Axial Anomaly in Galaxies and the Dark Universe
Abstract
:1. Introduction
2. Gravitational Bohr Radius and Reduced Compton Wave Length of a Planck–Scale Axion
3. Analysis of Rotation Curves
3.1. Fuzzy Dark Matter: Soliton–Navarro–Frenk–White vs. Burkert Model
3.2. Analysis of RCs in the SNFW Model
3.3. Analysis of RCs in the Burkert Model
4. Galactic Central Regions and the Dark Sector of the Universe
5. Discussion, Summary, and Outlook
5.1. Speculations on Origins of Milky Way’s Structure
5.2. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
1 | The chiral dynamics at the Planck scale, which produces the axion field, to some extent resolves the ground states of Yang–Mills theories: axions become massive by virtue of the anomaly because of this very resolution of topological charge density. |
References
- Rubin, V.C.; Ford, W.K., Jr. Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Astrophys. J. 1970, 159, 379–403. [Google Scholar] [CrossRef]
- Zwicky, F. On the Masses of Nebulae and of Clusters of Nebulae. Astrophys. J. 1937, 86, 217. [Google Scholar] [CrossRef]
- Tucker, W.; Blanco, P.; Rappoport, S.; David, L.; Fabricant, D.; Falco, E.E.; Forman, W.; Dressler, A.; Ramella, M. 1e0657-56: A contender for the hottest known cluster of galaxies. Astrophys. J. 1998, 496, L5. [Google Scholar] [CrossRef] [Green Version]
- Clowe, D.; Bradač, M.; Gonzalez, A.H.; Markevitch, M.; Randall, S.W.; Jones, C.; Zaritsky, D. A Direct Empirical Proof of the Existence of Dark Matter. Astrophys. J. 2006, 648, L109. [Google Scholar] [CrossRef]
- de Bernardis, P.; Ade, P.A.R.; Bock, J.J.; Bond, J.R.; Borrill, J.; Boscaleri, A.; Coble, K.; Crill, B.P.; De Gasperis, G.; Farese, P.C.; et al. A flat Universe from high-resolution maps of the cosmic microwave background radiation. Nature 2000, 404, 955. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009. [Google Scholar] [CrossRef] [Green Version]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 high redshift supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Verde, L.; Treu, T.; Riess, A.G. Tensions between the early and late Universe. Nat. Astron. 2019, 3, 891. [Google Scholar] [CrossRef]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar] [CrossRef] [Green Version]
- Reid, M.J.; Pesce, D.W.; Riess, A.G. An Improved Distance to NGC 4258 and Its Implications for the Hubble Constant. Astrophys. J. 2019, 886, L27. [Google Scholar] [CrossRef] [Green Version]
- Riess, A.G.; Casertano, S.; Yuan, W.; Macri, L.; Anderson, J.; MacKenty, J.W.; Bowers, J.B.; Clubb, K.I.; Filippenko, A.V.; Jones, D.O.; et al. New Parallaxes of Galactic Cepheids from Spatially Scanning the Hubble Space Telescope: Implications for the Hubble Constant. Astrophys. J. 2018, 855, 136. [Google Scholar] [CrossRef] [Green Version]
- Wong, K.C.; Suyu, S.H.; Auger, M.W.; Bonvin, V.; Courbin, F.; Fassnacht, C.D.; Halkola, A.; Rusu, C.E.; Sluse, D.; Sonnenfeld, A.; et al. H0LiCOW IV. Lens mass model of HE 0435-1223 and blind measurement of its time-delay distance for cosmology. Mon. Not. R. Astron. Soc. 2017, 465, 4895–4913. [Google Scholar] [CrossRef] [Green Version]
- Abbott, T.; Abdalla, F.; Alarcon, A.; Aleksić, J.; Allam, S.; Allen, S.; Amara, A.; Annis, J.; Asorey, J.; Avila, S.; et al. Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing. Phys. Rev. D 2018, 98. [Google Scholar] [CrossRef] [Green Version]
- Troxel, M.; MacCrann, N.; Zuntz, J.; Eifler, T.; Krause, E.; Dodelson, S.; Gruen, D.; Blazek, J.; Friedrich, O.; Samuroff, S.; et al. Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear. Phys. Rev. D 2018, 98. [Google Scholar] [CrossRef] [Green Version]
- Tröster, T.; Sánchez, A.G.; Asgari, M.; Blake, C.; Crocce, M.; Heymans, C.; Hildebrandt, H.; Joachimi, B.; Joudaki, S.; Kannawadi, A.; et al. Cosmology from large-scale structure. Astron. Astrophys. 2020, 633, L10. [Google Scholar] [CrossRef] [Green Version]
- Hahn, S.; Hofmann, R.; Kramer, D. SU(2)CMB and the cosmological model: Angular power spectra. Mon. Not. R. Astron. Soc. 2019, 482, 4290. [Google Scholar] [CrossRef]
- Krishnan, C.; Mohayaee, R.; Colgáin, E.Ó.; Sheikh-Jabbari, M.M.; Yin, L. Does Hubble Tension Signal a Breakdown in FLRW Cosmology? arXiv 2021, arXiv:2105.09790. [Google Scholar]
- Kolb, E.W.; Turner, M.S. The Early Universe, Taylor and Francis; Westview Press: Boulder, CO, USA, 1990. [Google Scholar]
- Akerib, D.; Araújo, H.M.; Bai, X.; Bailey, A.J.; Balajthy, J.; Bedikian, S.; Bernard, E.; Bernstein, A.; Bolozdynya, A.; Bradley, A.; et al. First results from the LUX dark matter experiment at the Sanford Underground Research Facility. Phys. Rev. Lett. 2014, 112, 091303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akerib, D.S.; Akerlof, C.W.; Alsum, S.K.; Araújo, H.M.; Arthurs, M.; Bai, X.; Bailey, A.J.; Balajthy, J.; Balashov, S.; Bauer, D.; et al. Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment. Phys. Rev. D 2020, 101, 052002. [Google Scholar] [CrossRef] [Green Version]
- Adler, S.L.; Bardeen, W.A. Absence of higher order corrections in the anomalous axial vector divergence equation. Phys. Rev. 1969, 182, 1517–1536. [Google Scholar] [CrossRef]
- Bell, J.; Jackiw, R. A PCAC puzzle: π0→γγ in the σ model. Nuovo Cim. A 1969, 60, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Fujikawa, K. Path Integral Measure for Gauge Invariant Fermion Theories. Phys. Rev. Lett. 1979, 42, 1195–1198. [Google Scholar] [CrossRef]
- Atherton, H.W.; Bovet, C.; Coet, P.; Desalvo, R.; Doble, N.; Maleyran, R.; Anderson, E.W.; Von Dardel, G.; Kulka, K.; Boratav, M.; et al. Direct measurement of the lifetime of the neutral pion. Phys. Lett. B 1985, 158, 81–84. [Google Scholar] [CrossRef]
- Peccei, R.; Quinn, H.R. Constraints Imposed by CP Conservation in the Presence of Instantons. Phys. Rev. D 1977, 16, 1791–1797. [Google Scholar] [CrossRef]
- Hofmann, R. The Thermodynamics of Quantum Yang–Mills Theory: Theory And Applications, 2nd ed.; World Scientific: Singapore, 2016; p. 1. [Google Scholar]
- Candelas, P.; Raine, D.J. General-relativistic quantum field theory: An exactly soluble model. Phys. Rev. D 1975, 12, 965. [Google Scholar] [CrossRef]
- Frieman, J.A.; Hill, C.T.; Stebbins, A.; Waga, I. Cosmology with ultralight pseudo Nambu-Goldstone bosons. Phys. Rev. Lett. 1995, 75, 2077–2080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, D.J.; Wilczek, F. Ultraviolet Behavior of Nonabelian Gauge Theories. Phys. Rev. Lett. 1973, 30, 1343–1346. [Google Scholar] [CrossRef] [Green Version]
- Giacosa, F.; Hofmann, R.; Neubert, M. A model for the very early Universe. J. High Energy Phys. 2008, 2, 077. [Google Scholar] [CrossRef]
- Weinberg, D.H.; Bullock, J.S.; Governato, F.; Kuzio de Naray, R.; Peter, A.H.G. Cold dark matter: Controversies on small scales. Proc. Natl. Acad. Sci. USA 2015, 112, 12249–12255. [Google Scholar] [CrossRef] [Green Version]
- Bullock, J.S.; Kolatt, T.S.; Sigad, Y.; Somerville, R.S.; Kravtsov, A.V.; Klypin, A.A.; Primack, J.R.; Dekel, A. Profiles of dark haloes. Evolution, scatter, and environment. Mon. Not. R. Astron. Soc. 2001, 321, 559–575. [Google Scholar] [CrossRef] [Green Version]
- Navarro, J.F.; Frenk, C.S.; White, S.D. A Universal density profile from hierarchical clustering. Astrophys. J. 1997, 490, 493–508. [Google Scholar] [CrossRef]
- Baldeschi, M.R.; Ruffini, R.; Gelmini, G.B. On massive fermions and bosons in galactic halos. Phys. Lett. B 1983, 122, 221–224. [Google Scholar] [CrossRef]
- Membrado, M.; Pacheco, A.; Sañudo, J. Hartree solutions for the self-Yukawian boson sphere. Phys. Rev. A 1989, 39, 4207. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Sin, S.J. Late-time Phase transition and the Galactic halo as a Bose Liquid: (II) the Effect of Visible Matter. Phys. Rev. D 1994, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Blok, W.J.G.; McGaugh, S.S.; Rubin, V.C. High-Resolution Rotation Curves of Low Surface Brightness Galaxies. II. Mass Models. Astron. J. 2001, 122, 2396–2427. [Google Scholar] [CrossRef] [Green Version]
- Kuzio de Naray, R.; McGaugh, S.S.; de Blok, W.J.G. Mass Models for Low Surface Brightness Galaxies with High Resolution Optical Velocity Fields. Astrophys. J. 2008, 676, 920–943. [Google Scholar] [CrossRef] [Green Version]
- Maleki, A.; Baghram, S.; Rahvar, S. Constraint on the mass of fuzzy dark matter from the rotation curve of the Milky Way. Phys. Rev. D 2020, 101, 103504. [Google Scholar] [CrossRef]
- Pawlowski, M.S.; Kroupa, P. The Vast Polar Structure of the Milky Way Attains New Members. Astrophys. J. 2014, 790, 74. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Medina, L.A.; Robles, V.H.; Matos, T. Dwarf galaxies in multistate scalar field dark matter halos. Phys. Rev. D 2015, 91, 023519. [Google Scholar] [CrossRef] [Green Version]
- Magana, J.; Matos, T. A brief Review of the Scalar Field Dark Matter model. J. Phys. Conf. Ser. 2012, 378, 012012. [Google Scholar] [CrossRef] [Green Version]
- Suárez, A.; Robles, V.H.; Matos, T. A Review on the Scalar Field/Bose–Einstein Condensate Dark Matter Model. Astrophys. Space Sci. Proc. 2014, 38, 107–142. [Google Scholar] [CrossRef] [Green Version]
- Matos, T.; Robles, V.H. Scalar Field (Wave) Dark Matter. 2016. Available online: arXiv:astro-ph.GA/1601.01350 (accessed on 10 September 2020).
- Marsh, D.J.E. Axion Cosmology. Phys. Rep. 2016, 643, 1–79. [Google Scholar] [CrossRef] [Green Version]
- Hui, L.; Ostriker, J.P.; Tremaine, S.; Witten, E. Ultralight scalars as cosmological dark matter. Phys. Rev. D 2017, 95, 043541. [Google Scholar] [CrossRef] [Green Version]
- Schive, H.Y.; Chiueh, T.; Broadhurst, T. Cosmic Structure as the Quantum Interference of a Coherent Dark Wave. Nat. Phys. 2014, 10, 496–499. [Google Scholar] [CrossRef]
- Amorisco, N.C.; Loeb, A. First Constraints on Fuzzy Dark Matter from the Dynamics of Stellar Streams in the Milky Way. 2018. Available online: arXiv:astro-ph.GA/1808.00464 (accessed on 30 October 2020).
- Bernal, T.; Fernández-Hernández, L.M.; Matos, T.; Rodríguez-Meza, M.A. Rotation curves of high-resolution LSB and SPARC galaxies with fuzzy and multistate (ultralight boson) scalar field dark matter. Mon. Not. R. Astron. Soc. 2018, 475, 1447–1468. [Google Scholar] [CrossRef]
- Pawlowski, M.S. The Vast Polar Structure of the Milky Way and Filamentary Accretion of Sub-Halos. In Proceedings of the 13th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories, Stockholm, Sweden, 1–7 July 2015; pp. 1724–1726. [Google Scholar] [CrossRef] [Green Version]
- Nadler, E.O.; Wechsler, R.H.; Bechtol, K.; Mao, Y.Y.; Green, G.; Drlica-Wagner, A.; McNanna, M.; Mau, S.; Pace, A.B.; Simon, J.D.; et al. Milky Way Satellite Census—II. Galaxy-Halo Connection Constraints Including the Impact of the Large Magellanic Cloud. Astrophys. J. 2020, 893, 48. [Google Scholar] [CrossRef] [Green Version]
- Caputi, K.I.; Ilbert, O.; Laigle, C.; McCracken, H.J.; Le Fèvre, O.; Fynbo, J.; Milvang-Jensen, B.; Capak, P.; Salvato, M.; Taniguchi, Y. Spitzer bright, UltraVISTA faint sources in COSMOS: The contribution to the overall population of massive galaxies at z = 3–7. Astrophys. J. 2015, 810, 73. [Google Scholar] [CrossRef]
- Hložek, R.; Marsh, D.J.E.; Grin, D. Using the full power of the cosmic microwave background to probe axion dark matter. Mon. Not. R. Astron. Soc. 2018, 476, 3063–3085. [Google Scholar] [CrossRef]
- Iršič, V.; Viel, M.; Haehnelt, M.G.; Bolton, J.S.; Becker, G.D. First constraints on fuzzy dark matter from Lyman-α forest data and hydrodynamical simulations. Phys. Rev. Lett. 2017, 119, 031302. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, R. The isolated electron: De Broglie’s “hidden” thermodynamics, SU(2) Quantum Yang–Mills theory, and a strongly perturbed BPS monopole. Entropy 2017, 19, 575. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, R. Relic photon temperature versus redshift and the cosmic neutrino background. Ann. Phys. 2015, 527, 254. [Google Scholar] [CrossRef] [Green Version]
- Becker, R.H.; Fan, X.; White, R.L.; Strauss, M.A.; Narayanan, V.K.; Lupton, R.H.; Gunn, J.E.; Annis, J.; Bahcall, N.A.; Brinkmann, J.; et al. Evidence for Reionization at z ∼ 6: Detection of a Gunn-Peterson Trough in a z = 6.28 Quasar. Astron. J. 2001, 122, 2850–2857. [Google Scholar] [CrossRef]
- Salucci, P.; Burkert, A. Dark matter scaling relations. Astrophys. J. Lett. 2000, 537, L9–L12. [Google Scholar] [CrossRef] [Green Version]
- Burkert, A. The Structure of Dark Matter Halos in Dwarf Galaxies. Astrophys. J. 1995, 447. [Google Scholar] [CrossRef] [Green Version]
- Gillessen, S.; Eisenhauer, F.; Trippe, S.; Alexander, T.; Genzel, R.; Martins, F.; Ott, T. Monitoring stellar orbits around the Massive Black Hole in the Galactic Center. Astrophys. J. 2009, 692, 1075. [Google Scholar] [CrossRef] [Green Version]
- Ghez, A.M.; Salim, S.; Weinberg, N.N.; Lu, J.R.; Do, T.; Dunn, J.K.; Matthews, K.; Morris, M.R.; Yelda, S.; Becklin, E.E.; et al. Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits. Astrophys. J. 2008, 689, 1044–1062. [Google Scholar] [CrossRef] [Green Version]
- Kalberla, P.; Dedes, L.; Kerp, J.; Haud, U. Dark matter in the Milky Way, II. the HI gas distribution as a tracer of the gravitational potential. Astron. Astrophys. 2007, 469, 511. [Google Scholar] [CrossRef] [Green Version]
- Bar, N.; Blas, D.; Blum, K.; Sibiryakov, S. Galactic rotation curves versus ultralight dark matter: Implications of the soliton-host halo relation. Phys. Rev. D 2018, 98. [Google Scholar] [CrossRef] [Green Version]
- Lelli, F.; McGaugh, S.S.; Schombert, J.M. SPARC: Mass Models for 175 Disk Galaxies with Spitzer Photometry and Accurate Rotation Curves. Astron. J. 2016, 152, 157. [Google Scholar] [CrossRef] [Green Version]
- Robles, V.H.; Matos, T. Flat Central Density Profile and Constant DM Surface Density in Galaxies from Scalar Field Dark Matter. Mon. Not. R. Astron. Soc. 2012, 422, 282–289. [Google Scholar] [CrossRef]
- Engelhardt, M. Center vortex model for the infrared sector of Yang–Mills theory: Topological susceptibility. Nucl. Phys. B 2000, 585, 614. [Google Scholar] [CrossRef] [Green Version]
- Harris, W.E. A New Catalog of Globular Clusters in the Milky Way. 2010. Available online: arXiv:astro-ph.GA/1012.3224 (accessed on 15 December 2020).
- Hofmann, R. An SU(2) Gauge Principle for the Cosmic Microwave Background: Perspectives on the Dark Sector of the Cosmological Model. Universe 2020, 6, 135. [Google Scholar] [CrossRef]
- Ma, C.P.; Bertschinger, E. Cosmological Perturbation Theory in the Synchronous and Conformal Newtonian Gauges. Astrophys. J. 1995, 455, 7. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, R. Low-frequency line temperatures of the CMB. Ann. Phys. 2009, 18, 634. [Google Scholar] [CrossRef] [Green Version]
Galaxy | Hub. Type | Lum.
| 2 /d.o.f. | [kpc] | ||
---|---|---|---|---|---|---|
DDO170 | Im | 73.93 | 0.73 | 1.00 ± 0.82 | 36.90 ± 8.16 | 2.81 ± 1.95 |
F565-V2 | Im | 40.26 | 0.02 | 0.31 ± 0.47 | 60.71 ± 11.52 | 11.65 ± 5.05 |
F568-1 | Sc | 57.13 | 0.02 | 0.41 ± 0.24 | 70.06 ± 7.82 | 22.59 ± 6.67 |
F571-V1 | Sd | 64.39 | 0.03 | 0.50 ± 0.30 | 49.71 ± 6.70 | 7.12 ± 2.83 |
F574-1 | Sd | 128.48 | 0.02 | 0.93 ± 0.15 | 53.96 ± 3.09 | 9.79 ± 1.44 |
F583-4 | Sc | 83.34 | 0.13 | 3.87 ± 1.37 | 75.08 ± 32.44 | 17.88 ± 13.83 |
NGC3109 | Sm | 140.87 | 0.18 | 1.14 ± 0.39 | 77.09 ± 18.07 | 19.85 ± 5.45 |
NGC3877 | Sc | 3410.59 | 0.17 | 0.39 ± 0.04 | 69.37 ± 12.49 | 26.91 ± 6.58 |
NGC4085 | Sc | 5021.46 | 0.07 | 0.41 ± 0.18 | 46.07 ± 7.09 | 9.26 ± 2.78 |
NGC6195 | Sb | 174.11 | 0.47 | 0.48 ± 0.03 | 121.72 ± 9.61 | 122.40 ± 24.56 |
UGC00731 | Im | 82.57 | 0.19 | 3.39 ± 0.87 | 53.27 ± 8.51 | 7.62 ± 2.90 |
UGC00891 | Sm | 113.98 | 0.01 | 0.93 ± 0.10 | 44.92 ± 1.42 | 4.78 ± 0.36 |
UGC06628 | Sm | 103.00 | 0.00 | 3.61 ± 0.10 | 23.35 ± 0.87 | 0.77 ± 0.05 |
UGC07125 | Sm | 103.00 | 0.25 | 1.81 ± 0.65 | 47.55 ± 10.38 | 4.97 ± 2.68 |
UGC07151 | Scd | 965.67 | 0.72 | 1.94 ± 2.32 | 32.32 ± 5.65 | 2.53 ± 1.58 |
UGC11820 | Sm | 34.11 | 0.82 | 5.99 ± 4.75 | 75.83 ± 49.15 | 18.10 ± 34.72 |
UGC12632 | Sm | 66.81 | 0.09 | 1.47 ± 0.23 | 46.91 ± 6.10 | 5.56 ± 1.48 |
Galaxy | [kpc] | [kpc] | [kpc] | |||
---|---|---|---|---|---|---|
DDO170 | 1.34 ± 0.38 | 0.95 ± 0.78 | 6.02 ± 1.51 | 3.48 ± 2.99 | 3.45 ± 1.39 | 1.01 |
F565-V2 | 1.6 ± 0.21 | 0.51 ± 0.33 | 12.46 ± 4.33 | 3.14 ± 0.8 | 5.89 ± 4.38 | 0.53 |
F568-1 | 6.61 ± 0.56 | 2.67 ± 1.04 | 7.87 ± 1.36 | 2.59 ± 0.6 | 3.62 ± 1.06 | 0.72 |
F571-V1 | 1.61 ± 0.24 | 1.22 ± 0.68 | 7.42 ± 1.71 | 3.96 ± 1.21 | 4.65 ± 1.4 | 0.85 |
F574-1 | 5.41 ± 0.26 | 1.81 ± 0.32 | 6.98 ± 0.46 | 2.52 ± 1.04 | 2.52 ± 0.21 | 1.00 |
F583-4 | 8.05 ± 1.34 | 0.12 ± 0.13 | 27.1 ± 19.49 | 1.73 ± 0.41 | 1.12 ± 0.19 | 1.55 |
NGC3109 | 2.28 ± 0.09 | 0.14 ± 0.08 | 25.88 ± 11.92 | 2.03 ± 0.56 | 2.83 ± 0.48 | 0.71 |
NGC3877 | 15. ± 0.91 | 13.56 ± 15.7 | 4.4 ± 2.43 | 4.87 ± 0.91 | 3.03 ± 0.15 | 1.61 |
NGC4085 | 13.49 ± 1.04 | 103.33 ± 134.83 | 1.46 ± 0.82 | 2.46 ± 0.41 | 3.02 ± 0.65 | 0.81 |
NGC6195 | 128.1 ± 7.47 | 2.67 ± 0.6 | 13.68 ± 0.96 | 3.55 ± 0.12 | 1.59 ± 0.05 | 2.23 |
UGC00731 | 7.41 ± 0.87 | 0.39 ± 0.16 | 12.17 ± 1.85 | 1.62 ± 0.34 | 1.22 ± 0.15 | 1.32 |
UGC00891 | 1.63 ± 0.05 | 0.57 ± 0.06 | 8.85 ± 0.39 | 2.97 ± 0.19 | 3.42 ± 0.19 | 0.87 |
UGC06628 | 4.34 ± 0.08 | 1.3 ± 0.21 | 3.4 ± 0.28 | 2.27 ± 0.07 | 1.35 ± 0.02 | 1.68 |
UGC07125 | 2.2 ± 0.39 | 0.22 ± 0.12 | 13.55 ± 2.2 | 3.06 ± 0.94 | 2.27 ± 0.39 | 1.35 |
UGC07151 | 13.48 ± 2.86 | 7.49 ± 5.62 | 2.52 ± 0.66 | 1.05 ± 0.46 | 1.39 ± 0.83 | 0.75 |
UGC11820 | 15.04 ± 4.43 | 0.11 ± 0.2 | 28.64 ± 6.01 | 1.35 ± 0.66 | 0.77 ± 0.3 | 1.76 |
UGC12632 | 3.77 ± 0.3 | 0.61 ± 0.24 | 9.01 ± 1.82 | 3.12 ± 0.49 | 2.2 ± 0.16 | 1.42 |
Galaxy | Hub. Type | Lum. | 2/d.o.f. | [kpc] | [kpc] | |||
---|---|---|---|---|---|---|---|---|
UGC01281 | Sdm | 135.78 | 0.17 | 1.16 ± 0.24 | 32.78 ± 1.89 | 2.45 ± 0.35 | 3.56 ± 0.2 | 3.23 ± 0.17 |
UGC02023 | Im | 121.57 | 0.03 | 0.36 ± 0.16 | 73.23 ± 24.56 | 24.82 ± 19.87 | 1.92 ± 0.21 | 8.95 ± 2.97 |
UGC04305 | Im | 88.07 | 0.76 | 3.42 ± 0.9 | 15.39 ± 2.06 | 0.28 ± 0.1 | 7.2 ± 1.55 | 1.19 ± 0.14 |
UGC04325 | Sm | 213.22 | 0.26 | 1. ± 0.2 | 32.71 ± 1.31 | 3.29 ± 0.34 | 31.75 ± 1.83 | 1.53 ± 0.05 |
UGC04483 | Im | 82.57 | 0.26 | 6.58 ± 1.48 | 9.51 ± 0.84 | 0.08 ± 0.02 | 19.32 ± 2.23 | 0.52 ± 0.04 |
UGC04499 | Sdm | 127.30 | 0.09 | 1.05 ± 0.21 | 34. ± 1.01 | 2.96 ± 0.21 | 5.97 ± 0.24 | 2.8 ± 0.07 |
UGC05005 | Im | 65.59 | 0.06 | 0.52 ± 0.1 | 59.27 ± 2.86 | 12.09 ± 1.21 | 1.1 ± 0.06 | 8.85 ± 0.32 |
UGC05414 | Im | 127.30 | 0.11 | 1.25 ± 0.25 | 30.31 ± 1.42 | 2.09 ± 0.24 | 5.9 ± 0.3 | 2.51 ± 0.11 |
UGC05750 | Sdm | 124.98 | 0.08 | 0.68 ± 0.14 | 49.77 ± 3.23 | 7.13 ± 0.97 | 1.07 ± 0.06 | 7.5 ± 0.4 |
UGC05829 | Im | 63.22 | 0.33 | 0.93 ± 0.23 | 38.9 ± 4.8 | 3.81 ± 1.16 | 2.21 ± 0.28 | 4.52 ± 0.52 |
UGC05918 | Im | 24.94 | 0.06 | 2.35 ± 0.48 | 19.9 ± 1.15 | 0.59 ± 0.09 | 6.01 ± 0.47 | 1.64 ± 0.08 |
UGC05999 | Im | 51.62 | 0.35 | 0.53 ± 0.12 | 57.19 ± 5.87 | 11.71 ± 2.81 | 1.72 ± 0.22 | 7.29 ± 0.63 |
UGC06399 | Sm | 311.05 | 0.03 | 0.8 ± 0.16 | 40.82 ± 1.2 | 5.16 ± 0.36 | 6.2 ± 0.22 | 3.32 ± 0.08 |
UGC06446 | Sd | 86.46 | 0.78 | 1.05 ± 0.23 | 32.95 ± 2.75 | 3.01 ± 0.66 | 13.01 ± 1.64 | 2.08 ± 0.15 |
UGC06667 | Scd | 614.94 | 0.11 | 0.81 ± 0.16 | 40.55 ± 1.3 | 5.03 ± 0.39 | 5.97 ± 0.23 | 3.34 ± 0.09 |
UGC06917 | Sm | 261.11 | 0.35 | 0.66 ± 0.13 | 45.28 ± 2.24 | 7.48 ± 0.92 | 9.48 ± 0.64 | 3.19 ± 0.13 |
UGC06923 | Im | 347.40 | 0.4 | 0.97 ± 0.26 | 34.69 ± 4.92 | 3.46 ± 1.28 | 11.64 ± 2.17 | 2.28 ± 0.29 |
UGC06930 | Sd | 189.16 | 0.21 | 0.62 ± 0.13 | 47.7 ± 3.06 | 8.45 ± 1.38 | 7.41 ± 0.72 | 3.65 ± 0.19 |
UGC06983 | Scd | 121.57 | 0.68 | 0.66 ± 0.14 | 45.05 ± 3.3 | 7.54 ± 1.42 | 11.27 ± 1.24 | 2.99 ± 0.18 |
UGC07089 | Sdm | 520.99 | 0.22 | 0.86 ± 0.18 | 40.29 ± 2.82 | 4.41 ± 0.75 | 2.82 ± 0.23 | 4.31 ± 0.27 |
UGC07261 | Sdm | 566.02 | 0.33 | 1.28 ± 0.31 | 28.32 ± 3.03 | 2. ± 0.57 | 18.97 ± 3.11 | 1.57 ± 0.14 |
UGC07323 | Sdm | 283.68 | 0.8 | 0.71 ± 0.17 | 44.67 ± 5.34 | 6.55 ± 1.98 | 5.06 ± 0.62 | 3.9 ± 0.43 |
UGC07524 | Sm | 106.86 | 0.57 | 0.86 ± 0.17 | 39.92 ± 1.58 | 4.45 ± 0.44 | 3.66 ± 0.19 | 3.89 ± 0.13 |
UGC07559 | Im | 55.06 | 0.03 | 2.93 ± 0.6 | 17.5 ± 0.93 | 0.38 ± 0.05 | 4.15 ± 0.23 | 1.63 ± 0.08 |
UGC07577 | Im | 54.55 | 0.04 | 3.14 ± 1.07 | 18.08 ± 4.38 | 0.33 ± 0.19 | 1.02 ± 0.12 | 2.76 ± 0.66 |
UGC07603 | Sd | 520.99 | 0.22 | 1.66 ± 0.33 | 23.7 ± 1. | 1.19 ± 0.13 | 21.7 ± 1.3 | 1.26 ± 0.05 |
UGC07608 | Im | 46.65 | 0.07 | 1. ± 0.22 | 35.39 ± 2.78 | 3.27 ± 0.65 | 5.23 ± 0.44 | 3.05 ± 0.22 |
UGC07866 | Im | 97.46 | 0.1 | 3.78 ± 0.92 | 14.34 ± 1.63 | 0.23 ± 0.07 | 7.72 ± 1.11 | 1.08 ± 0.11 |
UGC08490 | Sm | 576.54 | 0.95 | 1.24 ± 0.25 | 28.16 ± 1.51 | 2.14 ± 0.31 | 38.07 ± 3.44 | 1.23 ± 0.05 |
UGC08837 | Im | 77.42 | 0.29 | 0.54 ± 0.18 | 57.39 ± 13.51 | 11.12 ± 6.14 | 1.26 ± 0.11 | 8.13 ± 1.89 |
UGC09037 | Scd | 841.07 | 0.61 | 0.34 ± 0.07 | 72.32 ± 3.54 | 28.35 ± 2.75 | 5.11 ± 0.28 | 6.33 ± 0.21 |
UGC09992 | Im | 73.25 | 0.24 | 3.68 ± 1.34 | 14.37 ± 3.31 | 0.24 ± 0.15 | 10.76 ± 3.86 | 0.97 ± 0.19 |
UGC11557 | Sdm | 337.93 | 0.28 | 0.73 ± 0.17 | 44.75 ± 4.74 | 6.16 ± 1.6 | 3.16 ± 0.4 | 4.6 ± 0.43 |
UGC12506 | Scd | 5608.28 | 0.69 | 0.2 ± 0.04 | 96.54 ± 6.95 | 80.52 ± 12.65 | 17.8 ± 1.77 | 5.53 ± 0.26 |
UGCA281 | BCD | 12.05 | 0.34 | 4.71 ± 1.08 | 11.71 ± 1.1 | 0.15 ± 0.04 | 27.12 ± 2.79 | 0.58 ± 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meinert, J.; Hofmann, R. Axial Anomaly in Galaxies and the Dark Universe. Universe 2021, 7, 198. https://doi.org/10.3390/universe7060198
Meinert J, Hofmann R. Axial Anomaly in Galaxies and the Dark Universe. Universe. 2021; 7(6):198. https://doi.org/10.3390/universe7060198
Chicago/Turabian StyleMeinert, Janning, and Ralf Hofmann. 2021. "Axial Anomaly in Galaxies and the Dark Universe" Universe 7, no. 6: 198. https://doi.org/10.3390/universe7060198
APA StyleMeinert, J., & Hofmann, R. (2021). Axial Anomaly in Galaxies and the Dark Universe. Universe, 7(6), 198. https://doi.org/10.3390/universe7060198