Optimal Perturbation Technique within the Asymptotic Iteration Method for Heavy-Light Meson Mass Splittings
Abstract
:1. Introduction
2. Theoretical Framework: The Total Inter-Quark Hamiltonian
2.1. Analytical Eigenenergy for SR Wave Equation with the Harmonic-Oscillator Potential via PAIM
2.2. The Explicit Perturbed Symbolic Energy Expressions via PAIM
3. Numerical Results, and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saxena, R.P.; Varma, V.S. Polynomial perturbation of a hydrogen atom. J. Phys. A 1982, 15, L149. [Google Scholar] [CrossRef]
- Bessis, D.; Vrscay, E.R.; Handy, C.R. Hydrogenic atoms in the external potential V(r) = gr + λr2: Exact solutions and ground-state eigenvalue bounds using moment methods. J. Phys. A 1987, 20, 419. [Google Scholar] [CrossRef]
- Datta, D.P.; Mukherjee, S. Analytic continued fraction technique for bound and confined states for a class of confinement potentials. J. Phys. A 1980, 13, 3161. [Google Scholar] [CrossRef]
- Chaudhuri, R.N. False eigenvalues of the Hill determinant method. J. Phys. A 1988, 21, 567. [Google Scholar] [CrossRef]
- Adhikari, R.; Dutt, R.; Varshni, Y.P. Exact solutions for polynomial potentials using supersymmetry inspired factorization method. Phys. Lett. A 1989, 141, 1–8. [Google Scholar] [CrossRef]
- Roychoudhury, R.K.; Varshni, Y.P. Family of exact solutions for the Coulomb potential perturbed by a polynomial in r. Phys. Rev. A 1990, 42, 184. [Google Scholar] [CrossRef] [PubMed]
- de Souza Dutra, A. Exact solutions of the Schrödinger equation for Coulombian atoms in the presence of some anharmonic oscillator potentials. Phys. Lett. A 1988, 131, 319. [Google Scholar] [CrossRef]
- Ivanov, I.A. The harmonic oscillator and Coulomb potentials-two exceptions from the point of view of a function theory. J. Phys. A 1996, 29, 3203. [Google Scholar] [CrossRef]
- Barakat, T. The asymptotic iteration method for the eigenenergies of the Schrdinger equation with the potential V(r) = −Z/r + gr + λr2. J. Phys. A 2006, 39, 823. [Google Scholar] [CrossRef]
- Barakat, T.; Alrebdi, H.I. The Reduced Spinless Salpeter Wave Equation for Bound State Systems. Braz. J. Phys. 2021, 51, 796. [Google Scholar] [CrossRef]
- Ciftci, H.; Hall, R.L.; Saad, N. Perturbation theory in a framework of iteration methods. Phys. Lett. A 2005, 340, 38. [Google Scholar] [CrossRef] [Green Version]
- Ciftci, H.; Hall, R.L.; Saad, N. Asymptotic iteration method for eigenvalue problems. J. Phys. A 2003, 36, 11807. [Google Scholar] [CrossRef] [Green Version]
- Salpeter, E.E. Mass corrections to the fine structure of hydrogen-like atoms. Phys. Rev. 1952, 87, 328. [Google Scholar] [CrossRef]
- Lucha, W.; Schöberl, F.F. Instantaneous Bethe-Salpeter kernel for the lightest pseudoscalar mesons. Phys. Rev. D 2016, 93, 096005. [Google Scholar] [CrossRef] [Green Version]
- Imbo, T.; Pagnamenta, N.; Sukhatme, U. Energy eigenstates of spherically symmetric potentials using the shifted 1 N expansion. Phys. Rev. D 1984, 29, 1669. [Google Scholar] [CrossRef]
- Itoh, C.; Minamikawa, T.; Miura, K.; Watanabe, T. B s and B c meson masses. Il Nuovo Cimento A 1992, 105, 1539. [Google Scholar] [CrossRef]
- Liu, F.-X.; Liu, M.-S.; Zhong, X.-H.; Zhao, Q. Fully strange tetraquark spectrum and possible experimental evidence. Phys. Rev. D 2021, 103, 016016. [Google Scholar] [CrossRef]
- Zyla, P.A.; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Groom, D.E.; Lin, C.-J.; Lugovsky, K.S.; Pianori, E.; Robinson, D.J.; et al. Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 2020, 083C01. [Google Scholar] [CrossRef]
M(Our Work) | M(Expt.) [18] | M [16] | Interquark Distance | |
---|---|---|---|---|
Pseudoscalar mesons | ||||
1865.1 | 1864.83 ± 0.05 | 1863.8 | 1.53579 | |
1870.5 | 1869.65 ± 0.05 | 1868.7 | 1.53584 | |
1969.7 | 1968.34 ± 0.07 | 1969.7 | 1.53409 | |
5280.3 | 5279.34 ± 0.12 | 5282.2 | 1.45768 | |
5279.3 | 5279.65 ± 0.12 | 5280.6 | 1.45751 | |
5330.8 | 5366.88 ± 0.14 | 5343.9 | 1.44283 | |
Vector mesons | ||||
2007.0 | 2006.85 ± 0.05 | 2008.7 | 1.53579 | |
2010.0 | 2010.26 ± 0.05 | 2011.4 | 1.53584 | |
2075.7 | 2112.20 ± 0.40 | 2096.9 | 1.53409 | |
5340.2 | 5324.70 ± 0.21 | 5333.9 | 1.45768 | |
5339.2 | 5331.30 ± 4.7 | 5332.6 | 1.45751 | |
5377.2 | 5415.40 ± 1.5 | 5393.1 | 1.44283 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrebdi, H.I.; Barakat, T. Optimal Perturbation Technique within the Asymptotic Iteration Method for Heavy-Light Meson Mass Splittings. Universe 2021, 7, 180. https://doi.org/10.3390/universe7060180
Alrebdi HI, Barakat T. Optimal Perturbation Technique within the Asymptotic Iteration Method for Heavy-Light Meson Mass Splittings. Universe. 2021; 7(6):180. https://doi.org/10.3390/universe7060180
Chicago/Turabian StyleAlrebdi, Haifa I., and Thabit Barakat. 2021. "Optimal Perturbation Technique within the Asymptotic Iteration Method for Heavy-Light Meson Mass Splittings" Universe 7, no. 6: 180. https://doi.org/10.3390/universe7060180
APA StyleAlrebdi, H. I., & Barakat, T. (2021). Optimal Perturbation Technique within the Asymptotic Iteration Method for Heavy-Light Meson Mass Splittings. Universe, 7(6), 180. https://doi.org/10.3390/universe7060180