Study of Isothermal Compressibility and Speed of Sound in the Hadronic Matter Formed in Heavy-Ion Collision Using Unified Formalism
Abstract
1. Introduction
2. Methodology
2.1. Isothermal Compressibility
2.2. Speed of Sound
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sahu, D.; Tripathy, S.; Sahoo, R.; Dash, A.R. Multiplicity dependence of shear viscosity, isothermal compressibility and speed of sound in pp collisions at = 7 TeV. Eur. Phys. J. A 2020, 56, 187. [Google Scholar] [CrossRef]
- Basu, S.; Chatterjee, S.; Chatterjee, R.; Nayak, T.K.; Nandi, B.K. Specific Heat of Matter Formed in Relativistic Nuclear Collisions. Phys. Rev. C 2016, 94, 044901. [Google Scholar] [CrossRef]
- Khuntia, A.; Sahoo, P.; Garg, P.; Sahoo, R.; Cleymans, J. Speed of sound in hadronic matter using non-extensive Tsallis statistics. Eur. Phys. J. A 2016, 52, 292. [Google Scholar] [CrossRef]
- Sahu, D.; Tripathy, S.; Sahoo, R.; Tiwari, S.K. Possible formation of a Perfect Fluid in pp, p-Pb, Xe-Xe and Pb-Pb Collisions at the Large Hadron Collider Energies: A color string percolation approach. Eur. Phys. J. 2022, 58, 78. [Google Scholar] [CrossRef]
- Mezzasalma, S.A. An Equation for Viscosity and Isothermal Compressibility of Simple Liquids from a Closed-Form Expression for the Effective Viscosity of a Dispersed System. Phys. Chem. Liq. 2002, 100, 135–142. [Google Scholar] [CrossRef]
- Kovtun, P.; Son, D.T.; Starinets, A.O. Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett. 2005, 94, 111601. [Google Scholar] [CrossRef]
- Aamodt, K.; Abelev, B.; Quintana, A.A.; Adamová, D.; Adare, A.M.; Aggarwal, M.M.; Rinella, G.A.; Agocs, A.G.; Agostinelli, A.; Salazar, S.A.; et al. Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at =2.76 TeV. Phys. Rev. Lett. 2011, 107, 032301. [Google Scholar] [CrossRef]
- Luzum, M.; Romatschke, P. Conformal Relativistic Viscous Hydrodynamics: Applications to RHIC results at s(NN)**(1/2) = 200-GeV. Phys. Rev. C 2008, 78, 034915. [Google Scholar] [CrossRef]
- Bjorken, J.D. Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region. Phys. Rev. D 1983, 27, 140–151. [Google Scholar] [CrossRef]
- Hallman, T.J.; Kharzeev, D.E.; Mitchell, T.J.; Ullrich, T.S. Quark matter 2001. In Proceedings of the 15th International Conference on Ultrarelativistic Nucleus Nucleus Collisions, QM 2001, Stony Brook, New York, NY, USA, 15–20 January 2001; Volume 698. [Google Scholar]
- Deb, S.; Sarwar, G.; Sahoo, R.; Alam, J.E. Study of QCD dynamics using small systems. Eur. Phys. J. A 2021, 57, 195. [Google Scholar] [CrossRef]
- Deb, S.; Tripathy, S.; Sarwar, G.; Sahoo, R.; Alam, J.E. Deciphering QCD dynamics in small collision systems using event shape and final state multiplicity at the Large Hadron Collider. Eur. Phys. J. A 2020, 56, 252. [Google Scholar] [CrossRef]
- Tiwari, S.K.; Tripathy, S.; Sahoo, R.; Kakati, N. Dissipative Properties and Isothermal Compressibility of Hot and Dense Hadron Gas using Non-extensive Statistics. Eur. Phys. J. C 2018, 78, 938. [Google Scholar] [CrossRef]
- Castorina, P.; Cleymans, J.; Miller, D.E.; Satz, H. The Speed of Sound in Hadronic Matter. Eur. Phys. J. C 2010, 66, 207–213. [Google Scholar] [CrossRef]
- Tawfik, A.N.; Magdy, H. Hadronic Equation of State and Speed of Sound in Thermal and Dense Medium. Int. J. Mod. Phys. A 2014, 29, 1450152. [Google Scholar] [CrossRef]
- Deppman, A. Properties of hadronic systems according to the nonextensive self-consistent thermodynamics. J. Phys. G 2014, 41, 055108. [Google Scholar] [CrossRef]
- Gardim, F.G.; Giacalone, G.; Luzum, M.; Ollitrault, J.Y. Thermodynamics of hot strong-interaction matter from ultrarelativistic nuclear collisions. Nat. Phys. 2020, 16, 615–619. [Google Scholar] [CrossRef]
- Schnedermann, E.; Sollfrank, J.; Heinz, U.W. Thermal phenomenology of hadrons from 200-A/GeV S+S collisions. Phys. Rev. C 1993, 48, 2462–2475. [Google Scholar] [CrossRef]
- Stodolsky, L. Temperature fluctuations in multiparticle production. Phys. Rev. Lett. 1995, 75, 1044–1045. [Google Scholar] [CrossRef]
- Sharma, N.; Cleymans, J.; Hippolyte, B.; Paradza, M. A Comparison of p-p, p-Pb, Pb-Pb Collisions in the Thermal Model: Multiplicity Dependence of Thermal Parameters. Phys. Rev. C 2019, 99, 044914. [Google Scholar] [CrossRef]
- Jena, S.; Gupta, R. A unified formalism to study transverse momentum spectra in heavy-ion collision. Phys. Lett. B 2020, 807, 135551. [Google Scholar] [CrossRef]
- Gupta, R.; Menon, A.; Jain, S.; Jena, S. The Theoretical Description of the Transverse Momentum Spectra: A Unified Model. Universe 2023, 9, 111. [Google Scholar] [CrossRef]
- Tsallis, C. Some comments on Boltzmann-Gibbs statistical mechanics. Chaos Solitons Fractals 1995, 6, 539–559. [Google Scholar] [CrossRef]
- Lemanska, M. Non-additive entropy: Reason and conclusions. arXiv 2012, arXiv:1207.2172. [Google Scholar]
- Alberico, W.M.; Lavagno, A.; Quarati, P. Nonextensive statistics, fluctuations and correlations in high-energy nuclear collisions. Eur. Phys. J. C 2000, 12, 499–506. [Google Scholar] [CrossRef]
- Tsallis, C. Possible Generalization of Boltzmann-Gibbs Statistics. J. Statist. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Bíró, G.; Barnaföldi, G.G.; Biró, T.S. Tsallis-thermometer: A QGP indicator for large and small collisional systems. J. Phys. G 2020, 47, 105002. [Google Scholar] [CrossRef]
- Parvan, A.S. Self-consistent thermodynamics for the Tsallis statistics in the grand canonical ensemble: Nonrelativistic hadron gas. Eur. Phys. J. A 2015, 51, 108. [Google Scholar] [CrossRef][Green Version]
- Cleymans, J.; Worku, D. The Tsallis Distribution in Proton-Proton Collisions at = 0.9 TeV at the LHC. J. Phys. G 2012, 39, 025006. [Google Scholar] [CrossRef]
- Conroy, J.M.; Miller, H.G.; Plastino, A.R. Thermodynamic Consistency of the q-Deformed Fermi-Dirac Distribution in Nonextensive Thermostatics. Phys. Lett. A 2010, 374, 4581–4584. [Google Scholar] [CrossRef]
- Tsallis, C.; Mendes, R.S.; Plastino, A.R. The Role of constraints within generalized nonextensive statistics. Phys. A 1998, 261, 534. [Google Scholar] [CrossRef]
- Azmi, M.D.; Cleymans, J. The Tsallis Distribution at Large Transverse Momenta. Eur. Phys. J. C 2015, 75, 430. [Google Scholar] [CrossRef]
- Cirto, L.J.L.; Tsallis, C.; Wong, C.Y.; Wilk, G. The transverse-momenta distributions in high-energy pp collisions—A statistical-mechanical approach. arXiv 2014, arXiv:1409.3278. [Google Scholar]
- Wong, C.Y.; Wilk, G. Tsallis fits to pT spectra and multiple hard scattering in pp collisions at the LHC. Phys. Rev. D 2013, 87, 114007. [Google Scholar] [CrossRef]
- Wong, C.Y.; Wilk, G.; Cirto, L.J.L.; Tsallis, C. Possible Implication of a Single Nonextensive pT Distribution for Hadron Production in High-Energy pp Collisions. EPJ Web Conf. 2015, 90, 04002. [Google Scholar] [CrossRef]
- ALICE Collaboration; Abelev, B.; Adam, J.; Adamová, D.; Adare, A.M.; Aggarwal, M.M.; Rinella, G.A.; Agocs, A.G.; Agostinelli, A.; Salazar, S.A.; et al. Centrality Dependence of Charged Particle Production at Large Transverse Momentum in Pb–Pb Collisions at =2.76 TeV. Phys. Lett. B 2013, 720, 52–62. [Google Scholar] [CrossRef]
- The ALICE Collaboration; Acharya, S.; Acosta, S.; Adamová, F.T.D.; Adolfsson, J.; Aggarwal, M.M.; Rinella, G.A.; Agnello, M.; Agrawal, N.; Ahammed, Z.; et al. Transverse momentum spectra and nuclear modification factors of charged particles in pp, p-Pb and Pb-Pb collisions at the LHC. JHEP 2018, 11, 13. [Google Scholar] [CrossRef]
- The ALICE Collaboration; Acharya, S.; Acosta, F.T.; Adamová, D.; Adolfsson, J.; Aggarwal, M.M.; Rinella, G.A.; Agnello, M.; Agrawal, N.; Ahammed, Z.; et al. Transverse momentum spectra and nuclear modification factors of charged particles in Xe-Xe collisions at = 5.44 TeV. Phys. Lett. B 2019, 788, 166–179. [Google Scholar] [CrossRef]
- Pearson, K. Philosophical Transactions of the Royal Society of London A: Mathematical. Phys. Eng. Sci. 1895, 186, 343. [Google Scholar]
- Pollard, J.H. A Handbook of Numerical and Statistical Techniques: With Examples Mainly from the Life Sciences; Cambridge University Press: Cambridge, UK, 1977. [Google Scholar]
- Kardar, M. Statistical Physics of Particles; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Mrowczynski, S. Hadronic matter compressibility from event by event analysis of heavy ion collisions. Phys. Lett. B 1998, 430, 9–14. [Google Scholar] [CrossRef]
- Landau, L.; Lifshitz, E. Chapter VIII—Sound. In Fluid Mechanics, 2nd ed.; Springer: Berling, Germany, 1987; Volume 6, pp. 251–312. [Google Scholar] [CrossRef]
- Abelev, B.; Adam, J.; Adamová, D.; Adare, A.M.; Aggarwal, M.M.; Rinella, G.A.; Agnello, M.; Agocs, A.G.; Agostinelli, A.; Ahammed, Z.; et al. Centrality dependence of π, K, p production in Pb-Pb collisions at = 2.76 TeV. Phys. Rev. C 2013, 88, 044910. [Google Scholar] [CrossRef]
- Acharya, S.; Adamová, D.; Adhya, S.P.; Adler, A.; Adolfsson, J.; Aggarwal, M.M.; Rinella, G.A.; Agnello, M.; Agrawal, N.; Ahammed, Z.; et al. Production of charged pions, kaons, and (anti-)protons in Pb-Pb and inelastic pp collisions at = 5.02 TeV. Phys. Rev. C 2020, 101, 044907. [Google Scholar] [CrossRef]
- Acharya, S.; Torales-Acosta, F.; Adamová, D.; Adolfsson, J.; Aggarwal, M.M.; Rinella, G.A.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S.U.; et al. Centrality and pseudorapidity dependence of the charged-particle multiplicity density in Xe–Xe collisions at =5.44TeV. Phys. Lett. B 2019, 790, 35–48. [Google Scholar] [CrossRef]
- Gupta, R.; Jena, S. Model Comparison of the Transverse Momentum Spectra of Charged Hadrons Produced in PbPb Collision at =5.02 TeV. Adv. High Energy Phys. 2022, 2022, 5482034. [Google Scholar] [CrossRef]
- Gupta, R.; Katariya, A.S.; Jena, S. A unified formalism to study the pseudorapidity spectra in heavy-ion collision. Eur. Phys. J. A 2021, 57, 224. [Google Scholar] [CrossRef]
- Braun-Munzinger, P.; Kalweit, A.; Redlich, K.; Stachel, J. Confronting fluctuations of conserved charges in central nuclear collisions at the LHC with predictions from Lattice QCD. Phys. Lett. B 2015, 747, 292–298. [Google Scholar] [CrossRef]
- Cleymans, J.; Worku, D. Relativistic Thermodynamics: Transverse Momentum Distributions in High-Energy Physics. Eur. Phys. J. A 2012, 48, 160. [Google Scholar] [CrossRef]
- Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M.M.; Agnello, M.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahmed, I.; et al. Freeze-out radii extracted from three-pion cumulants in pp, p–Pb and Pb–Pb collisions at the LHC. Phys. Lett. B 2014, 739, 139–151. [Google Scholar] [CrossRef]
- Tawfik, A.N.; Yassin, H.; Elyazeed, E.R.A. Extensive/nonextensive statistics for pT distributions of various charged particles produced in p+p and A+A collisions in a wide range of energies. arXiv 2019, arXiv:1905.12756. [Google Scholar]
- Gardim, F.G.; Giacalone, G.; Luzum, M.; Ollitrault, J.Y. Effects of initial state fluctuations on the mean transverse momentum. Nucl. Phys. A 2021, 1005, 121999. [Google Scholar] [CrossRef]
- Chatterjee, S.; Das, S.; Kumar, L.; Mishra, D.; Mohanty, B.; Sahoo, R.; Sharma, N. Freeze-Out Parameters in Heavy-Ion Collisions at AGS, SPS, RHIC, and LHC Energies. Adv. High Energy Phys. 2015, 2015, 349013. [Google Scholar] [CrossRef]
- Braun-Munzinger, P.; Stachel, J.; Wetterich, C. Chemical freezeout and the QCD phase transition temperature. Phys. Lett. B 2004, 596, 61–69. [Google Scholar] [CrossRef]
- Khuntia, A.; Tiwari, S.K.; Sharma, P.; Sahoo, R.; Nayak, T.K. Effect of Hagedorn States on Isothermal Compressibility of Hadronic Matter formed in Heavy-Ion Collisions: From NICA to LHC Energies. Phys. Rev. C 2019, 100, 014910. [Google Scholar] [CrossRef]
Centrality | TeV | TeV | TeV | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T | q | n | T | q | n | T | q | n | ||||
0–5% | 0.393 | 1.048 | 0.105 | 0.749 | 0.407 | 1.048 | 0.0018 | 0.562 | - | - | - | - |
5–10% | 0.386 | 1.053 | 0.0877 | 0.700 | 0.415 | 1.049 | 0.0167 | 0.604 | - | - | - | - |
10–20% | 0.370 | 1.060 | 0.0600 | 0.619 | 0.422 | 1.052 | 0.0394 | 0.659 | 0.409 | 1.072 | 0.0977 | 0.720 |
20–30% | 0.351 | 1.070 | 0.0385 | 0.548 | 0.424 | 1.059 | 0.0812 | 0.744 | 0.460 | 1.067 | 0.225 | 1.101 |
30–40% | 0.331 | 1.081 | 0.0256 | 0.489 | 0.412 | 1.068 | 0.0824 | 0.749 | 0.447 | 1.079 | 0.2286 | 1.112 |
40–50% | 0.311 | 1.093 | 0.0341 | 0.474 | 0.369 | 1.085 | 0.05 | 0.614 | 0.455 | 1.091 | 0.2881 | 1.306 |
50–60% | 0.292 | 1.106 | 0.0457 | 0.468 | 0.34 | 1.101 | 0.0527 | 0.578 | 0.434 | 1.108 | 0.2904 | 1.317 |
60–70% | 0.273 | 1.121 | 0.0747 | 0.487 | 0.311 | 1.118 | 0.0658 | 0.557 | 0.357 | 1.123 | 0.1977 | 0.943 |
70–80% | - | - | - | - | 0.329 | 1.131 | 0.1565 | 0.855 | 0.338 | 1.139 | 0.2060 | 0.974 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jain, S.; Gupta, R.; Jena, S. Study of Isothermal Compressibility and Speed of Sound in the Hadronic Matter Formed in Heavy-Ion Collision Using Unified Formalism. Universe 2023, 9, 170. https://doi.org/10.3390/universe9040170
Jain S, Gupta R, Jena S. Study of Isothermal Compressibility and Speed of Sound in the Hadronic Matter Formed in Heavy-Ion Collision Using Unified Formalism. Universe. 2023; 9(4):170. https://doi.org/10.3390/universe9040170
Chicago/Turabian StyleJain, Shubhangi, Rohit Gupta, and Satyajit Jena. 2023. "Study of Isothermal Compressibility and Speed of Sound in the Hadronic Matter Formed in Heavy-Ion Collision Using Unified Formalism" Universe 9, no. 4: 170. https://doi.org/10.3390/universe9040170
APA StyleJain, S., Gupta, R., & Jena, S. (2023). Study of Isothermal Compressibility and Speed of Sound in the Hadronic Matter Formed in Heavy-Ion Collision Using Unified Formalism. Universe, 9(4), 170. https://doi.org/10.3390/universe9040170