Static Spherically Symmetric Black Holes in Weak f(T)-Gravity
Abstract
:1. Introduction
2. Black Holes in Weak Gravity
2.1. Covariant Gravity
2.2. Static Spherically Symmetric Black Holes in Weak f() Gravity
2.2.1. The General Static Spherically Symmetric Solution
2.2.2. The Black Hole Solution
2.3. The General Relativistic Perspective—Energy Conditions
3. Classical and Semi-Classical Properties
3.1. Particle Propagation Effects: Photon Sphere, Perihelion Shift, Shapiro Delay and Light Deflection
- Photon sphere: The photon sphere—a characterizing feature of black holes [64,65]— is derived from the geodesic Equation (31) by searching for orbits with and . For this, we solve and to first order in . In our case the photon sphere then lies atThis result is identical to the one found in [46].
- Perihelion shift: While an elliptic orbit in the Newtonian two-body problem would experience the perihelion always at the same angle, deviations from the two-body problem—either by adding more bodies or, as here, using different dynamics—forces this perihelion to move from orbit to orbit. For sufficiently small eccentricity, this is encoded in the quantity of an orbit which is a perturbation of an orbit with constant radius . It is derived from the effective potential as, see for example [46] for a derivation,To first order in , we findThis finding thus leads us to weaker constraints on the teleparallel coupling from observations of the perihelion shift, for example, from the orbits of stars around the black hole in the center of our galaxy.
- Shapiro time delay: The Shapiro time delay is the time delay experienced by a radar signal between an emitter at and a mirror at due to the presence of a gravitational mass [66]. The time which passes until a light ray has travelled from an emitter to a point of closest encounter to the gravitational mass at , respectively, from to a mirror at , is given byThe last equality holds when the integrand is expanded in powers of the small parameter , i.e., assuming . The lowest orders can be integrated explicitly, but the higher orders do not allow for a (known) closed formula for the integral.We further assume that changes in the relative distances between emitter, mirror and mass can be neglected during this propagation. The total travel time for a return trip of the light signal is then . The Shapiro delay is given by
- Light deflection: Another central quantity to investigate in this context is the deviation angle between a null geodesic in the presence and the absence of a central gravitating mass. The point of closest encounter to the central object is again called . Then the deflection angle is given by
- Minimal photon impact parameter: The impact parameter b is another closely related and only mildly different way to look at these matters of light deflection. It adds however, a simple way to characterize the photon capture cross-section of the black hole for an observer at infinity. Physically and more concretely, the minimal photon impact parameter characterizes the closest encounter with the central mass a photon can have when it is scattered by this mass, and can still be received by a distant observer. It is defined as follows. Define and demand that the effective potential V as a function vanishes, which determines the ratio between E and L as a function of r, i.e., . This quantity possesses a minimum at which identifies the minimal possible impact parameter for scattering asEvery geodesic with smaller impact parameter b will be gravitationally captured. We introduce here, since it is needed for the discussion of the black hole sparsity in Section 3.4. Unlike in the previous cases, no additional small parameter was introduced.The minimal photon impact parameter is the crucial quantity to describe the shadow of these black holes. The shadow corresponds exactly to the capture cross-section. Stricly speaking, the phrase “silhouette” would be a more apt description of this capture cross-section, but the phrase “shadow” is the established terminology, and we will abide by it.
3.2. The Event Horizon
3.3. Surface Gravity and Black Hole Temperature
3.4. Sparsity
Comparing Weak -Black Holes and a Schwarzschild Black Hole
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jebsen, J.T. On the general spherically symmetric solutions of Einstein’s gravitational equations in vacuo. Gen. Relativ. Gravit. 2005, 37, 2253–2259. [Google Scholar] [CrossRef]
- Capozziello, S.; Saez-Gomez, D. Scalar-tensor representation of f(R) gravity and Birkhoff’s theorem. Ann. Phys. 2012, 524, 279–285. [Google Scholar] [CrossRef] [Green Version]
- Nzioki, A.M.; Goswami, R.; Dunsby, P.K.S. Jebsen-Birkhoff theorem and its stability in f(R) gravity. Phys. Rev. D 2014, 89, 064050. [Google Scholar] [CrossRef] [Green Version]
- Krori, K.D.; Nandy, D. Birkhoff’s theorem and scalar-tensor theories of gravitation. J. Phys. A Math. Gen. 1977, 10, 993–996. [Google Scholar] [CrossRef]
- Dong, H.; Wang, Y.B.; Meng, X.H. Extended Birkhoff’s Theorem in the f(T) Gravity. Eur. Phys. J. C 2012, 72, 2002. [Google Scholar] [CrossRef] [Green Version]
- Dai, D.C.; Maor, I.; Starkman, G.D. Consequences of the absence of Birkhoff’s theorem in modified-gravity theories: The Dvali-Gabadaze-Porrati model. Phys. Rev. D 2008, 77, 064016. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Introduction to modified gravity and gravitational alternative for dark energy. eConf 2006, C0602061, 6. [Google Scholar] [CrossRef] [Green Version]
- Aldrovandi, R.; Pereira, J. Teleparallel Gravity; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Krššák, M.; van den Hoogen, R.; Pereira, J.; Böhmer, C.; Coley, A. Teleparallel theories of gravity: Illuminating a fully invariant approach. Class. Quant. Grav. 2019, 36, 183001. [Google Scholar] [CrossRef] [Green Version]
- De Andrade, V.C.; Guillen, L.C.T.; Pereira, J.G. Teleparallel gravity: An Overview. In Proceedings of the 9th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories (MG 9), Rome, Italy, 2–8 July 2000. [Google Scholar]
- Weitzenböck, R. Invariantentheorie; Noordhoff: Gronningen, The Netherlands, 1923. [Google Scholar]
- Maluf, J.W. The teleparallel equivalent of general relativity. Ann. Phys. 2013, 525, 339–357. [Google Scholar] [CrossRef]
- Garecki, J. Teleparallel equivalent of general relativity: A Critical review. In Proceedings of the Hypercomplex Seminar 2010: (Hyper) Complex and Randers-Ingarden Structures in Mathematics and Physics, Bedlewo, Poland, 17–24 July 2010. [Google Scholar]
- Jiménez, J.B.; Heisenberg, L.; Koivisto, T.S. The Geometrical Trinity of Gravity. Universe 2019, 5, 173. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, S.; Böhmer, C.G.; Wright, M. Modified teleparallel theories of gravity. Phys. Rev. D 2015, 92, 104042. [Google Scholar] [CrossRef]
- Hayashi, K.; Shirafuji, T. New General Relativity. Phys. Rev. D 1979, 19, 3524–3553, Addendum in 1982, 24, 3312–3314. [Google Scholar] [CrossRef]
- Ferraro, R.; Fiorini, F. On Born-Infeld Gravity in Weitzenbock spacetime. Phys. Rev. 2008, D78, 124019. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, S.; Dialektopoulos, K.F.; Levi Said, J. Can Horndeski Theory be recast using Teleparallel Gravity? Phys. Rev. D 2019, 100, 064018. [Google Scholar] [CrossRef] [Green Version]
- Hohmann, M. Scalar-torsion theories of gravity I: General formalism and conformal transformations. Phys. Rev. D 2018, 98, 064002. [Google Scholar] [CrossRef] [Green Version]
- Hohmann, M.; Pfeifer, C. Scalar-torsion theories of gravity II: L(T,X,Y,ϕ) theory. Phys. Rev. D 2018, 98, 064003. [Google Scholar] [CrossRef] [Green Version]
- Hohmann, M. Scalar-torsion theories of gravity III: Analogue of scalar-tensor gravity and conformal invariants. Phys. Rev. D 2018, 98, 064004. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, R.; Fiorini, F. Modified teleparallel gravity: Inflation without inflaton. Phys. Rev. 2007, D75, 084031. [Google Scholar] [CrossRef] [Green Version]
- Krššák, M.; Saridakis, E.N. The covariant formulation of f(T) gravity. Class. Quant. Grav. 2016, 33, 115009. [Google Scholar] [CrossRef] [Green Version]
- Bengochea, G.R.; Ferraro, R. Dark torsion as the cosmic speed-up. Phys. Rev. 2009, D79, 124019. [Google Scholar] [CrossRef] [Green Version]
- Bamba, K.; Geng, C.Q.; Lee, C.C.; Luo, L.W. Equation of state for dark energy in f(T) gravity. JCAP 2011, 1101, 21. [Google Scholar] [CrossRef] [Green Version]
- Dent, J.B.; Dutta, S.; Saridakis, E.N. f(T) gravity mimicking dynamical dark energy. Background and perturbation analysis. JCAP 2011, 1101, 9. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.F.; Capozziello, S.; De Laurentis, M.; Saridakis, E.N. f(T) teleparallel gravity and cosmology. Rept. Prog. Phys. 2016, 79, 106901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Y.F.; Li, C.; Saridakis, E.N.; Xue, L. f(T) gravity after GW170817 and GRB170817A. Phys. Rev. D 2018, 97, 103513. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.K.; Azreg-Aïnou, M.; Bahamonde, S.; Capozziello, S.; Jamil, M. Astrophysical flows near f(T) gravity black holes. Eur. Phys. J. 2016, C76, 269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hohmann, M.; Krššák, M.; Pfeifer, C.; Ualikhanova, U. Propagation of gravitational waves in teleparallel gravity theories. Phys. Rev. D 2018, 98, 124004. [Google Scholar] [CrossRef] [Green Version]
- Blixt, D.; Guzmán, M.J.; Hohmann, M.; Pfeifer, C. Review of the Hamiltonian Analysis in Teleparallel Gravity. arXiv 2020, arXiv:2012.09180. [Google Scholar]
- Beltrán Jiménez, J.; Golovnev, A.; Koivisto, T.; Veermäe, H. Minkowski space in f(T) gravity. Phys. Rev. D 2021, 103, 024054. [Google Scholar] [CrossRef]
- Bahamonde, S.; Camci, U. Exact Spherically Symmetric Solutions in Modified Teleparallel gravity. Symmetry 2019, 11, 1462. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, S.; Böhmer, C.G.; Krššák, M. New classes of modified teleparallel gravity models. Phys. Lett. B 2017, 775, 37–43. [Google Scholar] [CrossRef]
- Bahamonde, S.; Levi Said, J.; Zubair, M. Solar system tests in modified teleparallel gravity. JCAP 2020, 10, 24. [Google Scholar] [CrossRef]
- Bahamonde, S.; Pfeifer, C. General Teleparallel Modifications of Schwarzschild Geometry. IJGMMP 2021. [Google Scholar] [CrossRef]
- Golovnev, A.; Guzmán, M.J. Bianchi identities in f(T) gravity: Paving the way to confrontation with astrophysics. Phys. Lett. B 2020, 810, 135806. [Google Scholar] [CrossRef]
- Golovnev, A.; Guzmán, M.J. Approaches to Spherically Symmetric Solutions in f(T) Gravity. arXiv 2021, arXiv:2103.16970. [Google Scholar]
- Daouda, M.H.; Rodrigues, M.E.; Houndjo, M.J.S. Anisotropic fluid for a set of non-diagonal tetrads in f(T) gravity. Phys. Lett. B 2012, 715, 241–245. [Google Scholar] [CrossRef] [Green Version]
- Horvat, D.; Ilijić, S.; Kirin, A.; Narančić, Z. Nonminimally coupled scalar field in teleparallel gravity: Boson stars. Class. Quant. Grav. 2015, 32, 035023. [Google Scholar] [CrossRef] [Green Version]
- Ilijić, S.; Sossich, M. Boson stars in f(T) extended theory of gravity. Phys. Rev. D 2020, 102, 084019. [Google Scholar] [CrossRef]
- Junior, E.L.B.; Rodrigues, M.E.; Houndjo, M.J.S. Regular black holes in f(T) Gravity through a nonlinear electrodynamics source. JCAP 2015, 10, 60. [Google Scholar] [CrossRef] [Green Version]
- Böhmer, C.G.; Fiorini, F. BTZ gems inside regular Born-Infeld black holes. Class. Quant. Grav. 2020, 37, 185002. [Google Scholar] [CrossRef]
- Böhmer, C.G.; Fiorini, F. The regular black hole in four dimensional Born–Infeld gravity. Class. Quant. Grav. 2019, 36, 12LT01. [Google Scholar] [CrossRef]
- DeBenedictis, A.; Ilijic, S. Spherically symmetric vacuum in covariant gravity theory. Phys. Rev. 2016, D94, 124025. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, S.; Flathmann, K.; Pfeifer, C. Photon sphere and perihelion shift in weak f(T) gravity. Phys. Rev. D 2019, 100, 084064. [Google Scholar] [CrossRef] [Green Version]
- Rácz, I.; Wald, R.M. Global Extensions of Spacetimes Describing Asymptotic Final States of Black Holes. Class. Quantum Gravity 1996, 13, 539–553. [Google Scholar] [CrossRef] [Green Version]
- Visser, M. Essential and inessential features of Hawking radiation. Int. J. Mod. Phys. D 2003, 12, 649–661. [Google Scholar] [CrossRef] [Green Version]
- Golovnev, A.; Koivisto, T.; Sandstad, M. On the covariance of teleparallel gravity theories. Class. Quantum Gravity 2017, 34, 145013. [Google Scholar] [CrossRef]
- Hohmann, M.; Järv, L.; Krššák, M.; Pfeifer, C. Teleparallel theories of gravity as analogue of nonlinear electrodynamics. Phys. Rev. 2018, D97, 104042. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, S.; Valcarcel, J.G.; Järv, L.; Pfeifer, C. Exploring Axial Symmetry in Modified Teleparallel Gravity. Phys. Rev. D 2021, 103, 044058. [Google Scholar] [CrossRef]
- Boehmer, C.G.; Harko, T.; Lobo, F.S.N. Wormhole geometries in modified teleparralel gravity and the energy conditions. Phys. Rev. D 2012, 85, 044033. [Google Scholar] [CrossRef] [Green Version]
- Hohmann, M.; Järv, L.; Krššák, M.; Pfeifer, C. Modified teleparallel theories of gravity in symmetric spacetimes. Phys. Rev. D 2019, 100, 084002. [Google Scholar] [CrossRef] [Green Version]
- Alvarenga, F.G.; Houndjo, M.J.S.; Monwanou, A.V.; Orou, J.B.C. Testing some f(R,T) gravity models from energy conditions. J. Mod. Phys. 2013, 4, 130–139. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Lobo, F.S.N.; Mimoso, J.P. Generalized energy conditions in Extended Theories of Gravity. Phys. Rev. D 2015, 91, 124019. [Google Scholar] [CrossRef] [Green Version]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 1974. [Google Scholar]
- Visser, M. Lorentzian Wormholes: From Einstein to Hawking; AIP Series in Computational and Applied Mathematical Physics; American Institute of Physics Press, Springer: Berlin, Germany, 1996. [Google Scholar]
- Curiel, E. A Primer on Energy Conditions; Einstein Studies; Springer: Berlin/Heidelberg, Germany, 2017; Volume 13, Chapter 3; pp. 43–104. [Google Scholar] [CrossRef] [Green Version]
- Lobo, F.S.N. (Ed.) Fundamental Theories of Physics. In Wormholes, Warp Drives and Energy Conditions; Springer: Berlin/Heidelberg, Germany, 2017; Volume 189. [Google Scholar] [CrossRef]
- Martín-Moruno, P.; Visser, M. Hawking–Ellis Classification of Stress-Energy: Test-Fields Versus Back-Reaction. arXiv 2021, arXiv:2102.13551. [Google Scholar]
- Martín-Moruno, P.; Visser, M. Classical and semi-classical energy conditions. In Wormholes, Warp Drives and Energy Conditions; Lobo, F.S.N., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 189, Chapter 9; pp. 193–213. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, S. Gravitation and Cosmology; John Wiley & Sons: Hoboken, NJ, USA, 1972. [Google Scholar]
- Frolov, V.P.; Zelnikov, A. Introduction to Black Hole Physics; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Virbhadra, K.S.; Ellis, G.F.R. Schwarzschild black hole lensing. Phys. Rev. D 2000, 62, 084003. [Google Scholar] [CrossRef] [Green Version]
- Claudel, C.M.; Virbhadra, K.S.; Ellis, G.F.R. The Geometry of photon surfaces. J. Math. Phys. 2001, 42, 818–838. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, S.S.; Davis, J.L.; Lebach, D.E.; Gregory, J.S. Measurement of the Solar Gravitational Deflection of Radio Waves using Geodetic Very-Long-Baseline Interferometry Data, 1979–1999. Phys. Rev. Lett. 2004, 92, 121101. [Google Scholar] [CrossRef]
- Poisson, E. A Relativist’s Toolkit; Cambridge University Press: Oxford, UK, 2004. [Google Scholar]
- Wald, R.M. General Relativity; The University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar]
- Gray, F.; Schuster, S.; Van-Brunt, A.; Visser, M. The Hawking cascade from a black hole is extremely sparse. Class. Quantum Gravity 2016, 33, 115003. [Google Scholar] [CrossRef] [Green Version]
- Schuster, S. Sparsity of Hawking Radiation in D+1 Space-Time Dimensions for Massless and Massive Particles. Class. Quantum Gravity 2021, 38, 047002. [Google Scholar] [CrossRef]
- Brustein, R.; Medved, A.; Zigdon, Y. The state of Hawking radiation is non-classical. J. High Energy Phys. 2018, 1, 136. [Google Scholar] [CrossRef] [Green Version]
- Page, D.N. Particle emission rates from a black hole. I: Massless particles from an uncharged, rotating hole. Phys. Rev. D 1976, 14, 198–206. [Google Scholar] [CrossRef]
- Page, D.N. Particle emission rates from a black hole. II: Massless particles from a rotating hole. Phys. Rev. D 1976, 14, 3260–3273. [Google Scholar] [CrossRef]
- Page, D.N. Particle emission rates from a black hole. III: Charged leptons from a nonrotating hole. Phys. Rev. D 1977, 16, 2402–2411. [Google Scholar] [CrossRef]
- Page, D.N. Accretion into and Emission from Black Holes. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA, 1976. [Google Scholar]
- Hod, S. The Hawking cascades of gravitons from higher-dimensional Schwarzschild black holes. Phys. Lett. B 2016, 756, 133–136. [Google Scholar] [CrossRef] [Green Version]
- Paul, A.; Majhi, B.R. Hawking cascade in the presence of back reaction effect. Int. J. Mod. Phys. A 2017, 34, 1750088. [Google Scholar] [CrossRef] [Green Version]
- Ong, Y.C. Zero Mass Remnant as an Asymptotic State of Hawking Evaporation. J. High Energy Phys. 2018, 10, 195. [Google Scholar] [CrossRef] [Green Version]
- Gray, F.; Visser, M. Greybody factors for Schwarzschild black holes: Path-ordered exponentials and product integrals. Universe 2018, 4, 93. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Serrano, A.; Dąbrowski, M.P.; Gohar, H. Generalized uncertainty principle impact onto the black holes information flux and the sparsity of Hawking radiation. Phys. Rev. D 2018, 97, 044029. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, A.; Banerjee, N. Greybody factor and sparsity of Hawking radiation from a charged spherical black hole with scalar hair. Phys. Lett. B 2020, 809, 135417. [Google Scholar] [CrossRef]
- Alonso-Serrano, A.; Dąbrowski, M.P.; Gohar, H. Nonextensive Black Hole Entropy and Quantum Gravity Effects at the Last Stages of Evaporation. Phys. Rev. D 2021, 103, 026021. [Google Scholar] [CrossRef]
- Parikh, M.K.; Wilczek, F. Hawking Radiation as Tunneling. Phys. Rev. Lett. 2000, 85, 5042–5045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dey, R.; Liberati, S.; Pranzetti, D. The black hole quantum atmosphere. Phys. Lett. B 2017, 774, 308–316. [Google Scholar] [CrossRef]
- Akiyama, K. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L1. [Google Scholar] [CrossRef]
0.001 | 0.005 | 0.01 | 0.02 | 0.05 | 0.1 | 0.5 | 1 | |
---|---|---|---|---|---|---|---|---|
0.0698 | 0.1301 | 0.1664 | 0.2091 | 0.2744 | 0.3285 | 0.4591 | 0.5134 | |
1.0049 | 1.0172 | 1.0285 | 1.0457 | 1.0814 | 1.1210 | 1.2670 | 1.3580 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pfeifer, C.; Schuster, S. Static Spherically Symmetric Black Holes in Weak f(T)-Gravity. Universe 2021, 7, 153. https://doi.org/10.3390/universe7050153
Pfeifer C, Schuster S. Static Spherically Symmetric Black Holes in Weak f(T)-Gravity. Universe. 2021; 7(5):153. https://doi.org/10.3390/universe7050153
Chicago/Turabian StylePfeifer, Christian, and Sebastian Schuster. 2021. "Static Spherically Symmetric Black Holes in Weak f(T)-Gravity" Universe 7, no. 5: 153. https://doi.org/10.3390/universe7050153
APA StylePfeifer, C., & Schuster, S. (2021). Static Spherically Symmetric Black Holes in Weak f(T)-Gravity. Universe, 7(5), 153. https://doi.org/10.3390/universe7050153