What Solar–Terrestrial Link Researchers Should Know about Interplanetary Drivers
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Distribution of Dst Index in Sheath + ICME Complexes
3.2. Temporal Profiles of Parameters in Sheath + ICME Complexes
- (a)
- the thermal pressure Pt, the ratio of the thermal pressure and magnetic one β, and the relative density of α-particles Na/Np;
- (b)
- (c)
- the longitude and latitude angles of the bulk velocity vector phi and theta;
- (d)
- the components of the electric field Ey and the IMF Bz;
- (e)
- the measured Dst and density corrected Dst* indices (in contrast to Dst, the Dst* index is cleared of the contribution of the current at the magnetopause and is mainly determined by the ring current);
- (f)
- the dynamic pressure Pd, and the magnitude of the IMF B;
- (g)
- the components of the IMF Bx and IMF By;
- (h)
- the Alfvenic Va and sound Vs speeds;
- (i)
- the ion density N and Kp index;
- (j)
- the proton bulk velocity V, and the AE index.
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dungey, J.W. Interplanetary Magnetic Field and the Auroral Zones. Phys. Rev. Lett. 1961, 6, 47–48. [Google Scholar] [CrossRef]
- Fairfield, D.H.; Cahill, L.J. The transition region magnetic field and polar magnetic disturbances. J. Geophys. Res. 1966, 71, 155–169. [Google Scholar] [CrossRef]
- Rostoker, G.; Falthammar, C.-G. Relationship between changes in the interplanetary magnetic field and variations in the magnetic field at the Earth’s surface. J. Geophys. Res. 1967, 72, 5853–5863. [Google Scholar] [CrossRef]
- Russell, C.T.; McPherron, R.L.; Burton, R.K. On the cause of magnetic storms. J. Geophys. Res. 1974, 79, 1105–1109. [Google Scholar] [CrossRef]
- Burton, R.K.; McPherron, R.L.; Russell, C.T. An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res. 1975, 80, 4204–4214. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Gonzalez, W.D. The interplanetary Causes of Magnetic Storms: A Review. In Magnetic Storms; Mon, S., Tsurutani, B.T., Gonzalez, W.D., Kamide, Y., Eds.; American Geophysical Union Press: Washington, DC, USA, 1997; Volume 98, p. 77. [Google Scholar]
- Gonzalez, W.D.; Tsurutani, B.T.; Clua de Gonzalez, A.L. Interplanetary origion of geomagnetic storms. Space Sci. Rev. 1999, 88, 529–562. [Google Scholar] [CrossRef]
- Yermolaev, Y.I.; Yermolaev, M.Y.; Zastenker, G.N.; Zelenyi, L.M.; Petrukovich, A.A.; Sauvaud, J.A. Statistical studies of geomagnetic storm dependencies on solar and interplanetary events: A review. Planet. Space Sci. 2005, 53, 189–196. [Google Scholar] [CrossRef]
- Eselevich, V.G.; Fainshtein, V.G. An investigation of the relationship between the magnetic storm Dst indexes and different types of solar wind streams. Ann. Geophys. 1993, 11, 678–684. [Google Scholar]
- Huttunen, K.E.J.; Koskinen, H.E.J.; Schwenn, R. Variability of magnetospheric storms driven by different solar wind perturbations. J. Geophys. Res. 2002, 107. [Google Scholar] [CrossRef]
- Huttunen, K.E.J.; Koskinen, H.E.J.; Karinen, A.; Mursula, K. Asymmetric development of magnetospheric storms during magnetic clouds and sheath regions. Geophys. Res. Lett. 2006, 33, L06107. [Google Scholar] [CrossRef] [Green Version]
- Tsurutani, B.T.; Gonzalez, W.D.; Gonzalez, A.L.C.; Guarnieri, F.L.; Gopalswamy, N.; Grande, M.; Kamide, Y.; Kasahara, Y.; Lu, G.; Mann, I.; et al. Corotating solar wind streams and recurrent geomagnetic activity: A review. J. Geophys. Res. Space Phys. 2006, 111, A07S01. [Google Scholar] [CrossRef] [Green Version]
- Huttunen, K.E.J.; Koskinen, H.E.J. Importance of post-shock streams and sheath region as drivers of intense magnetospheric storms and high-latitude activity. Ann. Geophys. 2004, 22, 1729–1738. [Google Scholar] [CrossRef]
- Borovsky, J.E.; Denton, M.H. Differences between CME-driven storms and CIR-driven storms. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Pulkkinen, T.I.; Partamies, N.; Huttunen, K.E.J.; Reeves, G.D.; Koskinen, H.E.J. Differences in geomagnetic storms driven by magnetic clouds and ICME sheath regions. Geophys. Res. Lett. 2007, 34, L02105. [Google Scholar] [CrossRef]
- Kilpua, E.K.J.; Hietala, H.; Turner, D.L.; Koskinen, H.E.J.; Pulkkinen, T.I.; Rodriguez, J.V.; Reeves, G.D.; Claudepierre, S.G.; Spence, H.E. Unraveling the drivers of the storm time radiation belt response. Geophys. Res. Lett. 2015, 42. [Google Scholar] [CrossRef] [Green Version]
- Plotnikov, I.; Barkova, E. Nonlinear dependence of Dst and AE indices on the electric field of magnetic clouds. Adv. Space Res. 2007, 40, 1858–1862. [Google Scholar] [CrossRef]
- Yermolaev, Y.I.; Yermolaev, M.Y. Comment on “Interplanetary origin of intense geomagnetic storms (Dst <−100 nT) during solar cycle 23” by W. D. Gonzalez et al. Geophys. Res. Lett. 2008, 35, L01101. [Google Scholar] [CrossRef] [Green Version]
- Longden, N.; Denton, M.H.; Honary, F. Particle precipitation during ICME-driven and CIR-driven geomagnetic storms. J. Geophys. Res. 2008, 113, 06205. [Google Scholar] [CrossRef] [Green Version]
- Turner, N.E.; Cramer, W.D.; Earles, S.K.; Emery, B.A. Geoefficiency and energy partitioning in CIR-driven and CME-driven storms. J. Atmos. Sol. Terr. Phys. 2009, 71, 1023–1031. [Google Scholar] [CrossRef]
- Guo, J.; Feng, X.; Emery, B.A.; Zhang, J.; Xiang, C.; Shen, F.; Song, W. Energy transfer during intense geomagnetic storms driven by interplanetary coronal mass ejections and their sheath regions. J. Geophys. Res. 2011, 116, A05106. [Google Scholar] [CrossRef] [Green Version]
- Nikolaeva, N.S.; Yermolaev, Y.I.; Lodkina, I.G. Modeling the time behavior of the Dst index during the main phase of magnetic storms generated by various types of solar wind. Cosmic Res. 2013, 51, 401–412. [Google Scholar] [CrossRef]
- Nikolaeva, N.S.; Yermolaev, Y.I.; Lodkina, I.G. Dependence of geomagnetic activity during magnetic storms on solar-wind parameters for different types of streams: 4. Simulation for magnetic clouds. Geomagn. Aeron. (Engl. Transl.) 2014, 54, 152–161. [Google Scholar] [CrossRef]
- Nikolaeva, N.; Yermolaev, Y.; Lodkina, I. Predicted dependence of the cross po-lar cap potential saturation on the type of solar wind stream. Adv. Space Res. 2015, 56, 1366–1373. [Google Scholar] [CrossRef] [Green Version]
- Nikolaeva, N.S.; Yermolaev, Y.I.; Lodkina, I.G. Modeling of the corrected Dst* index temporal profile on the main phase of the magnetic storms generated by different types of solar wind. Cosm. Res. 2015, 53, 119–127. [Google Scholar] [CrossRef]
- Yermolaev, Y.I.; Nikolaeva, N.S.; Lodkina, I.G.; Yermolaev, M.Y. Relative occurrence rate and geoeffectiveness of large-scale types of the solar wind. Cosm. Res. 2010, 48, 1–30. [Google Scholar] [CrossRef]
- Yermolaev, Y.I.; Nikolaeva, N.S.; Lodkina, I.G.; Yermolaev, M.Y. Specific interplanetary conditions for CIR-induced, Sheath-induced, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis. Ann. Geophys. 2010, 28, 2177–2186. [Google Scholar] [CrossRef] [Green Version]
- Yermolaev, Y.I.; Nikolaeva, N.S.; Lodkina, I.G.; Yermolaev, M.Y. Geoeffectiveness and efficiency of CIR, sheath, and ICME in generation of magnetic storms. J. Geophys. Res. 2012, 117, A00L007. [Google Scholar] [CrossRef] [Green Version]
- Yermolaev, Y.I.; Lodkina, I.G.; Nikolaeva, N.S.; Yermolaev, M.Y. Influence of the interplanetary driver type on the durations of the main and recovery phases of magnetic storms. J. Geophys. Res. 2014, 119, 8126–8136. [Google Scholar] [CrossRef] [Green Version]
- Yermolaev, Y.I.; Lodkina, I.G.; Nikolaeva, N.S.; Yermolaev, M.Y. Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis. J. Geophys. Res. 2015, 120, 7094–7106. [Google Scholar] [CrossRef] [Green Version]
- Yermolaev, Y.I.; Lodkina, I.G.; Yermolaev, M.Y.; Riazantseva, M.O.; Khokhlachev, A.A. Some Problems of Identifying Types of Large-Scale Solar Wind and Their Role in the Physics of the Magnetosphere: 4. The “Lost Driver”. Cosm. Res. 2020, 58, 492–500. [Google Scholar] [CrossRef]
- Borovsky, J.E.; Cayton, T.E.; Denton, M.H.; Belian, R.D.; Christensen, R.A.; Ingraham, J.C. The proton and electron radiation belts at geosynchronous orbit: Statistics and behavior during high-speed stream-driven storms. J. Geophys. Res. 2016, 121, 5449–5488. [Google Scholar] [CrossRef] [Green Version]
- Lockwood, M.; Owens, M.J.; Barnard, L.A.; Bentley, S.; Scott, C.J.; Watt, C.E. On the origins and timescales of geoeffective IMF. Space Weather 2016, 14, 406–432. [Google Scholar] [CrossRef]
- Dremukhina, L.A.; Lodkina, I.G.; Yermolaev, Y.I. Statistical Study of the Effect of Different Solar Wind Types on Magnetic Storm Generation During 1995–2016. Geomagn. Aeron. 2018, 58, 737–743. [Google Scholar] [CrossRef]
- Dremukhina, L.A.; Lodkina, I.G.; Yermolaev, Y.I. Relationship between the Parameters of Various Solar Wind Types and Geomagnetic Activity Indices. Cosm. Res. 2018, 56, 426–433. [Google Scholar] [CrossRef]
- Dremukhina, L.A.; Yermolaev, Y.I.; Lodkina, I.G. Dynamics of Interplanetary Parameters and Geomagnetic Indices during Magnetic Storms Induced by Different Types of Solar Wind. Geomagn. Aeron. 2019, 59, 639–650. [Google Scholar] [CrossRef]
- Dremukhina, L.A.; Yermolaev, Y.I.; Lodkina, I.G. Differences in the Dynamics of the Asymmetrical Part of the Magnetic Disturbance during the Periods of Magnetic Storms Induced by Different Interplanetary Sources. Geomagn. Aeron. 2020, 60, 714–726. [Google Scholar] [CrossRef]
- Boroyev, R.; Vasiliev, M. Substorm activity during the main phase of magnetic storms induced by the CIR and ICME events. Adv. Space Res. 2018, 61, 348–354. [Google Scholar] [CrossRef]
- Despirak, I.V.; Lyubchich, A.A.; Kleimenova, N.G. Solar Wind Streams of Different Types and High-Latitude Substorms. Geomagn. Aeron. 2019, 59, 1–6. [Google Scholar] [CrossRef]
- Yermolaev, Y.I.; Lodkina, I.G.; Nikolaeva, N.S.; Yermolaev, M.Y.; Riazantseva, M.O. Some problems of identifying types of large-scale solar wind and their role in the physics of the magnetosphere. Cosm. Res. 2017, 55, 178–189. [Google Scholar] [CrossRef]
- Lodkina, I.G.; Yermolaev, Y.I.; Yermolaev, M.Y.; Riazantseva, M.O. Some Problems of Identifying Types of Large-Scale Solar Wind and Their Role in the Physics of the Magnetosphere: 2. Cosm. Res. 2018, 56, 331–342. [Google Scholar] [CrossRef]
- Lodkina, I.G.; Yermolaev, Y.I.; Yermolaev, M.Y.; Riazantseva, M.O.; Khokhlachev, A.A. Some Problems of Identifying Types of Large-Scale Solar Wind and Their Role in the Physics of the Magnetosphere: 3. Use of published incorrect data. Cosm. Res. 2020, 58, 377–395. [Google Scholar] [CrossRef]
- King, J.H. Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data. J. Geophys. Res. 2005, 110, A02209. [Google Scholar] [CrossRef]
- Yermolaev, Y.I.; Nikolaeva, N.S.; Lodkina, I.G.; Yermolaev, M.Y. Catalog of large-scale solar wind phenomena during 1976–2000. Cosm. Res. 2009, 47, 81–94, (Transl. in Kosm. Issled. 2009, 47, 99–113). [Google Scholar] [CrossRef]
- Zurbuchen, T.H.; Richardson, I.G. In-situ solar wind and magnetic field signa-tures of interplanetary coronal mass ejections. Space Sci. Rev. 2006, 123, 31–43. [Google Scholar] [CrossRef]
- Wimmer-Schweingruber, R.F.; Crooker, N.U.; Balogh, A.; Bothmer, V.; Forsyth, R.J.; Gazis, P.; Gosling, J.T.; Horbury, T.; Kilchenmann, A.; Richardson, I.G.; et al. Understanding interplanetary coronal mass ejec-tion signatures. Space Sci. Rev. 2006, 123, 177–216. [Google Scholar] [CrossRef]
- Lepping, R.; Berdichevsky, D.; Szabó, A.; Arqueros, C.; Lazarus, A. Profile of an Average Magnetic Cloud at 1 au for the Quiet Solar Phase: Wind Observations. Sol. Phys. 2003, 212, 425–444. [Google Scholar] [CrossRef]
- Lepping, R.P.; Berdichevsky, D.B.; Wu, C.-C. Average Magnetic Field Magnitude Profiles of Wind Magnetic Clouds as a Function of Closest Approach to the Clouds’ Axes and Comparison to Model. Sol. Phys. 2017, 292, 27. [Google Scholar] [CrossRef]
- Jian, L.K.; Russell, C.T.; Luhmann, J.G.; Skoug, R.M.; Steinberg, J.T. Stream Interactions and Interplanetary Coronal Mass Ejections at 0.72 AU. Sol. Phys. 2008, 249, 85–101. [Google Scholar] [CrossRef]
- Richardson, I.G.; Cane, H.V. Near-earth solar wind flows and related geomagnetic activity during more than four solar cycles (1963–2011). J. Space Weather. Space Clim. 2012, 2, A02. [Google Scholar] [CrossRef]
- Yermolaev, Y.I.; Lodkina, I.G.; Yermolaev, M.Y.; Riazantseva, M.O.; Rakhmanova, L.S.; Borodkova, N.L.; Shugay, Y.S.; Slemzin, V.A.; Veselovsky, I.S.; Rodkin, D.G. Dynamics of Large-Scale Solar-Wind Streams Obtained by the Double Superposed Epoch Analysis: 4. Helium Abundance. J. Geophys. Res. Space Phys. 2020, 125, e2020JA027878. [Google Scholar] [CrossRef]
- Yokoyama, N.; Kamide, Y. Statistical nature of geomagnetic storms. J. Geophys. Res. 1997, 102, 14215–14222. [Google Scholar] [CrossRef]
- Gonzalez, W.D.; Echer, E. A study on the peak Dst and peak negative Bz relationship during intense geomagnetic storms. Geophys. Res. Lett. 2005, 32, L18103. [Google Scholar] [CrossRef] [Green Version]
- Yermolaev, Y.I.; Yermolaev, M.Y.; Lodkina, I.G.; Nikolaeva, N.S. Statistical investigation of Heliospheric conditions resulting in magnetic storms: 2. Cosm. Res. 2007, 45, 461–470, (Transl. in Kosm. Issled. 2007, 45, 489–498). [Google Scholar] [CrossRef]
- Bendat, J.S.; Piersol, A.G. Measurement and Analysis of Random Data; Wiley-Interscience: Hoboken, NJ, USA, 1971. [Google Scholar]
Sheath/Ejecta | IS/Sheath/Ejecta | Sheath/MC | IS/Sheath/MC | |
---|---|---|---|---|
Number of K1 events | 439 | 395 | 28 | 160 |
(Number of K2 events) | (329) | (360) | (24) | (155) |
Duration of events, h | 14.0 ± 8.8 | 16.3 ± 9.5 | 13.1 ± 9.8 | 12.1 ± 6.1 |
Number of magnetic storms | 59 | 63 | 3 | 25 |
V, km/s | 439 ± 95 | 459 ± 107 | 432 ± 91 | 491 ± 141 |
T (105), K | 1.57 ± 1.35 | 1.77 ± 1.73 | 1.55 ± 1.52 | 2.44 ± 3.63 |
T/Texp | 2.07 ± 1.06 | 2.0 ± 1.1 | 1.99 ± 1.09 | 2.08 ± 1.61 |
N, cm−3 | 9.6 ± 6.4 | 12.4 ± 9.4 | 13.4 ± 8.4 | 16.1 ± 11.1 |
B, nT | 8.1 ± 3.6 | 9.9 ± 4.7 | 9.8 ± 5.1 | 13.2 ± 7.7 |
Kp*10 | 29 ± 15 | 33 ± 15 | 32 ± 16 | 42 ± 19 |
Dst, nT | −17 ± 27 | −19 ± 36 | −18 ± 27 | −24 ± 54 |
Dst*, nT | −22 ± 29 | −28 ± 38 | −27 ± 27 | −37 ± 52 |
AE, nT | 276 ± 249 | 327 ± 285 | 319 ± 317 | 449 ± 391 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yermolaev, Y.I.; Lodkina, I.G.; Dremukhina, L.A.; Yermolaev, M.Y.; Khokhlachev, A.A. What Solar–Terrestrial Link Researchers Should Know about Interplanetary Drivers. Universe 2021, 7, 138. https://doi.org/10.3390/universe7050138
Yermolaev YI, Lodkina IG, Dremukhina LA, Yermolaev MY, Khokhlachev AA. What Solar–Terrestrial Link Researchers Should Know about Interplanetary Drivers. Universe. 2021; 7(5):138. https://doi.org/10.3390/universe7050138
Chicago/Turabian StyleYermolaev, Yuri I., Irina G. Lodkina, Lidia A. Dremukhina, Michael Y. Yermolaev, and Alexander A. Khokhlachev. 2021. "What Solar–Terrestrial Link Researchers Should Know about Interplanetary Drivers" Universe 7, no. 5: 138. https://doi.org/10.3390/universe7050138
APA StyleYermolaev, Y. I., Lodkina, I. G., Dremukhina, L. A., Yermolaev, M. Y., & Khokhlachev, A. A. (2021). What Solar–Terrestrial Link Researchers Should Know about Interplanetary Drivers. Universe, 7(5), 138. https://doi.org/10.3390/universe7050138