Quantum Fractionary Cosmology: K-Essence Theory
Abstract
:1. Introduction
1.1. Basic Definitions from Fractional Calculus
1.2. K-Essence Theory
1.3. Classical Cosmological FLRW Model,
2. Hamiltonian Cosmological Models
3. Quantum Regime
- Radiation epoch, , .When we choose the radiation case, (46) is written asIn the following Figure 1, we take the probability density (47); in the first and second Figures, and for better viewing in the plots, we take the constant , and in the third Figure the value becomes 1. In all Figures, the behavior of the probability density, in both variables (), has the appropriate decadent behavior. The range of the variable equals to , and , respectively.
- Solution to , .The probability density of the wave function becomes (here,In the Figure 2, we take the probability density (48); in the first and second Figures, and for better viewing in the plots, we take the constant , and in the third Figure the value becomes 1. In all Figures, the behavior of the probability density, in both variables (), has the appropriate decadent behavior, and it presents an oscillatory behavior when , since that is the behavior according to the Equation (44). Only for , the probability density has a moderate increase in the direction where the scalar field evolves.
- Dust era, , ; thus, . In the dust case, the solution for the scale factor becomesIn this case, the fractional differential Equation (41) for the scalar field is reduced to the first-order differential equation (for both signs in )Then, the probability density of the wave function becomesIn the following Figure 3, we present the behavior of the probability density by using the Equation (50) and taking the values for the order parameter , because with these values, the probability density presents a structure well-defined for this era. In some of them, one structure did not appear; thus, we gave it a profile for the probability density for particular values in the scalar field. In these cases, the behavior of our Universe is quite selective in this formalism. Additionally, we can notice that the probability density has a moderate increase in the direction where the scalar field evolves. Similar results were reported in other formalisms [58,59,60].
- inflation such as , ; thus, .For this particular case, (46) is written as
- inflation such as , ; thus, .For this particular case, (46) is written asIn a general way, the behavior of the probability density for both inflation-like scenarios is similar, in the Re[z] or Im[z] parts, over a wide range of values in the scalar field, as it appears in Figure 4. For the behavior for both inflation-like cases in the value of , the behavior is appropriate.
4. Final Remarks
- Using the K-essence formalism in a general way, applied to the Friedmann–Lematre–Robertson–Walker cosmological model, we found the Hamiltonian density in the scalar field momenta raised to a power with non-integers. This produces in the quantum scheme a fractional differential equation in a natural way, such as in this variable with order , where , which was solved for different scenarios of our Universe.
- We found in the classical scheme that the time evolution of the scale factor for ordinary matter was found 16 years ago by one of us; this time, behavior is reproduced in the K-essence formalism, see Equation (36) in this work, which is consistent with the result obtained in the ref. [35], Equations (6) and (34), with ordinary matter.
- In the quantum regime, the novel solution at the fractional differential equation in the scalar field was found in terms of the Mittag–Leffler function, with a real or complex argument, and we can see that this function appears in several scenarios of our Universe in this work. This function is reported in particular work dealing with different disciplines of cosmology.
- In one of our analyses presented on the probability density, we considered the values of the scalar field as significant in the quantum regime, appearing in various scenarios in the behavior of the Universe; mainly in those where the Universe has huge behavior. For example, in the inflation-like scenario and the actual epoch, where the scalar field appears as a background, the quantum regime appears with big values, but it presents a moderate development in other scenarios with a different ordering parameter Q.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Obtaining Equations of Motion
Appendix B. Obtaining the Equations of Motion with Particular Metric
Appendix C. Equivalence between Lagrangian Densities
References
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Ortigueira, M.D.; Tenreiro Machado, J.A. What is a fractional derivative? J. Comput. Phys. 2015, 293, 4–13. [Google Scholar] [CrossRef]
- Rosu, H.C.; Madueño, A.L.; Socorro, J. Transform of Riccati equation of constant coefficients through fractional procedure. J. Phys. A Math. Gen. 2003, 36, 1087–1093. [Google Scholar] [CrossRef] [Green Version]
- Abel, N.H. Résolution d’un probléme de mécanique. In Oeuvres Complètes de Niels Henrik Abel: Nouvelle Édition (Cambridge Library Collection—Mathematics); Sylow, L., Lie, S., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 97–101. [Google Scholar] [CrossRef]
- Caputo, M.; Mainardi, F. A new dissipation model based on memory mechanism. Pure Appl. Geophys. 1971, 91, 134–137. [Google Scholar] [CrossRef]
- Wyss, W. Fractional diffusion equation. J. Math. Phys. 1986, 27, 2782–2785. [Google Scholar] [CrossRef]
- Westerlund, S. Capacitor theory. IEEE Trans. Dielectr. Electr. Insul. 1994, 1, 826–839. [Google Scholar] [CrossRef]
- Hermann, R. Fractional Calculus; World Scientific: Singapore, 2011. [Google Scholar]
- Cruz-Duarte, J.M.; Rosales-García, J.; Correa-Cely, C.R.; García-Perez, A.; Avina-Cervantes, J.G. A closed form expression for the Gaussian-based Caputo-Fabrizio fractional derivative for signal processing applications. Commun. Nonlinear Sci. Numer. Simulat. 2018, 61, 138–148. [Google Scholar] [CrossRef]
- Martínez-Jiménez, L.; Cruz-Duarte, J.M.; Rosales-García, J.J.; Cruz-Aceves, I. Enhancement of vessels in coronary angiograms using a Hessian matrix based on Grunwald–Letnikov fractional derivative. In Proceedings of the 8th International Conference on Biomedical Engineering and Technology (ICBET ’18), Bali, Indonesia, 23–25 April 2018; pp. 51–54. [Google Scholar]
- Uchaikin, V. Fractional Derivatives for Physicists and Engineers; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Tarasov, V.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House Publisher: Rodding, Denmark, 2006. [Google Scholar]
- Roberts, M.D. Fractional Derivative Cosmology. SOP Trans. Theor. Phys. 2014, 1, 310. [Google Scholar] [CrossRef] [Green Version]
- El-Nabulsi, R.A. Gravitons in fractional action cosmology. Int. J. Theor. Phys. 2012, 51, 3978–3992. [Google Scholar] [CrossRef]
- Jamil, M.; Momeni, D.; Rashid, M.A. Fractional Action Cosmology with Power Law Weight Function. J. Phys. Conf. Ser. 2012, 354, 012008. [Google Scholar] [CrossRef]
- Debnath, U.; Jamil, M.; Chattopadhyay, S. Fractional Action Cosmology: Emergent, Logamediate, Intermediate, Power Law Scenarios of the Universe and Generalized Second Law of Thermodynamics. Int. J. Theor. Phys. 2012, 51, 812–837. [Google Scholar] [CrossRef] [Green Version]
- El-Nabulsi, R.A. Nonstandard fractional exponential Lagrangians, fractional geodesic equation, complex general relativity, and 915 discrete gravity. Can. J. Phys. 2013, 91, 618–622. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Non-minimal coupling in fractional action cosmology. Indian J. Phys. 2013, 87, 835–840. [Google Scholar] [CrossRef]
- Debnath, U.; Chattopadhyay, S.; Jamil, M. Fractional action cosmology: Some dark energy models in emergent, logamediate, and intermediate scenarios of the Universe. J. Theor. Appl. Phys. 2013, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Rami, E.N.A. Fractional action oscillating phantom cosmology with conformal coupling. Eur. Phys. J. Plus 2015, 130, 102. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. A Cosmology Governed by a Fractional Differential Equation and the Generalized Kilbas-Saigo-Mittag–Leffler Function. Int. J. Theor. Phys. 2016, 55, 625–635. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Implications of the Ornstein-Uhlenbeck-like fractional differential equation in cosmology. Rev. Mex. FíSica 2016, 62, 240–250. [Google Scholar]
- El-Nabulsi, R.A. Fractional Action Cosmology with Variable Order Parameter. Int. J. Theor. Phys. 2017, 56, 1159–1182. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Wormholes in fractional action cosmology. Can. J. Phys. 2017, 95, 605–609. [Google Scholar] [CrossRef]
- García-Aspeitia, M.A.; Fernandez-Anaya, G.; Hernández-Almada, A.; Leon, G.; Magaña, J. Cosmology under the fractional calculus approach. Mon. Not. R. Astron. Soc. 2022, 517, 4813–4826. [Google Scholar] [CrossRef]
- Rasouli, S.M.M.; Jalalzadeh, S.; Moniz, P.V. Broadening quantum cosmology with a fractional whirl. Mod. Phys. Lett. 2021, 36, 2140005. [Google Scholar] [CrossRef]
- Jalalzadeh, S.; Costa, E.W.O.; Moniz, P.V. De Sitter fractional quantum cosmology. Phys. Rev. 2022, 105, L121901. [Google Scholar] [CrossRef]
- Rasouli, S.M.M.; Costa, E.W.O.; Moniz, P.V.; Jalalzadeh, S. Inflation and fractional quantum cosmology. Fractal Fract. 2022, 6, 655. [Google Scholar] [CrossRef]
- Moniz, P.V.; Jalalzadeh, S. From Fractional Quantum Mechanics to Quantum Cosmology: An Overture. Mathematics 2020, 8, 313. [Google Scholar] [CrossRef] [Green Version]
- Jalalzadeh, S.; da Silva, F.R.; Moniz, P.V. Prospecting black hole thermodynamics with fractional quantum mechanics. Eur. Phys. J. 2021, 81, 632. [Google Scholar] [CrossRef]
- Jalalzadeh, S.; Moniz, P.V. Challenging Routes in Quantum Cosmology; World Scientific: Singapore, 2023. [Google Scholar]
- Micolta-Riascos, B.; Millano, A.D.; Leon, G.; Erices, C.; Paliathanasis, A. Revisiting Fractional Cosmology. Fractal Fract. 2023, 7, 149. [Google Scholar] [CrossRef]
- Socorro, J.; Pimentel, L.O.; Espinoza García, A. Classical Bianchi type I cosmology in K-essence theory. Adv. High Energy Phys. 2014, 2014, 805164. [Google Scholar] [CrossRef] [Green Version]
- Berbena, S.R.; Arellano, A.V.; Socorro, J.; Pimentel, L.O. The Einstein-Hamilton-Jacobi equation: Searching the classical solution for barotropic FRW. Rev. Mex. Física 2007, 53, 115–119. [Google Scholar]
- Cota, J.C. Konstanzer Dissertationen, Induced Gravity and Cosmology; Hartung-Corre: Konstanz, Germany, 1996. [Google Scholar]
- Espinoza-Garcà a, A.; Socorro, J.; Pimentel, L.O. Quantum Bianchi type IX cosmology in K-essence theory. Int. J. Theor. Phys. 2014, 53, 3066–3077. [Google Scholar] [CrossRef]
- De Putter, R.; Linder, E.V. Kinetic k-essence and Quintessence. Astropart. Phys. 2007, 28, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Chiba, T.; Dutta, S.; Scherrer, R.J. Slow-roll k-essence. Phys. Rev. D 2009, 80, 043517. [Google Scholar] [CrossRef]
- Bose, N.; Majumdar, A.S. A k-essence model of inflation, dark matter and dark energy. Phys. Rev. D 2009, 79, 103517. [Google Scholar] [CrossRef] [Green Version]
- Arroja, F.; Sasaki, M. A note on the equivalence of a barotropic perfect fluid with a k-essence scalar field. Phys. Rev. D 2010, 81, 107301. [Google Scholar] [CrossRef] [Green Version]
- García, L.A.; Tejeiro, J.M.; Castañeda, L. K-essence scalar field as dynamical dark energy. arXiv 2012, arXiv:1210.5259. [Google Scholar]
- Bilic, N.; Tupper, G.; Viollier, R. Unification of dark matter and dark energy: The inhomogeneous Chaplygin gas. Phys. Lett. B 2002, 535, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Bento, M.; Bertolami, O.; Sen, A. Dynamics of dark energy. Phys. Rev. D 2002, 66, 043507. [Google Scholar] [CrossRef] [Green Version]
- Armendariz-Picon, C.; Damour, T.; Mukhanov, V. k-Inflation. Phys. Lett. B 1999, 458, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Garriga, J.; Mukhanov, V. Perturbations in k-inflation. Phys. Lett. B 1999, 458, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. D 2006, 15, 1753–1936. [Google Scholar] [CrossRef] [Green Version]
- Ryan, M.P. Hamiltonian Cosmology; Springer: Berlin, Germany, 1972. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1955; Volume 3. [Google Scholar]
- Haubold, H.J.; Mathai, A.M.; Saxena, R.K. Mittag–Leffler functions and their applications. J. Appl. Math. 2011, 2011, 298628. [Google Scholar] [CrossRef] [Green Version]
- De-Santiago, J.; Cervantes-Cota, J.L. Generalizing a unified model of dark matter, dark energy, and inflation with a noncanonical kinetic term. Phys. Rev. D 2011, 83, 063502. [Google Scholar] [CrossRef] [Green Version]
- Chimento, L.P. Extended tachyon field, Chaplygin gas, and solvable k-essence cosmologies. Phys. Rev. D 2004, 69, 123517. [Google Scholar] [CrossRef] [Green Version]
- Scherrer, R.J. Purely Kinetic k Essence as Unified Dark Matter. Phys. Rev. Lett. 2004, 93, 011301. [Google Scholar] [CrossRef] [Green Version]
- Hartle, J.B.; Hawking, S.W. Wave function of the Universe. Phys. Rev. D 1983, 28, 2960–2975. [Google Scholar] [CrossRef]
- Rosales, J.J.; Gómez, J.F.; Guía, M.; Tkach, V.I. Fractional electromagnetic waves. In Proceedings of the 11th International Conference on Laser and Fiber-Optical Networks Modeling (LFNM), Kharkov, Ukraine, 5–9 September 2011. [Google Scholar] [CrossRef] [Green Version]
- Gómez Aguilar, J.F.; Rosales, J.J.; Bernal Alvarado, J.J.; Cordova Fraga, T.; Guzmán Cabrera, R. Fractional mechanics oscillators. Rev. Mex. Física 2012, 58, 348–352. [Google Scholar]
- Polyanin, A.C.; Zaitsev, V.F. Handbook of Exact Solutions for Ordinary Differential Equations, 2nd ed.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2003. [Google Scholar]
- Socorro, J.; Pérez-Payan, S.; Hernández-Jiménez, R.; Espinoza-García, A.; Díaz-Barrón, L.R. Classical and quantum exact solutions for a FRW in chiral like cosmology. Class. Quantum Grav. 2021, 38, 135027. [Google Scholar] [CrossRef]
- Socorro, J.; Pérez-Payán, S.; Hernández-Jiménez, R.; Espinoza-García, A.; Díaz-Barrón, L.R. Quintom fields from chiral K-essence cosmology. Universe 2022, 8, 548. [Google Scholar] [CrossRef]
- Socorro, J.; Pérez-Payán, S.; Hernández-Jiménez, R.; Espinoza-García, A.; Díaz-Barrón, L.R. Quintom fields from chiral anisotropic cosmology. arXiv 2022, arXiv:2210.01186. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Socorro, J.; Rosales, J.J. Quantum Fractionary Cosmology: K-Essence Theory. Universe 2023, 9, 185. https://doi.org/10.3390/universe9040185
Socorro J, Rosales JJ. Quantum Fractionary Cosmology: K-Essence Theory. Universe. 2023; 9(4):185. https://doi.org/10.3390/universe9040185
Chicago/Turabian StyleSocorro, J., and J. Juan Rosales. 2023. "Quantum Fractionary Cosmology: K-Essence Theory" Universe 9, no. 4: 185. https://doi.org/10.3390/universe9040185
APA StyleSocorro, J., & Rosales, J. J. (2023). Quantum Fractionary Cosmology: K-Essence Theory. Universe, 9(4), 185. https://doi.org/10.3390/universe9040185