/ca2005/ (accessed on 19 October 2021).
- Bernardini, E. Multi-Messenger Studies with AMANDA/IceCube: Observations and Strategies. In Proceedings of the 7th Workshop towards a Network of Atmospheric Cherenkov Detectors, Palaiseau, France, 27–29 April 2005. [Google Scholar]
- Murase, K.; Halzen, F.; Ahlers, M. Very high-energy gamma-ray follow-up program using neutrino triggers from IceCube. J. Instrum. 2016, 11, P11009. [Google Scholar] [CrossRef] [Green Version]
- Satalecka, K.; Bernardini, E.; Dorner, D.; Mezek, G.K.; Jin, W. Searching for VHE gamma-ray emission associated with IceCube neutrino alerts using FACT, H.E.S.S., MAGIC, and VERITAS. arXiv 2021, arXiv:2109.04350. [Google Scholar]
- Keivani, A.; Murase, K.; Petropoulou, M.; Fox, D.B.; Cenko, S.B.; Chaty, S.; Coleiro, A.; DeLaunay, J.J.; Dimitrakoudis, S.; Evans, P.A.; et al. A Multimessenger Picture of the Flaring Blazar TXS 0506+056: Implications for High-Energy Neutrino Emission and Cosmic Ray Acceleration. Astrophys. J. 2018, 864, 84. [Google Scholar] [CrossRef]
- Smith, M.; Fox, D.; Cowen, D.; Mészáros, P.; Tešić, G.; Fixelle, J.; Bartos, I.; Sommers, P.; Ashtekar, A.; Babu, G.J.; et al. The Astrophysical Multimessenger Observatory Network (AMON). Astropart. Phys. 2013, 45, 56–70. [Google Scholar] [CrossRef] [Green Version]
- Ayala Solares, H.A.; Coutu, S.; Cowen, D.; DeLaunay, J.J.; Fox, D.B.; Keivani, A.; Mostafá, M.; Murase, K.; Oikonomou, F.; Seglar-Arroyo, M.; et al. The Astrophysical Multimessenger Observatory Network (AMON): Performance and Science Program. Astropart. Phys. 2019, 114, 68–76. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Altmann, D.; Auffenberg, J.; Bai, X.; et al. First Observation of PeV-Energy Neutrinos with IceCube. Phys. Rev. Lett. 2013, 111, 021103. [Google Scholar] [CrossRef]
- IceCube Collaboration. Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector. Science 2013, 342, 1242856. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Bloemen, S.; Canizares, P.; Falcke, H.; Fender, R.P.; Ghosh, S.; Groot, P.; Hinderer, T.; Hörandel, J.R.; Jonker, P.G.; et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. 2017, 848, L12. [Google Scholar] [CrossRef]
- Bretz, T.; Dorner, D.; Wagner, R.M.; Sawallisch, P. The drive system of the major atmospheric gamma-ray imaging Cherenkov telescope. Astroparticle Physics 2009, 31, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Berti, A. Search for High Energy emission from GRBs with MAGIC. Proc. Int. Astron. Union 2016, 12, 70–73. [Google Scholar] [CrossRef] [Green Version]
- MAGIC Collaboration. Teraelectronvolt emission from the γ-ray burst GRB 190114C. Nature 2019, 575, 455–458. [Google Scholar] [CrossRef]
- Acciari, V.A.; Ansoldi, S.; Antonelli, L.A.; Engels, A.A.; Asano, K.; Baack, D.; Babić, A.; Baquero, A.; de Almeida, U.B.; Barrio, J.A.; et al. MAGIC Observations of the Nearby Short Gamma-Ray Burst GRB160821B. Astrophys. J. 2021, 908, 90. [Google Scholar] [CrossRef]
- Aharonian, F.; Akhperjanian, A.G.; De Almeida, U.B.; Bazer-Bachi, A.R.; Behera, B.; Benbow, W.; Bernlöhr, K.; Boisson, C.; Bochow, A.; Borrel, V.; et al. HESS observations of bursts in 2003–2007. Astron. Astrophys. 2009, 495, 505–512. [Google Scholar] [CrossRef] [Green Version]
- Acciari, V.A.; Aliu, E.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bradbury, S.M.; Buckley, J.H.; Bugaev, V.; Byrum, K.; et al. Veritas observations of gamma-ray bursts detected byswift. Astrophys. J. 2011, 743, 62. [Google Scholar] [CrossRef]
- Ashkar, H.; Brun, F.; Füßling, M.; Hoischen, C.; Ohm, S.; Prokoph, H.; Reichherzer, P.; Schüssler, F.; Seglar-Arroyo, M. The H.E.S.S. gravitational wave rapid follow-up program. J. Cosmol. Astropart. Phys. 2021, 2021, 045. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. The IceCube Neutrino Observatory: Instrumentation and online systems. J. Instrum. 2017, 12, P03012. [Google Scholar] [CrossRef]
- Ageron, M.; Aguilar, J.A.; Al Samarai, I.; Albert, A.; Ameli, F.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; et al. ANTARES: The first undersea neutrino telescope. Nucl. Instrum. Methods Phys. Res. A 2011, 656, 11–38. [Google Scholar] [CrossRef]
- Avrorin, A.D.; Avrorin, A.V.; Aynutdinov, V.M.; Bannash, R.; Belolaptikov, I.A.; Brudanin, V.B.; Budnev, N.M.; Domogatsky, G.V.; Doroshenko, A.A.; Dvornicky, R.; et al. Baikal-GVD: First results and prospects. In European Physical Journal Web of Conferences; EDP Sciences: Les Ulis, France, 2019; Volume 209, p. 01015. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Alves, A.A., Jr.; Amin, N.M.; Andeen, K.; et al. IceCube high-energy starting event sample: Description and flux characterization with 7.5 years of data. Phys. Rev. D 2021, 104, 022002. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; et al. The Contribution of Fermi-2LAC Blazars to Diffuse TeV-PeV Neutrino Flux. Astrophys. J. 2017, 835, 45. [Google Scholar] [CrossRef] [Green Version]
- Albert, A.; André, M.; Anghinolfi, M.; Ardid, M.; Aubert, J.J.; Aublin, J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; et al. Joint Constraints on Galactic Diffuse Neutrino Emission from the ANTARES and IceCube Neutrino Telescopes. Astrophys. J. 2018, 868, L20. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. Time-integrated Neutrino Source Searches with 10 years of IceCube Data. Phys. Rev. Lett. 2020, 124, 051103. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Archinger, M.; Arguelles, C.; et al. Searches for Time-dependent Neutrino Sources with IceCube Data from 2008 to 2012. Astrophys. J. 2015, 807, 46. [Google Scholar] [CrossRef] [Green Version]
- Acciari, V.A.; Ansoldi, S.; Antonelli, L.A.; Engels, A.A.; Baack, D.; Babić, A.; Banerjee, B.; de Almeida, U.B.; Barrio, J.A.; González, J.B.; et al. Constraints on Gamma-Ray and Neutrino Emission from NGC 1068 with the MAGIC Telescopes. Astrophys. J. 2019, 883, 135. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. The IceCube Realtime Alert System. Astropart. Phys. 2017, 92, 30–41. [Google Scholar] [CrossRef] [Green Version]
- Santander, M.; Dorner, D.; Dumm, J.; Satalecka, K.; Schüssler, F. Searching for VHE gamma-ray emission associated with IceCube astrophysical neutrinos using FACT, H.E.S.S., MAGIC, and VERITAS. arXiv 2017, arXiv:1708.08945. [Google Scholar]
- Barthelmy, S.D.; Butterworth, P.; Cline, T.L.; Gehrels, N.; Marshall, F.; Takeshima, T.; Connaughton, V.; Kippen, R.M.; Kouveliotou, C.; Robinson, C.R. The GRB coordinates network (GCN): A status report. AIP Conf. Proc. 1998, 428, 99–103. [Google Scholar] [CrossRef]
- Smale, A.; Racusin, J.; Barthelmy, S.; McGlynn, T.; Cenko, B.; Schnittman, J.; Perkins, J.; Baker, J.; Singer, L.; Sheets, T.; et al. Time-domain Astronomy Coordination Hub (TACH). Bull. Am. Astron. Soc. 2020, 235, 107–115. [Google Scholar]
- Rutledge, R.E. The Astronomer’s Telegram: A Web-based Short-Notice Publication System for the Professional Astronomical Community. Publ. Astron. Soc. Pac. 1998, 110, 754–756. [Google Scholar] [CrossRef]
- Dorner, D.; Arbet-Engels, A.; Baack, D.; Balbo, M.; Biland, A.; Bretz, T.; Buss, J.; Eisenberger, L.; Elsaesser, D.; Hildebrand, D.; et al. FACT—Highlights from more than Eight Years of Unbiased TeV Monitoring. In Proceedings of the 37th International Cosmic Ray Conference—PoS(ICRC2021), Berlin, Germany, 12–23 July 2021; Volume 395, p. 851. [Google Scholar] [CrossRef]
- Ayala Solares, H.A. AMON Multimessenger Alerts: Past and Future. Galaxies 2019, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Weisgarber, T. A new eye on the VHE transient universe with the HAWC online flare monitor. In Proceedings of the 6th International Symposium on High Energy Gamma-Ray Astronomy, Heidelberg, Germany, 11–15 July 2017; Volume 1792, p. 070009. [Google Scholar] [CrossRef] [Green Version]
- Weisgarber, T.; Wisher, I.G. Blazar Alerts with the HAWC Online Flare Monitor. In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), Hague, The Netherlands, 30 July–6 August 2015; Volume 34, p. 798. [Google Scholar]
- Ackermann, M.; Ajello, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Gonzalez, J.B.; Bellazzini, R.; Bissaldi, E.; et al. 2FHL: The second catalog of hard fermi-lat sources. Astrophys. J. Suppl. Ser. 2016, 222, 5. [Google Scholar] [CrossRef] [Green Version]
- Martinez, I.; HAWC Collaboration. Monitoring the TeV sky on hours long timescales with HAWC. In Proceedings of the 35th International Cosmic Ray Conference (ICRC2017), Busan, Korea, 12–20 July 2017; Volume 301, p. 656. [Google Scholar]
- Telescope, L.; Aartsen, M.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; et al. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 2018, 361, eaat1378. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; et al. Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data. Phys. Rev. D 2018, 98, 062003. [Google Scholar] [CrossRef] [Green Version]
- Kronmueller, M.; Glauch, T. Application of Deep Neural Networks to Event Type Classification in IceCube. arXiv 2019, arXiv:1908.08763. [Google Scholar]
- Huennefeld, M. Deep Learning in Physics exemplified by the Reconstruction of Muon-Neutrino Events in IceCube. PoS 2017, ICRC2017, 1057. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. Search for Sources of Astrophysical Neutrinos Using Seven Years of IceCube Cascade Events. Astrophys. J. 2019, 886, 12. [Google Scholar] [CrossRef] [Green Version]
- Wood, J. An All-Sky Search for Bursts of Very High Energy Gamma Rays with HAWC. arXiv 2018, arXiv:1801.01550. [Google Scholar]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adya, V.B.; Affeldt, C.; Agathos, M.; et al. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev. Relativ. 2020, 23, 3. [Google Scholar] [CrossRef]
- Turley, C.F.; Fox, D.B.; Murase, K.; Falcone, A.; Barnaba, M.; Coutu, S.; Cowen, D.F.; Meszaros, P.; Mostafá, M.; Filippatos, G.; et al. Search for Blazar Flux-Correlated TeV Neutrinos in IceCube 40-String Data. Astrophys. J. 2016, 833, 117. [Google Scholar] [CrossRef] [Green Version]
- Murase, K.; Turley, C.F. A Search for Cosmic Neutrino and Gamma-Ray Emitting Transients in 7.3 Years of ANTARES and Fermi LAT Data. Astrophys. J. 2019, 886, 98. [Google Scholar] [CrossRef]
- Solares, H.A.; Coutu, S.; DeLaunay, J.J.; Fox, D.B.; Grégoire, T.; Keivani, A.; Krauß, F.; Mostafá, M.; Murase, K.; Turley, C.F.; et al. Multimessenger Gamma-Ray and Neutrino Coincidence Alerts Using HAWC and IceCube Subthreshold Data. Astrophys. J. 2021, 906, 63. [Google Scholar] [CrossRef]
- Schüssler, F.; Ashkar, H.; Backes, M.; Egberts, K.; Brun, F.; Füssling, M.; Hoischen, C.; Lenain, J.P.; Lypova, I.; Ohm, S.; et al. H.E.S.S. Searches for TeV gamma-rays associated to high-energy neutrinos. In Proceedings of the 36th International Cosmic Ray Conference (ICRC2019), Madison, WI, USA, 24 July–1 August 2019; Volume 36, p. 787. [Google Scholar]
- Berti, A.; Bernardini, E.; Bhattacharyya, W.; Cortina, J.; Covino, S.; Dorner, D.; Espiñeira, E.D.S.; Fattorini, A.; Foffano, L.; Fukami, S.; et al. Following up Transient sources at Very High Energies with MAGIC. In Proceedings of the 36th International Cosmic Ray Conference (ICRC2019), Madison, WI, USA, 24 July–1 August 2019; Volume 36, p. 633. [Google Scholar]
- Santander, M. Recent results from the VERITAS multi-messenger program. In Proceedings of the 36th International Cosmic Ray Conference (ICRC2019), Madison, WI, USA, 24 July–1 August 2019; Volume 36, p. 782. [Google Scholar]
- Dorner, D.; Adam, J.; Ahnen, L.M.; Baack, D.; Balbo, M.; Biland, A.; Blank, M.; Bretz, T.; Bruegge, K.; Bulinski, M.; et al. FACT—Highlights from more than Five Years of Unbiased Monitoring at TeV Energies. In Proceedings of the 35th International Cosmic Ray Conference (ICRC2017), Busan, Korea, 12–20 July 2017; Volume 301, p. 609. [Google Scholar]
- Schüssler, F.; Backes, M.; Balzer, A.; Brun, F.; Füssling, M.; Hoischen, C.; Lenain, J.P.; Lorentz, M.; Lypova, I.; Ohm, S.; et al. The H.E.S.S. multi-messenger program: Searches for TeV gamma-ray emission associated with high-energy neutrinos. AIP Conf. Proc. 2017, 1792, 060006. [Google Scholar] [CrossRef]
- Ageron, M.; Aguilar, J.A.; Al Samarai, I.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Jesus, A.A.; et al. The ANTARES telescope neutrino alert system. Astropart. Phys. 2012, 35, 530–536. [Google Scholar] [CrossRef] [Green Version]
- Hoischen, C.; H.E.S.S. Collaboration. The H.E.S.S. transients alert system. In Proceedings of the New Era of Multi-Messenger Astrophysics (Asterics2019), Groningen, The Netherlands, 25–29 March 2019; Volume 357, p. 033. [Google Scholar]
- Schüssler, F.; Backes, M.; Balzer, A.; Brun, F.; Füssling, M.; Hoischen, C.; Lenain, J.P.; Lypova, I.; Ohm, S.; Parsons, D.; et al. H.E.S.S. observations following multi-messenger alerts in real-time. In Proceedings of the 35th International Cosmic Ray Conference (ICRC2017), Busan, Korea, 12–20 July 2017; Volume 301, p. 653. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Phys. Rev. Lett. 2016, 116, 241103. [Google Scholar] [CrossRef]
- de Lotto, B.; Ansoldi, S.; Antonelli, A.; Berti, A.; Carosi, A.; Longo, F.; Stamerra, A. MAGIC electromagnetic follow-up of gravitational wave alerts. IAU Symp. 2016, 324, 287–290. [Google Scholar] [CrossRef] [Green Version]
- Scientific, L.I.G.O.; Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Phys. Rev. Lett. 2017, 118, 221101. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Phys. Rev. Lett. 2017, 119, 141101. [Google Scholar] [CrossRef] [Green Version]
- Miceli, D.; Antonelli, L.A.; Gonzalez, J.B.; Berti, A.; Zeljka, B.; Covino, S.; Lotto, B.D.; Puppo, F.D.; Inoue, S.; Longo, F.; et al. Following up GW Alerts With MAGIC: The Third LIGO/Virgo Observation Run. arXiv 2019, arXiv:1909.03971. [Google Scholar]
- Piron, F. Gamma-ray bursts at high and very high energies. Comptes Rendus Phys. 2016, 17, 617–631. [Google Scholar] [CrossRef]
- Ahnen, M.L.; Ansoldi, S.; Antonelli, L.A.; Antoranz, P.; Arcaro, C.; Babic, A.; Banerjee, B.; Bangale, P.; De Almeida, U.B.; Barrio, J.A.; et al. Detection of very high energy gamma-ray emission from the gravitationally lensed blazar QSO B0218+357 with the MAGIC telescopes. Astron. Astrophys. 2016, 595, A98. [Google Scholar] [CrossRef] [Green Version]
- Ahnen, M.L.; Ansoldi, S.; Antonelli, L.A.; Antoranz, P.; Babic, A.; Banerjee, B.; Bangale, P.; De Almeida, U.B.; Barrio, J.A.; Bednarek, W.; et al. Very High Energy γ-Rays from the Universe’s Middle Age: Detection of the z = 0.940 Blazar PKS 1441+25 with MAGIC. Astrophys. J. Lett. 2015, 815, L23. [Google Scholar] [CrossRef] [Green Version]
- Abeysekara, A.U.; Archambault, S.; Archer, A.; Aune, T.; Barnacka, A.; Benbow, W.; Bird, R.; Biteau, J.; Buckley, J.H.; Bugaev, V.; et al. Gamma-Rays from the Quasar PKS 1441+25: Story of an Escape. Astrophys. J. Lett. 2015, 815, L22. [Google Scholar] [CrossRef] [Green Version]
- Veres, P.; Bhat, P.N.; Briggs, M.S.; Cleveland, W.H.; Hamburg, R.; Hui, C.M.; Mailyan, B.; Preece, R.D.; Roberts, O.J.; von Kienlin, A.; et al. Observation of inverse Compton emission from a long γ-ray burst. Nature 2019, 575, 459–463. [Google Scholar] [CrossRef]
- Abdalla, H.; Adam, R.; Aharonian, F.; Benkhali, F.A.; Angüner, E.O.; Arakawa, M.; Arcaro, C.; Armand, C.; Ashkar, H.; Backes, M.; et al. A very-high-energy component deep in the γ-ray burst afterglow. Nature 2019, 575, 464–467. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, H.; Aharonian, F.; Benkhali, F.A.; Angüner, E.O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Baghmanyan, V.; et al. Revealing X-ray and gamma-ray temporal and spectral similarities in the GRB 190829A afterglow. Science 2021, 372, 1081–1085. [Google Scholar] [CrossRef]
- Nava, L. Gamma-Ray Bursts at the highest energies. Galaxies. Universe, Accepted for publication in the special Issue “High-Energy Gamma-Ray Astronomy: Results on Fundamental Questions after 30 Years of Ground-Based Observations” (This Issue). 2021. [Google Scholar]
- de Naurois, M.; H.E.S.S Collaboration. H.E.S.S. Follow-Up of IceCube-170922A. The Astronomer’s Telegram, No. 10787. Available online: https://www.astronomerstelegram.org/?read=10787(accessed on 19 October 2021).
- Mirzoyan, R.; MAGIC Collaboration. First-time Detection of VHE Gamma Rays by MAGIC from a Direction Consistent with the Recent Ehe Neutrino Event IceCube-170922A. The Astronomer’s Telegram, No. 10817. Available online: https://www.astronomerstelegram.org/?read=10817(accessed on 19 October 2021).
- Ansoldi, S.; Antonelli, L.A.; Arcaro, C.; Baack, D.; Babić, A.; Banerjee, B.; Bangale, P.; De Almeida, U.B.; Barrio, J.A.; González, J.B.; et al. The Blazar TXS 0506+056 Associated with a High-energy Neutrino: Insights into Extragalactic Jets and Cosmic-Ray Acceleration. Astrophys. J. Lett. 2018, 863, L10. [Google Scholar] [CrossRef]
- Abeysekara, A.U.; Archer, A.; Benbow, W.; Bird, R.; Brill, A.; Brose, R.; Buckley, J.H.; Christiansen, J.L.; Chromey, A.J.; Daniel, M.K.; et al. VERITAS observations of the BL Lac object TXS 0506+056. Astrophys. J. 2018, 861, L20. [Google Scholar] [CrossRef]
- Cerruti, M.; Zech, A.; Boisson, C.; Emery, G.; Inoue, S.; Lenain, J.P. Leptohadronic single-zone models for the electromagnetic and neutrino emission of TXS 0506+056. MNRAS 2019, 483, L12–L16. [Google Scholar] [CrossRef]
- Gao, S.; Fedynitch, A.; Winter, W.; Pohl, M. Modelling the coincident observation of a high-energy neutrino and a bright blazar flare. Nat. Astron. 2019, 3, 88–92. [Google Scholar] [CrossRef] [Green Version]
- Petropoulou, M.; Murase, K.; Santander, M.; Buson, S.; Tohuvavohu, A.; Kawamuro, T.; Vasilopoulos, G.; Negoro, H.; Ueda, Y.; Siegel, M.H.; et al. Multi-epoch Modeling of TXS 0506+056 and Implications for Long-term High-energy Neutrino Emission. Astrophys. J. 2020, 891, 115. [Google Scholar] [CrossRef]
- Ros, E.; Kadler, M.; Perucho, M.; Boccardi, B.; Cao, H.M.; Giroletti, M.; Krauß, F.; Ojha, R. Apparent superluminal core expansion and limb brightening in the candidate neutrino blazar TXS 0506+056. Astron. Astrophys. 2020, 633, L1. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; et al. Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science 2018, 361, 147–151. [Google Scholar] [CrossRef] [Green Version]
- Paiano, S.; Falomo, R.; Treves, A.; Scarpa, R. The Redshift of the BL Lac Object TXS 0506+056. Astrophys. J. Lett. 2018, 854, L32. [Google Scholar] [CrossRef] [Green Version]
- Benbow, W. Recent Results from VERITAS AGN Observations. In Proceedings of the 37th International Cosmic Ray Conference—PoS(ICRC2021), Berlin, Germany, 12–23 July 2021; Volume 395, p. 794. [Google Scholar] [CrossRef]
- Satalecka, K.; Aniello, T.; Bernardini, E.; Bhattacharyya, W.; Cerruti, M.; D’Ammando, F.; Prandini, E.; Righi, C.; Sahakyan, N.; Viale, I.; et al. Multi-epoch monitoring of TXS 0506+056 with MAGIC and MWL partners. In Proceedings of the 37th International Cosmic Ray Conference—PoS(ICRC2021), Berlin, Germany, 12–23 July 2021; Volume 395, p. 875. [Google Scholar] [CrossRef]
- Padovani, P.; Oikonomou, F.; Petropoulou, M.; Giommi, P.; Resconi, E. TXS 0506+056, the first cosmic neutrino source, is not a BL Lac. MNRAS 2019, 484, L104–L108. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophys. J. 2017, 848, L13. [Google Scholar] [CrossRef]
- Abdalla, H.; Abramowski, A.; Aharonian, F.; Benkhali, F.A.; Angüner, E.O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; et al. TeV Gamma-Ray Observations of the Binary Neutron Star Merger GW170817 with H.E.S.S. Astrophys. J. Lett. 2017, 850, L22. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, H. Probing the Magnetic Field in the GW170817 Outflow Using H.E.S.S. Observations. Astrophys. J. 2020, 894, L16. [Google Scholar] [CrossRef]
- Reichherzer, P.; Schüssler, F.; Lefranc, V.; Yusafzai, A.; Alkan, A.K.; Ashkar, H.; Becker Tjus, J. Astro-COLIBRI—The COincidence LIBrary for Real-time Inquiry for multimessenger astrophysics. arXiv 2021, arXiv:2109.01672. [Google Scholar]
- Benbow, W. Recent Results from VERITAS AGN Observations. arXiv 2021, arXiv:2108.05460. [Google Scholar]
- Ayala Solares, H. Multimessenger NuEM Alerts with AMON. In Proceedings of the 37th International Cosmic Ray Conference—PoS(ICRC2021), Berlin, Germany, 12–23 July 2021; Volume 395, p. 958. [Google Scholar] [CrossRef]
- Turley, C.F.; Fox, D.B.; Keivani, A.; DeLaunay, J.J.; Cowen, D.F.; Mostafá, M.; Ayala Solares, H.A.; Murase, K. A Coincidence Search for Cosmic Neutrino and Gamma-Ray Emitting Sources Using IceCube and Fermi-LAT Public Data. Astrophys. J. 2018, 863, 64. [Google Scholar] [CrossRef] [Green Version]
- Tohuvavohu, A.; Kennea, J.A.; DeLaunay, J.; Palmer, D.M.; Cenko, S.B.; Barthelmy, S. Gamma-Ray Urgent Archiver for Novel Opportunities (GUANO): Swift/BAT Event Data Dumps on Demand to Enable Sensitive Subthreshold GRB Searches. Astrophys. J. 2020, 900, 35. [Google Scholar] [CrossRef]
- Magee, R.; Fong, H.; Caudill, S.; Messick, C.; Cannon, K.; Godwin, P.; Hanna, C.; Kapadia, S.; Meacher, D.; Mohite, S.R.; et al. Sub-threshold Binary Neutron Star Search in Advanced LIGO’s First Observing Run. Astrophys. J. 2019, 878, L17. [Google Scholar] [CrossRef] [Green Version]
- Ben-Gal, I. Outlier Detection. In Data Mining and Knowledge Discovery Handbook; Maimon, O., Rokach, L., Eds.; Springer: Boston, MA, USA, 2005; pp. 131–146. [Google Scholar] [CrossRef]
- Grégoire, T.; Ayala Solares, H.; Coutu, S.; Cowen, D.; DeLaunay, J.; Fox, D.B.; Keivani, A.; Krauss, F.; Mostafa, M.; Murase, K.; et al. Model independent search for transient multimessenger events with AMON using outlier detection methods. In Proceedings of the 37th International Cosmic Ray Conference—PoS(ICRC2021), Berlin, Germany, 12–23 July 2021; Volume 395, p. 934. [Google Scholar] [CrossRef]
- Abreu, P. A search for ultra-high-energy photons at the Pierre Auger Observatory exploiting air-shower universality. In Proceedings of the 37th International Cosmic Ray Conference — PoS(ICRC2021), Berlin, Germany, 12–23 July 2021; Volume 395, p. 373. [Google Scholar] [CrossRef]
- Acharya, B.S.; Agudo, I.; Al Samarai, I.; Alfaro, R.; Alfaro, J.; Alispach, C.; Batista, R.A.; Amans, J.P.; Amato, E.; Ambrosi, G.; et al. Science with the Cherenkov Telescope Array; The CTA Consortium; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2019. [Google Scholar] [CrossRef] [Green Version]
- Fioretti, V.; Ribeiro, D.; Humensky, T.B.; Bulgarelli, A.; Maier, G.; Moralejo, A.; Nigro, C. The Cherenkov Telescope Array sensitivity to the transient sky. In Proceedings of the 36th International Cosmic Ray Conference—PoS(ICRC2019), Madison, WI, USA, 24 July–1 August 2019; Volume 358, p. 673. [Google Scholar] [CrossRef]
- Di Piano, A.; Bulgarelli, A.; Fioretti, V.; Baroncelli, L.; Parmiggiani, N.; Longo, F.; Stamerra, A.; López-Oramas, A.; Stratta, G.; De Cesare, G. Detection methods for the Cherenkov Telescope Array at very-short exposure times. In Proceedings of the 37th International Cosmic Ray Conference—PoS(ICRC2021), Berlin, Germany, 12–23 July 2021; Volume 395, p. 694. [Google Scholar] [CrossRef]
- Cao, Z.; Aharonian, F.A.; An, Q.; Bai, L.X.; Bai, Y.X.; Bao, Y.W.; Bastieri, D.; Bi, X.J.; Bi, Y.J.; Cai, H.; et al. Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources. Nature 2021, 594, 33–36. [Google Scholar] [CrossRef]
- Cao, Z.; Aharonian, F.A.; An, Q.; Axikegu; Bai, L.X.; Bai, Y.X.; Bao, Y.W.; Bastieri, D.; Bi, X.J.; Bi, Y.J.; et al. PeV gamma-ray emission from the Crab Nebula. Science 2021. [Google Scholar] [CrossRef]
- Albert, A.; Alfaro, R.; Ashkar, H.; Alvarez, C.; Alvarez, J.; Arteaga-Velázquez, J.C.; Solares, H.A.; Arceo, R.; Bellido, J.A.; BenZvi, S.; et al. Science Case for a Wide Field-of-View Very-High-Energy Gamma-Ray Observatory in the Southern Hemisphere. arXiv 2019, arXiv:1902.08429. [Google Scholar]
- Adrián-Martínez, S.; Ageron, M.; Aharonian, F.; Aiello, S.; Albert, A.; Ameli, F.; Anassontzis, E.; Andre, M.; Androulakis, G.; Anghinolfi, M.; et al. Letter of intent for KM3NeT 2.0. J. Phys. G Nucl. Phys. 2016, 43, 084001. [Google Scholar] [CrossRef]
- Schumacher, L.J.; Huber, M.; Agostini, M.; Bustamante, M.; Oikonomou, F.; Resconi, E. PLEνM: A global and distributed monitoring system of high-energy astrophysical neutrinos. PoS 2021, ICRC2021, 1185. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Allison, P.; Amin, N.M.; et al. IceCube-Gen2: The Window to the Extreme Universe. arXiv 2020, arXiv:2008.04323. [Google Scholar]
- Agostini, M.; Böhmer, M.; Bosma, J.; Clark, K.; Danninger, M.; Fruck, C.; Gernhäuser, R.; Gärtner, A.; Grant, D.; Henningsen, F.; et al. The Pacific Ocean Neutrino Experiment. Nat. Astron. 2020, 4, 913–915. [Google Scholar] [CrossRef]
- Singer, L.P.; Price, L.R.; Farr, B.; Urban, A.L.; Pankow, C.; Vitale, S.; Veitch, J.; Farr, W.M.; Hanna, C.; Cannon, K.; et al. The first two years of electromagnetic follow-up with advanced ligo and virgo. Astrophys. J. 2014, 795, 105. [Google Scholar] [CrossRef]
- Berry, C.P.L.; Mandel, I.; Middleton, H.; Singer, L.P.; Urban, A.L.; Vecchio, A.; Vitale, S.; Cannon, K.; Farr, B.; Farr, W.M.; et al. Parameter estimation for binary neutron-star coalescences with realistic noise during the advanced ligo era. Astrophys. J. 2015, 804, 114. [Google Scholar] [CrossRef] [Green Version]
- Fairhurst, S. Localization of transient gravitational wave sources: Beyond triangulation. Class. Quantum Gravity 2018, 35, 105002. [Google Scholar] [CrossRef] [Green Version]
- Chang, P.; Allen, G.; Anderson, W.; Bianco, F.B.; Bloom, J.S.; Brady, P.R.; Brazier, A.; Cenko, S.B.; Couch, S.M.; DeYoung, T.; et al. Cyberinfrastructure Requirements to Enhance Multi-messenger Astrophysics. arXiv 2019, arXiv:1903.04590. [Google Scholar]
- European Open Science Cloud Future Project. Available online: https://eoscfuture.eu (accessed on 19 October 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorner, D.; Mostafá, M.; Satalecka, K. High-Energy Alerts in the Multi-Messenger Era. Universe 2021, 7, 393. https://doi.org/10.3390/universe7110393
Dorner D, Mostafá M, Satalecka K. High-Energy Alerts in the Multi-Messenger Era. Universe. 2021; 7(11):393. https://doi.org/10.3390/universe7110393
Chicago/Turabian StyleDorner, Daniela, Miguel Mostafá, and Konstancja Satalecka. 2021. "High-Energy Alerts in the Multi-Messenger Era" Universe 7, no. 11: 393. https://doi.org/10.3390/universe7110393
APA StyleDorner, D., Mostafá, M., & Satalecka, K. (2021). High-Energy Alerts in the Multi-Messenger Era. Universe, 7(11), 393. https://doi.org/10.3390/universe7110393