Hemoglobin Reassembly of Antimicrobial Fragments from the Midgut of Triatoma infestans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Bacteria Inoculation and Intestinal Content Collection
2.3. Sample Fractionation
2.3.1. Acid and Solid Phase Extractions
2.3.2. Reverse Phase High-Performance Liquid Chromatography
2.4. Liquid Growth Inhibition Assay
2.5. Mass Spectrometry (LC/MS)
2.6. Computational Analysis and Sequences Alignment
3. Results and Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marengo-Rowe, A.J. Structure-function relations of human hemoglobins. Proc. (Bayl Univ Med. Cent.) 2006, 19, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Hobson, D.; Hirsch, J.G. The Antibacterial Activity of Hemoglobin. J. Exp. Med. 1958, 107, 167–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanov, V.T.; Karelin, A.A.; Philippova, M.M.; Nazimov, I.V.; Pletnev, V.Z. Hemoglobin as a source of endogenous bioactive peptides: The concept of tissue-specific peptide pool. Biopolymers 1997, 43, 171–188. [Google Scholar] [CrossRef]
- Schally, A.V.; Baba, Y.; Arimura, A.; Redding, T.W.; White, W.F. Evidence for peptide nature of LH and FSH-releasing hormones, Biochem. Biophys. Res. Commun. 1971, 42, 50–56. [Google Scholar] [CrossRef]
- Schally, A.V.; Baba, Y.; Nair, R.M.G. The Amino acid sequence of a peptide with growth hormone-releasing activity isolated from porcine hypotalamus. J. Biol. Chem. 1971, 246, 6647–6650. [Google Scholar]
- Schally, A.V.; Huang, W.Y.; Redding, T.W.; Coy, D.H.; Chihara, K.; Chang, R.C.C.; Raymond, V.; Labrie, F. Isolation, structural elucidation and synthesis of a tetradecapeptide with in vitro ACTH-releasing activity corresponding to residues 33–46 of the α-chain of porcine hemoglobin. Biochem. Biophys. Res. Commun 1978, 82, 582–588. [Google Scholar] [CrossRef]
- Chang, R.C.C.; Huang, W.Y.; Redding, T.W.; Arimura, A.; Coy, D.H.; Schally, A.V. Isolation and structure of several peptides from porcine hypothalamic. Biochem. Biophys. Acta 1980, 625, 266–273. [Google Scholar]
- Brantl, V.; Gramsch, C.; Lottspeich, F.; Mertz, R.; Jaeger, K.-H.; Herz, A. Novel opioid peptides derived from hemoglobin: Hemorphins. Eur. J. Pharmacol. 1986, 125, 309–310. [Google Scholar] [CrossRef]
- Glamsta, E.-L.; Marklund, A.; Hellman, U.; Wemstedt, C.; Terenius, L.; Nyberg, F. Isolation and characterization of a hemoglobinderived opioid peptide from the human pituitary gland. Regul. Pept. 1991, 34, 169–179. [Google Scholar] [CrossRef]
- Glamsta, E.-L.; Meyrson, B.; Silbening, J.; Terenius, L.; Nyberg, F. Isolation of a hemoglobin-derived opioid peptide from cerebrosoinal fluid of patients with cerebrovascular bleedings. B&hem. Biophys. Res. Commun. 1992, 184, 1060–1066. [Google Scholar]
- Erchegyi, J.; Kastin, A.J.; Zadina, J.E.; Qiu, X.-D. Isolation of a heptapeptide Val-Val-Tyr-Pro-Trp-Thr-Gln (valorphin) with some opiate activity. Int. J. Pept. Protein Res. 1992, 39, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Lantz, I.; Glamsta, E.-L.; Talback, L.; Nyberg, F. Hemorphins derived from hemoglobin have an inhibitory action on anniotensin converting enzyme activity. FEBS Lett. 1991, 287, 39–41. [Google Scholar] [CrossRef] [Green Version]
- Barkhudaryan, N.A.; Kellermann, J.; Galoyan, A.A.; Lottspeich, F. High molecular weight aspartic endopeptidase generates a coronaro- constrictory peptide from the p-chain of hemoglobin. FEBS Lett. 1993, 329, 215–218. [Google Scholar] [CrossRef] [Green Version]
- Mak, P.; W´ojcik, K.; Silberring, J.; Dubin, A. Antimicrobal peptides from heme-containing proteins: Hemocidins. Antonie van Leeuwenhoek 2000, 77, 197–200. [Google Scholar] [CrossRef]
- Mak, P.; Wojcik, K.; Silberring, J.; Dubin, A. Antimicrobial peptides derived from heme-containing proteins: Hemocidins. Antonie Van Leeuwenhoek 2004, 77, 197–207. [Google Scholar] [CrossRef]
- Fogaça, A.C.; da Silva, P.I., Jr.; Miranda, M.T.; Bianchi, A.G.; Miranda, A.; Ribolla, P.E.; Daffre, S. Antimicrobial activity of a bovine hemoglobin fragment in the tick Boophilus microplus. J. Biol Chem. 1999, 274, 25330–25334. [Google Scholar]
- Nakajima, Y.; Ogihara, K.; Taylor, D.; Yamakawa, M. Antibacterial hemoglobin fragments from the midgut of the soft tick, Ornithodoros moubata (Acari: Argasidae). J. Med. Entomol. 2003, 40, 78–81. [Google Scholar] [CrossRef]
- Belmonte, R.; Cruz, C.E.; Pires, J.R.; Daffre, S. Purification and characterization of Hb 98–114: A novel hemoglobin-derived antimicrobial peptide from the midgut of Rhipicephalus (Boophilus) microplus. Peptides 2012, 37, 120–127. [Google Scholar] [CrossRef]
- Diniz, L.C.L.; Miranda, A.; da Silva, P.I., Jr. Human Antimicrobial Peptide Isolated from Triatoma infestans Haemolymph, Trypanosoma cruzi-Transmitting Vector. Front. Cell Infect. Microbiol. 2018, 8, 354. [Google Scholar] [CrossRef]
- Bulet, P. Strategies for the discovery, isolation, and characterization of natural bioactive peptides from the immune system of invertebrates. Methods Mol. Biol. 2008, 494, 9–29. [Google Scholar]
- Wiegand, I.; Hilpert, K.; Hancock, R.E. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Hetru, C.; Bulet, P. Strategies for the isolation and characterization of antimicrobial peptides of invertebrates. Methods Mol. Biol. 1997, 78, 35–49. [Google Scholar] [PubMed]
- Poppel, A.K.; Vogel, H.; Wiesner, J.; Vilcinskas, A. Antimicrobial peptides expressed in medicinal maggots of the blow fly Lucilia sericata show combinatorial activity against bacteria. Antimicrob. Agents Chemother. 2015, 59, 2508–2514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, P.I., Jr.; Daffre, S.; Bulet, P. Isolation and characterization of gomesin, an 18-residue cysteine-rich defense peptide from the spider Acanthoscurria gomesiana hemocytes with sequence similarities to horseshoe crab antimicrobial peptides of the tachyplesin family. J. Biol. Chem. 2000, 275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenzini, D.M.; Da Silva, P.I., Jr.; Fogaca, A.C.; Bulet, P.; Daffre, S. Acanthoscurrin: A novel glycine-rich antimicrobial peptide constitutively expressed in the hemocytes of the spider Acanthoscurria gomesiana. Dev. Comp. Immunol. 2003, 27, 781–791. [Google Scholar] [CrossRef]
- Riciluca, K.C.; Sayegh, R.S.; Melo, R.L.; Silva, P.I., Jr. Rondonin an antifungal peptide from spider (Acanthoscurria rondoniae) haemolymph. Results Immunol. 2012, 2, 66–71. [Google Scholar] [CrossRef] [Green Version]
- Universal Protein. Available online: www.uniprot.org (accessed on 22 May 2019).
- National Center for Biotechnology Information. Available online: www.ncbi.nlm.nih.gov (accessed on 22 May 2019).
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef]
- Peptide Property Calculator. Available online: http://pepcalc.com/ (accessed on 16 November 2019).
- APD3: Antimicrobial Peptide Calculator and Predictor. Available online: http://aps.unmc.edu/AP/prediction/prediction_main.php (accessed on 16 November 2019).
- Wang, G.; Li, X.; Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016, 44, 1087–1093. [Google Scholar] [CrossRef] [Green Version]
- Barrett, F.M. Absorption of fluid from the anterior midgut of Rhodnius. J. Insect Physiol. 1982, 28, 335–341. [Google Scholar] [CrossRef]
- De Azambuja, P.; Guimares, J.A.; Garcia, E.S. Haemolytic factor from the crop of Rhodnius prolixus: Evidence and partial characterisation. J. Insect Physiol. 1983, 29, 833–837. [Google Scholar] [CrossRef]
- Lehane, M.J. Managing the blood meal. In The biology of blood-sucking insects. Cambridge University Press: Cambridge, UK, 2005; pp. 84–115. [Google Scholar]
- Schaub, G.A. Kissing bugs. In Encyclopedia of Parasitology, 3rd ed.; Mehlhorn, H., Ed.; Springer-Verlag: Heidelberg, Germany, 2008; pp. 684–686. [Google Scholar]
- Albritton, A.B. Standard Value in Blood; W.B. Saunders: Philadelphia, PA, USA, 1961; p. 19. [Google Scholar]
- Altman, P.L.; Dittmer, D.S. Blood and other body fluids. Respiration and Circulation; MDI: Federation of American Societies of Experimental Biology: Rockville, MA, USA, 1971; Volume 540. [Google Scholar]
- Terra, W.R.; Ferreira, C. Insect digestive enzymes – properties, compartmentalization and function. Comp. Biochem. Physiol. B 1994, 109, 1–62. [Google Scholar] [CrossRef]
- Terra, W.R.; Ferreira, C.; Garcia, E.S. Origin, distribution, properties and functions of them major Rhodnius prolixus midgut hydrolases. Insect Biochem. 1988, 18, 423–434. [Google Scholar] [CrossRef]
- Lopez-Ordoñez, T.; Rodriguez, M.H.; Hernandez-Hernandez, F.D. Characterization of a cDNA encoding a cathepsin L-like protein of Rhodnius prolixus. Insect Mol. Biol. 2011, 10, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Kollien, A.H.; Waniek, P.J.; Nisbet, A.J.; Billingsley, P.F.; Schaub, G.A. Activity and sequence characterization of two cysteine proteases in the digestive tract of the reduviid bug Triatoma infestans. Insect Mol. Biol. 2004, 13, 569–579. [Google Scholar] [CrossRef]
- Barrett, A.J.; Rawlings, N.D.; Wössner, J.F. Handbook of Proteolytic Enzymes, 2nd ed.; Elsevier: London, UK, 2004; p. 2368. [Google Scholar]
- Balczun, C.; Pausch, J.; Schaub, G. Blood digestion in triatomines—a review. Mitt. Dtsch. Ges. Allg. Angew. Entomol. 2012, 18, 331–334. [Google Scholar]
- Billingsley, P.F.; Downe, A.E.R. Cellular localization of aminopeptidase in the midgut of Rhodnius prolixus Stål (Hemiptera, Reduviidae) during blood digestion. Cell Tissue Res. 1985, 241, 421–428. [Google Scholar] [CrossRef]
- Ferreira, C.; Ribeiro, A.F.; Garcia, E.S.; Terra, W.R. Digestive enzymes trapped between and associated with the double plasma membranes of Rhodnius prolixus posterior midgut cells. Insect Biochem. 1988, 18, 521–530. [Google Scholar] [CrossRef]
- Mihajlovic, M.; Lazaridis, T. Antimicrobial peptides bind more strongly to membrane pores. Biochim. Biophys. Acta 2010, 1798, 1494–1502. [Google Scholar] [CrossRef] [Green Version]
- Powers, J.P.S.; Hancock, R.E.W. The relationship between peptide structure and bacterial activity. Peptides 2003, 24, 1681–1691. [Google Scholar] [CrossRef]
- Liepke, C.; Baxmann, S.; Heine, C.; Breithaupt, N.; Ständker, L.; Forssmann, W.-G. Human hemoglobin-derived peptides exhibit antimicrobial activity: A class of host defense peptides. J. Chromatogr. B. 2003, 791, 345–356. [Google Scholar] [CrossRef]
- Catiau, L.; Traisnel, J.; Chihib, N.-E.; Le Flem, G.; Blanpain, A.; Melnyk, O.; Guillochon, D.; Nedjar-Arroume, N. RYH: A minimal peptidic sequence obtained from beta-chain hemoglobin exhibiting an antimicrobial activity. Peptides 2011, 32, 1463–1468. [Google Scholar]
- Catiau, L.; Traisnel, J.; Delval-Dubois, V.; Chihib, N.-E.; Guillochon, D.; Nedjar-Arroume, N. Minimal antimicrobial peptidic sequence from hemoglobin alpha-chain: KYR. Peptides 2011, 32, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Froidevaux, R.; Krier, F.; Nedjar-Arroume, N.; Vercaigne-Marko, D.; Kosciarz, E.; Ruckebusch, C.; Dhulster, P.; Guillochon, D. Antibacterial activity of a pepsin-derived bovine hemoglobin fragment. FEBS Lett. 2001, 491. [Google Scholar] [CrossRef]
- Daoud, R.; Dubois, V.; Bors-Dodita, L.; Nedjar-Arroume, N.; Krier, F.; Chihib, N.-E.; Mary, P.; Kouach, M.; Briand, G.; Guillochon, D. New antibacterial peptide derived from bovine hemoglobin. Peptides 2005, 26, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Bah, C.S.F.; Carne, A.; McConnell, M.A.; Mros, S.; Bekhit, A.E.-D.A. Production of bioactive peptide hydrolysates from deer, sheep, pig and cattle red blood cell fractions using plant and fungal protease preparations. Food Chem. 2016, 202, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Nedjar-Arroume, N.; Dubois-Delval, V.; Miloudi, K.; Daoud, R.; Krier, F.; Kouach, M.; Briand, G.; Guillochon, D. Isolation and characterization of four antibacterial peptides from bovine hemoglobin. Peptides 2006, 27, 2082–2089. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Xu, M.; Hang, B.; Wang, L.; Wang, Q.; Chen, J.; Song, T.; Fu, D.; Wang, Z.; Wang, S.; et al. Isolation and characterization of an antimicrobial peptide from bovine hemoglobin a subunit. World J. Microbiol. Biotechnol. 2010, 27, 767–771. [Google Scholar] [CrossRef]
- Roque, A.L.R.; Jansen, A.M. Reservatórios do Trypanosoma cruzi e sua relação com os vetores; Vetores da doença de chagas no Brasil [online].; Galvão, C., Ed.; Sociedade Brasileira de Zoologia: Curitiba, Brazil, 2014; pp. 76–88. [Google Scholar]
Chromatogram Label | Retention Time | Activity |
---|---|---|
↓ | 24.80 | M. luteus |
↓ | 28.28 | M. luteus |
↓ | 35.50 | M. luteus |
↓ | 43.00 | M. luteus |
↓ | 56.40 | M. luteus |
↓ | 64.50 | M. luteus |
↓ | 75.30 | M. luteus |
↓ | 88.80 | M. luteus |
¢ | 48.10 | M. luteus and E. coli |
¢ | 61.70 | M. luteus and E. coli |
¢ | 93.70 | M. luteus and E. coli |
¢ | 94.8 | M. luteus and E. coli |
£ | 81.80 | M. luteus and S. aureus |
Fraction | Retention Time | Fragment |
---|---|---|
A1 | 24.80 | VLSGEDKSN (α 2-10) |
A1 | 24.80 | LASHHPAD (α 110-117) |
A2 | 64.50 | ASFPTTKTYFPHF (α 45-57) |
A2 | 64.50 | DALASAAGHLDDLPGALSALSDLHAHKLRVD (α 75–95) |
A2 | 64.50 | LASHHPADFTPAVHASLDKFLASVST (α 119–145) |
A3 | 81.80 | ASFPTTKTYFPHFD (α 45–58) |
A3 | 81.80 | ALASAAGHLDDLPGALSALSDLHAHKLRVDPVNFKLLSH (α 76–104) |
A3 | 81.80 | LLVTLASHHPADFTPAVHASLDKFLASVSTVL (α 106–147) |
Fraction | Retention Time | Sequence |
---|---|---|
B1 | 28.28 | HLTDAEKSA (β2_ 2-10) |
B1 | 28.28 | GDLSSASAIMGN (β2_ 46-57) |
B2 | 35.50 | VHLTDAEKSA (β2_1-10) |
B2 | 35.50 | AKVNPDEVGGEA (β2_16-27) |
B2 | 35.50 | SSASAIMGNPKVKAHGKKVITA (β2_ 49-70) |
B2 | 35.50 | EGLKNLDN (β2_73-80) |
B2 | 35.50 | FTPAAQAAFQKVVAG (β2_122-136) |
B3 | 43.00 | VHLTDAEKSAVS (β2_1-12) |
B3 | 43.00 | PKVKAHGKKVITAFN (β2_58-72) |
B3 | 43.00 | IVLGHHLGKDFTPAAQAA (β2_112-129) |
B4 | 48.10 | VHLTDAEKAAVSC (β1_ 2-14) |
B4 | 48.10 | AKVKAHGKKVITAFNDGLNHLDSLKGTFAS (β1_ 59-88) |
B4 | 48.10 | AGVATALAHKYH (β1_135-147) |
B5 | 56.40 | VVYPWTQ (β1_34-40) |
B5 | 56.40 | AKVKAHGKKVITA (β1_ 59-71) |
B5 | 56.40 | GLNHLDSLKGTF (β1_75-86) |
B5 | 56.40 | SELHCDKLHVD (β1_90-100) |
B6 | 61.70 | VHLTDAEKAAVSCL (β1_2-15) |
B6 | 61.70 | SDEVGGEALGRLL (β1_21-33) |
B6 | 61.70 | SELHCDKLHVD (β1_ 90-100) |
B6 | 61.70 | FRLLGNM β (β1_104-110) |
B6 | 61.70 | FQKVVAGVATALAHKYH (β1_131-147) |
B7 | 93.70 | PENFRLLG (β2_100-107) |
B7 | 93.70 | IVLGHHLGKDFTPAAQAAFQKVVAGVATALAHKYH (β2_112-146) |
Fraction | Retention Time | Fragment |
---|---|---|
A1 | 24.80 | VLSGEDKSN (α 2–10) |
A2 | 64.50 | LPGALSALSDLHAHKLRVD (α 77–95) |
A3 | 81.80 | LPGALSALSDLHAHKLRVD (α 77–95) |
B1 | 28.28 | HLTDAEKSA (β2_ 2–10) |
B2 | 35.50 | VHLTDAEKSA (β2_1–10) |
B3 | 43.00 | AKVKAHGKKVITAFND (β1_59–74) |
B4 | 48.10 | AKVKAHGKKVITAFNDGLN (β1_ 59–77) |
B5 | 56.40 | GLNHLDSLKG (β1_75–84) |
B6 | 61.70 | FQKVVAGVATALAHKYH (β1_131–147) |
B7 | 93.70 | TPAAQAAFQKVVAGVATALAHKYH (β2_123–147) |
Fraction | Fragment | Charge pH 7 | Total Hydrophobic Ratio | Same Surface brk H.R.* |
---|---|---|---|---|
A2 | α 75-95 | -2.7 | 48% | 12 |
A2 | α 119-145 | -0.7 | 46% | 8 |
A3 | α 76-104 | -0.6 | 48% | 14 |
A3 | α 106-147 | -0.7 | 53% | 14 |
B1 | β2_2-10 | -0.9 | 33% | 3 |
B1 | β2_46-57 | -1 | 41% | 4 |
B2 | β2_1-10 | -0.9 | 40% | 3 |
B2 | β2_49-70 | 4.1 | 40% | 6 |
B2 | β2_73-80 | -1 | 25% | 2 |
B2 | β2_122-136 | 1 | 60% | 6 |
B3 | β2_1-12 | -0.9 | 41% | 3 |
B3 | β2_58-72 | 4.1 | 40% | 4 |
B3 | β2_112-129 | 0.2 | 50% | 6 |
B4 | β1_2-14 | -1 | 53% | 4 |
B4 | β1_59-88 | 3.2 | 40% | 8 |
B4 | β1_135-147 | 1.2 | 50% | 4 |
B5 | β1_59-71 | 4.1 | 46% | 3 |
B5 | β1_75-86 | 0.1 | 33% | 4 |
B6 | β1_2-15 | -1 | 57% | 6 |
B6 | β1_21-33 | -2 | 38% | 3 |
B6 | β1_104-110 | 1 | 57% | 3 |
B6 | β1_131-147 | 2.2 | 52% | 6 |
B7 | β2_100-107 | 0 | 37% | 2 |
B7 | β2_112-146 | 2.4 | 51% | 14 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diniz, L.C.L.; da Silva Junior, P.I. Hemoglobin Reassembly of Antimicrobial Fragments from the Midgut of Triatoma infestans. Biomolecules 2020, 10, 261. https://doi.org/10.3390/biom10020261
Diniz LCL, da Silva Junior PI. Hemoglobin Reassembly of Antimicrobial Fragments from the Midgut of Triatoma infestans. Biomolecules. 2020; 10(2):261. https://doi.org/10.3390/biom10020261
Chicago/Turabian StyleDiniz, Laura Cristina Lima, and Pedro Ismael da Silva Junior. 2020. "Hemoglobin Reassembly of Antimicrobial Fragments from the Midgut of Triatoma infestans" Biomolecules 10, no. 2: 261. https://doi.org/10.3390/biom10020261
APA StyleDiniz, L. C. L., & da Silva Junior, P. I. (2020). Hemoglobin Reassembly of Antimicrobial Fragments from the Midgut of Triatoma infestans. Biomolecules, 10(2), 261. https://doi.org/10.3390/biom10020261