Functional Expression of All Human Sulfotransferases in Fission Yeast, Assay Development, and Structural Models for Isoforms SULT4A1 and SULT6B1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Fission Yeast Media and General Techniques
2.3. Expression Plasmid Construction
2.4. Fission Yeast Strain Construction
2.5. Whole-Cell Biotransformation in Shaking Flasks
2.6. Biotransformation with Enzyme Bags
2.7. HPLC–UV and LC–MS Analysis
2.8. Bioluminescence Detection
2.9. Statistical Analysis
2.10. Homology Modeling for SULT4A1 and SULT6B1
2.11. Substrate Docking Experiments
3. Results
3.1. Strain Construction
3.2. Monitoring of SULT Activity Using Standard Test Substrates
3.3. Sulfation of a Proluciferin Substrate by the S9 Fraction of Human Liver Cells
3.4. Sulfation of a Proluciferin Substrate by Individual Human SULTs Recombinantly Expressed in Fission Yeast
3.5. Comparative Mechanistic Modeling for SULT1E1, SULT2A1, SULT4A1, and SULT6B1
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Di, L.; Kerns, E.H. Drug-Like Properties: Concepts, Structure Design and Methods from ADME to Toxicity Optimization; Academic Press: London, UK, 2016. [Google Scholar]
- Coughtrie, M.W.H. Function and organization of the human cytosolic sulfotransferase (SULT) family. Chem. Biol. Interact. 2016, 259, 2–7. [Google Scholar] [CrossRef]
- Buhl, A.E.; Waldon, D.J.; Baker, C.A.; Johnson, G.A. Minoxidil sulfate is the active metabolite that stimulates hair follicles. J. Investig. Dermatol. 1990, 95, 553–557. [Google Scholar] [CrossRef] [Green Version]
- Tibbs, Z.E.; Rohn-Glowacki, K.J.; Crittenden, F.; Guidry, A.L.; Falany, C.N. Structural plasticity in the human cytosolic sulfotransferase dimer and its role in substrate selectivity and catalysis. Drug Metab. Pharmacokinet. 2015, 30, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Taskinen, J.; Ethell, B.T.; Pihlavisto, P.; Hood, A.M.; Burchell, B.; Coughtrie, M.W. Conjugation of catechols by recombinant human sulfotransferases, UDP-glucuronosyltransferases, and soluble catechol O-methyltransferase: Structure-conjugation relationships and predictive models. Drug Metab. Dispos. 2003, 31, 1187–1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishikawa, M.; Masuyama, Y.; Nunome, M.; Yasuda, K.; Sakaki, T.; Ikushiro, S. Whole-cell-dependent biosynthesis of sulfo-conjugate using human sulfotransferase expressing budding yeast. Appl. Microbiol. Biot. 2018, 102, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Falany, C.N.; Xie, X.; Wang, J.; Ferrer, J.; Falany, J.L. Molecular cloning and expression of novel sulphotransferase-like cDNAs from human and rat brain. Biochem. J. 2000, 346 Pt 3, 857–864. [Google Scholar] [CrossRef]
- Allali-Hassani, A.; Pan, P.W.; Dombrovski, L.; Najmanovich, R.; Tempel, W.; Dong, A.; Loppnau, P.; Martin, F.; Thornton, J.; Edwards, A.M.; et al. Structural and chemical profiling of the human cytosolic sulfotransferases. PLoS Biol. 2007, 5, e97. [Google Scholar] [CrossRef]
- Hossain, M.I.; Marcus, J.M.; Lee, J.H.; Garcia, P.L.; Gagne, J.P.; Poirier, G.G.; Falany, C.N.; Andrabi, S.A. SULT4A1 Protects Against Oxidative-Stress Induced Mitochondrial Dysfunction in Neuronal Cells. Drug Metab. Dispos. 2019, 47, 949–953. [Google Scholar] [CrossRef] [PubMed]
- Freimuth, R.R.; Wiepert, M.; Chute, C.G.; Wieben, E.D.; Weinshilboum, R.M. Human cytosolic sulfotransferase database mining: Identification of seven novel genes and pseudogenes. Pharm. J. 2004, 4, 54–65. [Google Scholar] [CrossRef]
- Petrotchenko, E.V.; Pedersen, L.C.; Borchers, C.H.; Tomer, K.B.; Negishi, M. The dimerization motif of cytosolic sulfotransferases. FEBS Lett. 2001, 490, 39–43. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, S.; Sakakibara, Y.; Mishiro, E.; Kouriki, H.; Nobe, R.; Kurogi, K.; Yasuda, S.; Liu, M.C.; Suiko, M. Molecular cloning, expression and characterization of a novel mouse SULT6 cytosolic sulfotransferase. J. Biochem. 2009, 146, 399–405. [Google Scholar] [CrossRef]
- Zollner, A.; Dragan, C.A.; Pistorius, D.; Muller, R.; Bode, H.B.; Peters, F.T.; Maurer, H.H.; Bureik, M. Human CYP4Z1 catalyzes the in-chain hydroxylation of lauric acid and myristic acid. Biol. Chem. 2009, 390, 313–317. [Google Scholar] [CrossRef]
- Durairaj, P.; Fan, L.; Du, W.; Ahmad, S.; Mebrahtu, D.; Sharma, S.; Ashraf, R.A.; Liu, J.; Liu, Q.; Bureik, M. Functional expression and activity screening of all human cytochrome P450 enzymes in fission yeast. FEBS Lett. 2019, 593, 1372–1380. [Google Scholar] [CrossRef] [PubMed]
- Durairaj, P.; Fan, L.; Machalz, D.; Wolber, G.; Bureik, M. Functional characterization and mechanistic modeling of the human cytochrome P450 enzyme CYP4A22. FEBS Lett. 2019, 593, 2214–2225. [Google Scholar] [CrossRef]
- Durairaj, P.; Fan, L.; Sharma, S.S.; Jie, Z.; Bureik, M. Identification of new probe substrates for human CYP20A1. Biol. Chem. 2020, 401, 361–365. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Machalz, D.; Wang, S.; Li, Z.; Wolber, G.; Bureik, M. A common polymorphic variant of UGT1A5 displays increased activity due to optimized cofactor binding. FEBS Lett. 2018, 592, 1837–1846. [Google Scholar] [CrossRef] [Green Version]
- Wood, V.; Gwilliam, R.; Rajandream, M.A.; Lyne, M.; Lyne, R.; Stewart, A.; Sgouros, J.; Peat, N.; Hayles, J.; Baker, S.; et al. The genome sequence of Schizosaccharomyces pombe. Nature 2002, 415, 871–880. [Google Scholar] [CrossRef] [Green Version]
- Sambrook, J.; Russell, D.W. Molecular Cloning: A Laboratory Manual; CSHL Press: Woodbury, NY, USA, 2001. [Google Scholar]
- Alfa, C.; Fantes, P.; Hyams, J.; McLeod, M.; Warbrick, E. Experiments with Fission Yeast. A Laboratory Course Manual; Cold Spring Harbor Press: Cold Spring Harbor, NY, USA, 1993. [Google Scholar]
- Dragan, C.-A.; Zearo, S.; Hannemann, F.; Bernhardt, R.; Bureik, M. Efficient conversion of 11-deoxycortisol to cortisol (hydrocortisone) by recombinant fission yeast Schizosaccharomyces pombe. FEMS Yeast Res. 2005, 5, 621–625. [Google Scholar] [CrossRef] [Green Version]
- Maundrell, K. Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene 1993, 123, 127–130. [Google Scholar] [CrossRef]
- Maundrell, K. nmt1 of fission yeast. A highly transcribed gene completely repressed by thiamine. J. Biol. Chem. 1990, 265, 10857–10864. [Google Scholar] [PubMed]
- Okazaki, K.; Okazaki, N.; Kume, K.; Jinno, S.; Tanaka, K.; Okayama, H. High-frequency transformation method and library transducing vectors for cloning mammalian cDNAs by trans-complementation of Schizosaccharomyces pombe. Nucleic Acids Res. 1990, 18, 6485–6489. [Google Scholar] [CrossRef] [Green Version]
- Losson, R.; Lacroute, F. Plasmids carrying the yeast OMP decarboxylase structural and regulatory genes: Transcription regulation in a foreign environment. Cell 1983, 32, 371–377. [Google Scholar] [CrossRef]
- Roy, A.; Kucukural, A.; Zhang, Y. I-TASSER: A unified platform for automated protein structure and function prediction. Nat. Protoc. 2010, 5, 725–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y. The I-TASSER Suite: Protein structure and function prediction. Nat. Methods 2015, 12, 7–8. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinform. 2008, 9, 40. [Google Scholar] [CrossRef] [Green Version]
- Consortium, U. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019, 47, D506–D515. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.; Yang, J.; Zhang, Y. COFACTOR: An accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Res. 2012, 40, W471–W477. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Freddolino, P.L.; Zhang, Y. COFACTOR: Improved protein function prediction by combining structure, sequence and protein-protein interaction information. Nucleic Acids Res. 2017, 45, W291–W299. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Roy, A.; Zhang, Y. Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics 2013, 29, 2588–2595. [Google Scholar] [CrossRef] [PubMed]
- Gamage, N.U.; Duggleby, R.G.; Barnett, A.C.; Tresillian, M.; Latham, C.F.; Liyou, N.E.; McManus, M.E.; Martin, J.L. Structure of a human carcinogen-converting enzyme, SULT1A1. Structural and kinetic implications of substrate inhibition. J. Biol. Chem. 2003, 278, 7655–7662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teramoto, T.; Sakakibara, Y.; Inada, K.; Kurogi, K.; Liu, M.C.; Suiko, M.; Kimura, M.; Kakuta, Y. Crystal structure of mSULT1D1, a mouse catecholamine sulfotransferase. FEBS Lett. 2008, 582, 3909–3914. [Google Scholar] [CrossRef] [Green Version]
- Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 1997, 267, 727–748. [Google Scholar] [CrossRef] [Green Version]
- Gosavi, R.A.; Knudsen, G.A.; Birnbaum, L.S.; Pedersen, L.C. Mimicking of estradiol binding by flame retardants and their metabolites: A crystallographic analysis. Env. Health Perspect. 2013, 121, 1194–1199. [Google Scholar] [CrossRef]
- Halgren, T.A.; Nachbar, R.B. Merck molecular force field. IV. conformational energies and geometries for MMFF94. J. Comput. Chem. 1996, 17, 587–615. [Google Scholar] [CrossRef]
- Seidel, T.; Ibis, G.; Bendix, F.; Wolber, G. Strategies for 3D pharmacophore-based virtual screening. Drug Discov. Today Technol. 2010, 7, e221–e228. [Google Scholar] [CrossRef] [PubMed]
- Wolber, G.; Langer, T. LigandScout: 3-d pharmacophores derived from protein-bound Ligands and their use as virtual screening filters. J. Chem. Inf. Model 2005, 45, 160–169. [Google Scholar] [CrossRef]
- Wolber, G.; Sippl, W. Pharmacophore Identification and Pseudo-Receptor Modelling. In The Practice of Medicinal Chemistry, 4th ed.; Wermuth, C.G., Rognan, D., Eds.; Elsevier Ltd.: Philadelphia, PA, USA, 2015; pp. 489–507. [Google Scholar]
- Gamage, N.; Barnett, A.; Hempel, N.; Duggleby, R.G.; Windmill, K.F.; Martin, J.L.; McManus, M.E. Human sulfotransferases and their role in chemical metabolism. Toxicol. Sci. 2006, 90, 5–22. [Google Scholar] [CrossRef]
- Kurogi, K.; Sakakibara, Y.; Suiko, M.; Liu, M.C. Sulfation of vitamin D-3-related compounds-identification and characterization of the responsible human cytosolic sulfotransferases. FEBS Lett. 2017, 591, 2417–2425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Q.; Machalz, D.; Zollner, A.; Sorensen, E.J.; Wolber, G.; Bureik, M. Efficient substrate screening and inhibitor testing of human CYP4Z1 using permeabilized recombinant fission yeast. Biochem. Pharm. 2017, 146, 174–187. [Google Scholar] [CrossRef]
- Rakers, C.; Schumacher, F.; Meinl, W.; Glatt, H.; Kleuser, B.; Wolber, G. In Silico Prediction of Human Sulfotransferase 1E1 Activity Guided by Pharmacophores from Molecular Dynamics Simulations. J. Biol. Chem. 2016, 291, 58–71. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Skolnick, J. TM-align: A protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 2005, 33, 2302–2309. [Google Scholar] [CrossRef] [PubMed]
- Weyler, C.; Bureik, M.; Heinzle, E. Selective oxidation of UDP-glucose to UDP-glucuronic acid using permeabilized Schizosaccharomyces pombe expressing human UDP-glucose 6-dehydrogenase. Biotechnol. Lett. 2016, 38, 477–481. [Google Scholar] [CrossRef]
- Lock, A.; Rutherford, K.; Harris, M.A.; Hayles, J.; Oliver, S.G.; Bahler, J.; Wood, V. PomBase 2018: User-driven reimplementation of the fission yeast database provides rapid and intuitive access to diverse, interconnected information. Nucleic Acids Res. 2019, 47, D821–D827. [Google Scholar] [CrossRef] [Green Version]
- Cali, J.J.; Ma, D.; Wood, M.G.; Meisenheimer, P.L.; Klaubert, D.H. Bioluminescent assays for ADME evaluation: Dialing in CYP selectivity with luminogenic substrates. Expert Opin. Drug Metab. Toxicol. 2012, 8, 1115–1130. [Google Scholar] [CrossRef]
Strain | Parental Strain | Expressed Proteins | Genotype | Reference |
---|---|---|---|---|
NCYC2036 | None | None | h- ura4-D.18 | [25] |
YN5 | NCYC2036 | SULT1A1 | h- ura4-D.18 leu1::pCAD1- SULT1A1 | This study |
YN6 | NCYC2036 | SULT1A2 | h- ura4-D.18 leu1::pCAD1- SULT1A2 | This study |
YN7 | NCYC2036 | SULT1A3 | h- ura4-D.18 leu1::pCAD1- SULT1A3 | This study |
YN1 | NCYC2036 | SULT1B1 | h- ura4-D.18 leu1::pCAD1- SULT1B1 | This study |
YN8 | NCYC2036 | SULT1C2 | h- ura4-D.18 leu1::pCAD1- SULT1C2 | This study |
YN9 | NCYC2036 | SULT1C3a | h- ura4-D.18 leu1::pCAD1- SULT1C3a | This study |
YN10 | NCYC2036 | SULT1C3d | h- ura4-D.18 leu1::pCAD1- SULT1C3d | This study |
YN11 | NCYC2036 | SULT1C4 | h- ura4-D.18 leu1::pCAD1- SULT1C4 | This study |
YN12 | NCYC2036 | SULT1E1 | h- ura4-D.18 leu1::pCAD1- SULT1E1 | This study |
YN2 | NCYC2036 | SULT2A1 | h- ura4-D.18 leu1::pCAD1- SULT2A1 | This study |
YN13 | NCYC2036 | SULT2B1a | h- ura4-D.18 leu1::pCAD1- SULT2B1a | This study |
YN14 | NCYC2036 | SULT2B1b | h- ura4-D.18 leu1::pCAD1- SULT2B1b | This study |
YN17 | NCYC2036 | SULT4A1 | h- ura4-D.18 leu1::pCAD1- SULT4A1 | This study |
YN15 | NCYC2036 | SULT6B1 | h- ura4-D.18 leu1::pCAD1- SULT6B1 | This study |
YN18 | YN5 | SULT1A1 (twice) | h- ura4-D.18 leu1::pCAD1-SULT1A1/pREP1-SULT1A1 | This study |
YN19 | YN6 | SULT1A2 (twice) | h- ura4-D.18 leu1::pCAD1- SULT1A2/pREP1-SULT1A2 | This study |
YN20 | YN7 | SULT1A3 (twice) | h- ura4-D.18 leu1::pCAD1- SULT1A3/pREP1-SULT1A3 | This study |
YN3 | YN1 | SULT1B1 (twice) | h- ura4-D.18 leu1::pCAD1- SULT1B1/ pREP1-SULT1B1 | This study |
YN21 | YN8 | SULT1C2 (twice) | h- ura4-D.18 leu1::pCAD1- SULT1C2/pREP1-SULT1C2 | This study |
YN22 | YN9 | SULT1C3a (twice) | h- ura4-D.18 leu1::pCAD1- SULT1C3a/pREP1-SULT1C3a | This study |
YN23 | YN10 | SULT1C3d (twice) | h- ura4-D.18 leu1::pCAD1- SULT1C3d/pREP1-SULT1C3b | This study |
YN24 | YN11 | SULT1C4 (twice) | h- ura4-D.18 leu1::pCAD1- SULT1C4/pREP1-SULT1C4 | This study |
YN25 | YN12 | SULT1E1 (twice) | h- ura4-D.18 leu1::pCAD1- SULT1E1/pREP1-SULT1E1 | This study |
YN4 | YN2 | SULT2A1 (twice) | h- ura4-D.18 leu1::pCAD1- SULT2A1/pREP1-SULT2A1 | This study |
YN31 | YN13 | SULT2B1a (twice) | h- ura4-D.18 leu1::pCAD1- SULT2B1a/pREP1-SULT2B1a | This study |
YN27 | YN14 | SULT2B1b (twice) | h- ura4-D.18 leu1::pCAD1- SULT2B1b/pREP1-SULT2B1b | This study |
YN32 | YN17 | SULT4A1(twice) | h- ura4-D.18 leu1::pCAD1- SULT4A1/pREP1-SULT4A1 | This study |
YN29 | YN15 | SULT6B1 (twice) | h- ura4-D.18 leu1::pCAD1- SULT6B1/pREP1-SULT6B1 | This study |
SULT Isoform | Substrate Pose | d(OGSA-NHis) b[Å] | d(OGSA-SPAPS) b[Å] |
---|---|---|---|
SULT1E1 | X-ray a | 3.0 | 3.3 |
SULT1E1 | 1 | 3.4 | 3.6 |
SULT2A1 | 1 | 3.4 | 3.8 |
SULT4A1 | 1 | 2.8 | 4.2 |
SULT6B1 | 1 | 2.5 | 4.7 |
SULT6B1 | 2 | 2.6 | 5.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Machalz, D.; Wolber, G.; Parr, M.K.; Bureik, M. Functional Expression of All Human Sulfotransferases in Fission Yeast, Assay Development, and Structural Models for Isoforms SULT4A1 and SULT6B1. Biomolecules 2020, 10, 1517. https://doi.org/10.3390/biom10111517
Sun Y, Machalz D, Wolber G, Parr MK, Bureik M. Functional Expression of All Human Sulfotransferases in Fission Yeast, Assay Development, and Structural Models for Isoforms SULT4A1 and SULT6B1. Biomolecules. 2020; 10(11):1517. https://doi.org/10.3390/biom10111517
Chicago/Turabian StyleSun, Yanan, David Machalz, Gerhard Wolber, Maria Kristina Parr, and Matthias Bureik. 2020. "Functional Expression of All Human Sulfotransferases in Fission Yeast, Assay Development, and Structural Models for Isoforms SULT4A1 and SULT6B1" Biomolecules 10, no. 11: 1517. https://doi.org/10.3390/biom10111517
APA StyleSun, Y., Machalz, D., Wolber, G., Parr, M. K., & Bureik, M. (2020). Functional Expression of All Human Sulfotransferases in Fission Yeast, Assay Development, and Structural Models for Isoforms SULT4A1 and SULT6B1. Biomolecules, 10(11), 1517. https://doi.org/10.3390/biom10111517