Systematic Analysis of Monoterpenes: Advances and Challenges in the Treatment of Peptic Ulcer Diseases
Abstract
:1. Introduction
2. Pathophysiology
3. Treatment and Management of PUD
4. Monoterpenes, Peptic Ulcers, and H. pylori
5. NSAIDs
6. Ethanol
7. Ischemia-Reperfusion (I/R)
8. Acetic Acid
9. Mechanisms of Action of the Peptic Ulcers
10. Monoterpenes with Anti-H. pylori Effects
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Proctor, M.J.; Deans, C. Complications of peptic ulcers. Surgery 2014, 32, 599–607. [Google Scholar] [CrossRef]
- Lanas, A.; Chan, F.K. Peptic ulcer disease. Lancet 2017, 6736, 1–12. [Google Scholar] [CrossRef]
- Malfertheiner, P.; Schulz, C. Peptic Ulcer: Chapter Closed? Dig. Dis. 2020, 38, 112–116. [Google Scholar] [CrossRef]
- Brown, L.F.; Wilson, D.E. Gastroduodenal ulcers: Causes, diagnosis, prevention and treatment. Compr. Ther. 1999, 25, 30–38. [Google Scholar] [CrossRef]
- Dimaline, R.; Varro, A. Attack and defence in the gastric epithelium - a delicate balance. Exp. Physiol. 2007, 92, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Amaral, G.P.; de Carvalho, N.R.; Barcelos, R.P.; Dobrachinski, F.; de Lima Portella, R.; da Silva, M.H.; Lugokenski, T.H.; Dias, G.R.M.; da Luz, S.C.A.; Boligon, A.A.; et al. Protective action of ethanolic extract of Rosmarinus officinalis L. in gastric ulcer prevention induced by ethanol in rats. Food Chem. Toxicol. 2013, 55, 48–55. [Google Scholar] [CrossRef]
- Júnior, F.E.B.; de Oliveira, D.R.; Boligon, A.A.; Athayde, M.L.; Kamdem, J.P.; Macedo, G.E.; da Silva, G.F.; de Menezes, I.R.A.; Costa, J.G.M.; Coutinho, H.D.M.; et al. Protective effects of Croton campestris A. St-Hill in different ulcer models in rodents: Evidence for the involvement of nitric oxide and prostaglandins. J. Ethnopharmacol. 2014, 153, 469–477. [Google Scholar] [CrossRef] [Green Version]
- Wallace, J.L. Prostaglandins, NSAIDs, and Gastric Mucosal Protection: Why Doesn’t the Stomach Digest Itself? Physiol. Rev. 2008, 88, 1547–1565. [Google Scholar] [CrossRef]
- Wang, G.Z.; Wang, J.F. Effects of Helicobacter pylori and Non-Steroidal Anti-Inflammatory Drugs on Peptic Ulcer. In Peptic Ulcer Disease; InTech: London, UK, 2011; pp. 29–38. [Google Scholar]
- Allen, A.; Flemström, G. Gastroduodenal mucus bicarbonate barrier: Protection against acid and pepsin. Am. J. Physiol. Physiol. 2005, 288, C1–C19. [Google Scholar] [CrossRef] [Green Version]
- Tarnawski, A.; Ahluwalia, A.; Jones, M.K. Gastric cytoprotection beyond prostaglandins: Cellular and molecular mechanisms of gastroprotective and ulcer healing actions of antacids. Curr. Pharm. Des. 2013, 19, 126–132. [Google Scholar]
- Laine, L.; Takeuchi, K.; Tarnawski, A. Gastric Mucosal Defense and Cytoprotection: Bench to Bedside. Gastroenterology 2008, 135, 41–60. [Google Scholar] [CrossRef] [PubMed]
- Zatorski, H. Pathophysiology and Risk Factors in Peptic Ulcer Disease. In Introduction to Gastrointestinal Diseases; Springer International Publishing: Cham, Switzerland, 2017; Volume 2, pp. 7–20. [Google Scholar]
- Sidahmed, H.M.; Azizan, A.H.; Mohan, S.; Abdulla, M.A.; Abdelwahab, S.I.; Taha, M.M.; Hadi, H.; Ketuly, K.A.; Hashim, N.M.; Loke, M.F.; et al. Gastroprotective effect of desmosdumotin C isolated from Mitrella kentii against ethanol-induced gastric mucosal hemorrhage in rats: Possible involvement of glutathione, heat-shock protein-70, sulfhydryl compounds, nitric oxide, and anti-Helicobacter pylo. BMC Complement. Altern. Med. 2013, 13, 183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warren, J.R.; Marshall, B. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet 1983, 1, 1273–1275. [Google Scholar] [PubMed]
- Rosso, C.; Fagoonee, S.; Altruda, F.; Pellicano, R. Update on colonization, survival and antibiotic resistance of Helicobacter pylori at the molecular level. Minerva Biotec 2015, 27, 149–157. [Google Scholar]
- Pellicano, R.; Ribaldone, D.G..; Fagoonee, S..; Astegiano, M..; Saracco, G.M.; Mégraud, F. A 2016 panorama of Helicobacter pylori infection: Key messages for clinicians. Panminerva Med. 2016, 58, 304–317. [Google Scholar]
- Malfertheiner, P.; Chan, F.K.; McColl, K. EL Peptic ulcer disease. Lancet 2009, 374, 1449–1461. [Google Scholar] [CrossRef]
- Lichtenberger, L.M. The Hydrophobic Barrier Properties of Gastrointestinal Mucus. Annu. Rev. Physiol. 1995, 57, 565–583. [Google Scholar] [CrossRef]
- Tziona, P.; Theodosis-Nobelos, P.; Rekka, E.A. Medicinal Chemistry Approaches of Controlling Gastrointestinal Side Effects of Non-Steroidal Anti-Inflammatory Drugs. Endogenous Protective Mechanisms and Drug Design. Med. Chem. 2017, 13, 408–420. [Google Scholar] [CrossRef]
- Scally, B.; Emberson, J.R.; Spata, E.; Reith, C.; Davies, K.; Halls, H.; Holland, L.; Wilson, K.; Bhala, N.; Hawkey, C.; et al. Effects of gastroprotectant drugs for the prevention and treatment of peptic ulcer disease and its complications: A meta-analysis of randomised trials. lancet. Gastroenterol. Hepatol. 2018, 3, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Chey, W.D.; Wong, B.C.Y. Practice Parameters Committee of the American College of Gastroenterology American College of Gastroenterology Guideline on the Management of Helicobacter pylori Infection. Am. J. Gastroenterol. 2007, 102, 1808–1825. [Google Scholar] [CrossRef]
- Fock, K.M.; Katelaris, P.; Sugano, K.; Ang, T.L.; Hunt, R.; Talley, N.J.; Lam, S.K.; Xiao, S.-D.; Tan, H.J.; Wu, C.-Y.; et al. Second Asia-Pacific Consensus Guidelines for Helicobacter pylori infection. J. Gastroenterol. Hepatol. 2009, 24, 1587–1600. [Google Scholar] [CrossRef] [PubMed]
- Fallone, C.A.; Chiba, N.; van Zanten, S.V.; Fischbach, L.; Gisbert, J.P.; Hunt, R.H.; Jones, N.L.; Render, C.; Leontiadis, G.I.; Moayyedi, P.; et al. The Toronto Consensus for the Treatment of Helicobacter pylori Infection in Adults. Gastroenterology 2016, 151, 51–69. [Google Scholar] [CrossRef] [Green Version]
- Malfertheiner, P.; Megraud, F.; O’Morain, C.A.; Gisbert, J.P.; Kuipers, E.J.; Axon, A.T.; Bazzoli, F.; Gasbarrini, A.; Atherton, J.; Graham, D.Y.; et al. Management of Helicobacter pylori infection—the Maastricht V/Florence Consensus Report. Gut 2017, 66, 6–30. [Google Scholar] [CrossRef] [Green Version]
- Fischbach, L.; Evans, E.L. Meta-analysis: The effect of antibiotic resistance status on the efficacy of triple and quadruple first-line therapies for Helicobacter pylori. Aliment. Pharmacol. Ther. 2007, 26, 343–357. [Google Scholar] [CrossRef] [PubMed]
- Broutet, N.; Tchamgoué, S.; Pereira, E.; Lamouliatte, H.; Salamon, R.; Mégraud, F. Risk factors for failure of Helicobacter pylori therapy--results of an individual data analysis of 2751 patients. Aliment. Pharmacol. Ther. 2003, 17, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Oshima, T.; Miwa, H. Potent Potassium-competitive Acid Blockers: A New Era for the Treatment of Acid-related Diseases. J. Neurogastroenterol. Motil. 2018. [Google Scholar] [CrossRef] [PubMed]
- Lanas, A. We Are Using Too Many PPIs and We Need to Stop: A European Perspective. Am. J. Gastroenterol. 2016, 111, 1085–1086. [Google Scholar] [CrossRef]
- Lehours, P.; Ferrero, R.L. Review: Helicobacter: Inflammation, immunology, and vaccines. Helicobacter 2019, 24. [Google Scholar] [CrossRef] [Green Version]
- Talebi Bezmin Abadi, A. Helicobacter pylori treatment: New perspectives using current experience. J. Glob. Antimicrob. Resist. 2017, 8, 123–130. [Google Scholar] [CrossRef]
- Brierley, S.M.; Kelber, O. Use of natural products in gastrointestinal therapies. Curr. Opin. Pharmacol. 2011, 11, 604–611. [Google Scholar] [CrossRef]
- Kangwan, N.; Park, J.-M.; Kim, E.-H.; Hahm, K.B. Quality of healing of gastric ulcers: Natural products beyond acid suppression. World J. Gastrointest. Pathophysiol. 2014, 5, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta Gen. Subj. 2013, 1830, 3670–3695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Z. The modification of natural products for medical use. Acta Pharm. Sin. B 2017, 7, 119–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filho, R.B. Contribuição da fitoquímica para o desenvolvimento de um país emergente. Quim. Nova 2010, 33, 229–239. [Google Scholar] [CrossRef] [Green Version]
- Barreto, R.; Albuquerque-Júnior, R.; Araújo, A.; Almeida, J.; Santos, M.; Barreto, A.; DeSantana, J.; Siqueira-Lima, P.; Quintans, J.; Quintans-Júnior, L. A Systematic Review of the Wound-Healing Effects of Monoterpenes and Iridoid Derivatives. Molecules 2014, 19, 846–862. [Google Scholar] [CrossRef] [PubMed]
- Quintans, J.S.S.; Shanmugam, S.; Heimfarth, L.; Araújo, A.A.S.; Almeida, J.R.G.d.S.; Picot, L.; Quintans-Júnior, L.J. Monoterpenes modulating cytokines - A review. Food Chem. Toxicol. 2019, 123, 233–257. [Google Scholar] [CrossRef] [PubMed]
- Bergonzelli, G.E.; Donnicola, D.; Porta, N.; Corthésy-Theulaz, I.E. Essential oils as components of a diet-based approach to management of Helicobacter infection. Antimicrob. Agents Chemother. 2003, 47, 3240–3246. [Google Scholar] [CrossRef] [Green Version]
- Zwenger, S.; Basu, C. Plant terpenoids: Applications and future potentials. Biotechnol. Mol. Biol. Rev. 2008, 3, 1–7. [Google Scholar]
- Lange, B.M.; Ahkami, A. Metabolic engineering of plant monoterpenes, sesquiterpenes and diterpenes-current status and future opportunities. Plant Biotechnol. J. 2013, 11, 169–196. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.V.; Guimarães, A.G.; Silva, E.R.S.; Sousa-Neto, B.P.; Machado, F.D.F.; Quintans-Júnior, L.J.; Arcanjo, D.D.R.; Oliveira, F.A.; Oliveira, R.C.M. Anti-Inflammatory and Anti-Ulcer Activities of Carvacrol, a Monoterpene Present in the Essential Oil of Oregano. J. Med. Food 2012, 15, 120814114042001. [Google Scholar] [CrossRef] [PubMed]
- Rozza, A.L.; de Mello Moraes, T.; Kushima, H.; Tanimoto, A.; Marques, M.O.M.; Bauab, T.M.; Hiruma-Lima, C.A.; Pellizzon, C.H. Gastroprotective mechanisms of Citrus lemon (Rutaceae) essential oil and its majority compounds limonene and β-pinene: Involvement of heat-shock protein-70, vasoactive intestinal peptide, glutathione, sulfhydryl compounds, nitric oxide and prostaglandin E. Chem. Biol. Interact. 2011, 189, 82–89. [Google Scholar] [CrossRef] [PubMed]
- de Souza, M.C.; Vieira, A.J.; Beserra, F.P.; Pellizzon, C.H.; Nóbrega, R.H.; Rozza, A.L. Gastroprotective effect of limonene in rats: Influence on oxidative stress, inflammation and gene expression. Phytomedicine 2019, 53, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Nishijima, C.M.; Ganev, E.G.; Mazzardo-Martins, L.; Martins, D.F.; Rocha, L.R.M.M.; Santos, A.R.S.S.; Hiruma-Lima, C.A. Citral: A monoterpene with prophylactic and therapeutic anti-nociceptive effects in experimental models of acute and chronic pain. Eur. J. Pharmacol. 2014, 736, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Koziol, A.; Stryjewska, A.; Librowski, T.; Salat, K.; Gawel, M.; Moniczewski, A.; Lochynski, S. An Overview of the Pharmacological Properties and Potential Applications of Natural Monoterpenes. Mini Rev. Med. Chem. 2015, 14, 1156–1168. [Google Scholar] [CrossRef]
- Guimarães, A.G.; Quintans, J.S.S.; Quintans-Júnior, L.J. Monoterpenes with Analgesic Activity-A Systematic Review. Phyther. Res. 2013, 27, 1–15. [Google Scholar] [CrossRef]
- de Cássia da Silveira e Sá, R.; Andrade, L.; de Sousa, D. A Review on Anti-Inflammatory Activity of Monoterpenes. Molecules 2013, 18, 1227–1254. [Google Scholar] [CrossRef]
- Sobral, M.V.; Xavier, A.L.; Lima, T.C.; de Sousa, D.P. Antitumor activity of monoterpenes found in essential oils. Sci. World J. 2014, 2014, 953451. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, X.; Mo, H.; Zhang, L.; Zhang, L.; Zhou, S.; Ma, X.; Zhang, B. Gastroprotective Effects of Ascaridole on Gastric Ulcer in Rats. Chin. Herb. Med. 2012, 4, 58–62. [Google Scholar]
- Rocha Caldas, G.F.; Oliveira, A.R.; Araújo, A.V.; Lafayette, S.S.L.; Albuquerque, G.S.; Silva-Neto Jda, C.; Costa-Silva, J.H.; Ferreira, F.; da Costa, J.G.M.; Wanderley, A.G. Gastroprotective Mechanisms of the Monoterpene 1,8-Cineole (Eucalyptol). PLoS ONE 2015, 10, e0134558. [Google Scholar] [CrossRef] [Green Version]
- Siqueira, B.P.J.; Menezes, C.T.; Silva, J.P.; de Sousa, D.P.; Batista, J.S. Antiulcer effect of epoxy-carvone. Rev. Bras. Farmacogn. 2012, 22, 144–149. [Google Scholar] [CrossRef] [Green Version]
- da Silva, F.V.; de Barros Fernandes, H.; Oliveira, I.S.; Viana, A.F.S.C.; da Costa, D.S.; Lopes, M.T.P.; de Lira, K.L.; Quintans-Júnior, L.J.; de Sousa, A.A.; de Cássia Meneses Oliveira, R. Beta-cyclodextrin enhanced gastroprotective effect of (−)-linalool, a monoterpene present in rosewood essential oil, in gastric lesion models. Naunyn. Schmiedebergs. Arch. Pharmacol. 2016, 389, 1245–1251. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Zhao, Y.; Firempong, C.K.; Xu, X. Preparation, characterization and pharmacokinetic studies of linalool-loaded nanostructured lipid carriers. Pharm. Biol. 2016, 54, 2320–2328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barocelli, E.; Calcina, F.; Chiavarini, M.; Impicciatore, M.; Bruni, R.; Bianchi, A.; Ballabeni, V. Antinociceptive and gastroprotective effects of inhaled and orally administered Lavandula hybrida Reverchon “Grosso” essential oil. Life Sci. 2004, 76, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Rozza, A.L.; Meira de Faria, F.; Souza Brito, A.R.; Pellizzon, C.H. The gastroprotective effect of menthol: Involvement of anti-apoptotic, antioxidant and anti-inflammatory activities. PLoS ONE 2014, 9, e86686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozza, A.L.; Hiruma-Lima, C.A.; Takahira, R.K.; Padovani, C.R.; Pellizzon, C.H. Effect of menthol in experimentally induced ulcers: Pathways of gastroprotection. Chem. Biol. Interact. 2013, 206, 272–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viana, A.F.S.C.; da Silva, F.V.; Fernandes, H.D.B.; Oliveira, I.S.; Braga, M.A.; Nunes, P.I.G.; de Viana, D.A.; de Sousa, D.P.; Rao, V.S.; Oliveira, R.C.M.; et al. Gastroprotective effect of (-)-myrtenol against ethanol-induced acute gastric lesions: Possible mechanisms. J. Pharm. Pharmacol. 2016, 68, 1085–1092. [Google Scholar] [CrossRef]
- González-Ramírez, A.E.; González-Trujano, M.E.; Orozco-Suárez, S.A.; Alvarado-Vásquez, N.; López-Muñoz, F.J. Nerol alleviates pathologic markers in the oxazolone-induced colitis model. Eur. J. Pharmacol. 2016, 776, 81–89. [Google Scholar] [CrossRef]
- Pinheiro, M.A.; Magalhães, R.; Torres, D.; Cavalcante, R.; Mota, F.X.; Oliveira Coelho, E.A.; Moreira, H.; Lima, G.; da Costa Araújo, P.; Cardoso, J.L.; et al. Gastroprotective effect of alpha-pinene and its correlation with antiulcerogenic activity of essential oils obtained from Hyptis species. Pharmacogn. Mag. 2015, 11, 123. [Google Scholar]
- Souza, R.; Cardoso, M.; Menezes, C.; Silva, J.; De Sousa, D.; Batista, J. Gastroprotective activity of α-terpineol in two experimental models of gastric ulcer in rats. Daru 2011, 19, 277–281. [Google Scholar]
- Zeren, S.; Bayhan, Z.; Kocak, F.E.; Kocak, C.; Akcılar, R.; Bayat, Z.; Simsek, H.; Duzgun, S.A. Gastroprotective effects of sulforaphane and thymoquinone against acetylsalicylic acid–induced gastric ulcer in rats. J. Surg. Res. 2016, 203, 348–359. [Google Scholar] [CrossRef]
- Oliveira, I.S.; da Silva, F.V.; Viana, A.F.S.C.; dos Santos, M.R.V.; Quintans-Júnior, L.J.; Martins, M.C.C.; Nunes, P.H.M.; Oliveira, F.A.; Oliveira, R.C.M. Gastroprotective activity of carvacrol on experimentally induced gastric lesions in rodents. Naunyn. Schmiedebergs. Arch. Pharmacol. 2012, 385, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.C.; Shane, G.T.; Yang, C.H.; Chen, K.Y. Composition for the treatment and prevention of peptic ulcer 11/612,549, 2008.
- De Carvalho, K.I.M.; Bonamin, F.; Dos Santos, R.C.; Périco, L.L.; Beserra, F.P.; De Sousa, D.P.; Filho, J.M.B.; Da Rocha, L.R.M.; Hiruma-Lima, C.A. Geraniol - A flavoring agent with multifunctional effects in protecting the gastric and duodenal mucosa. Naunyn. Schmiedebergs. Arch. Pharmacol. 2014, 387, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Venzon, L.; Mariano, L.N.B.; Somensi, L.B.; Boeing, T.; de Souza, P.; Wagner, T.M.; de Andrade, S.F.; Nesello, L.A.N.; da Silva, L.M. Essential oil of Cymbopogon citratus (lemongrass) and geraniol, but not citral, promote gastric healing activity in mice. Biomed. Pharmacother. 2018, 98, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Bonamin, F.; Moraes, T.M.; Dos Santos, R.C.; Kushima, H.; Faria, F.M.; Silva, M.A.; Junior, I.V.; Nogueira, L.; Bauab, T.M.; Souza Brito, A.R.M.; et al. The effect of a minor constituent of essential oil from Citrus aurantium: The role of B-myrcene in preventing peptic ulcer disease. Chem. Biol. Interact. 2014, 212, 11–19. [Google Scholar] [CrossRef]
- De Monte, C.; Bizzarri, B.; Gidaro, M.C.; Carradori, S.; Mollica, A.; Luisi, G.; Granese, A.; Alcaro, S.; Costa, G.; Basilico, N.; et al. Bioactive compounds of Crocus sativus L. and their semi-synthetic derivatives as promising anti- Helicobacter pylori, anti-malarial and anti-leishmanial agents. J. Enzyme Inhib. Med. Chem. 2015, 30, 1027–1033. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, A.K.; Kang, S.C. Therapeutic potential and mechanism of thymol action against ethanol-induced gastric mucosal injury in rat model. Alcohol 2015, 49, 739–745. [Google Scholar] [CrossRef]
- Ribeiro, A.R.S.; Diniz, P.B.F.; Pinheiro, M.S.; Albuquerque-Júnior, R.L.C.; Thomazzi, S.M. Gastroprotective effects of thymol on acute and chronic ulcers in rats: The role of prostaglandins, ATP-sensitive K+ channels, and gastric mucus secretion. Chem. Biol. Interact. 2016, 244, 121–128. [Google Scholar] [CrossRef]
- Chen, Y.; Bedson, J.; Hayward, R.A.; Jordan, K.P. Trends in prescribing of non-steroidal anti-inflammatory drugs in patients with cardiovascular disease: Influence of national guidelines in UK primary care. Fam. Pract. 2018. [Google Scholar] [CrossRef]
- Takeuchi, K.; Izuhara, C.; Takayama, S.; Momode, T.; Kojo, M.; Hara, D.; Amagase, K. Animal Models of Gastric Bleeding Induced by Dual Antiplatelet Therapy Using Aspirin and Clopidogrel -Prophylactic Effect of Antiulcer Drugs. Curr. Pharm. Des. 2014, 20, 1139–1148. [Google Scholar] [CrossRef]
- Sostres, C.; Gargallo, C.J.; Arroyo, M.T.; Lanas, A. Adverse effects of non-steroidal anti-inflammatory drugs (NSAIDs, aspirin and coxibs) on upper gastrointestinal tract. Best Pract. Res. Clin. Gastroenterol. 2010, 24, 121–132. [Google Scholar] [CrossRef]
- Gomes Silva, M.I.; de Sous, F.C.F. Gastric Ulcer Etiology. In Peptic Ulcer Disease; InTech: London, UK, 2011. [Google Scholar]
- Vane, J.R.; Botting, R.M. A better understanding of anti-inflammatory drugs based on isoforms of cyclooxygenase (COX-1 and COX-2). Adv. Prostaglandin. Thromboxane. Leukot. Res. 1995, 23, 41–48. [Google Scholar] [PubMed]
- Redasani, V.K.; Bari, S.B. Synthesis and evaluation of mutual prodrugs of ibuprofen with menthol, thymol and eugenol. Eur. J. Med. Chem. 2012, 56, 134–138. [Google Scholar] [CrossRef]
- WHO Global Status Report on Alcohol and Health 2014; WHO Library Cataloguing-in-Publication Data; World Health Organization (Ed.) WHO: Geneva, Switzerland, 2014; ISBN 978 92 4 069276 3. [Google Scholar]
- Kwiecień, S.; Brzozowski, T.; Konturek, S.J. Effects of reactive oxygen species action on gastric mucosa in various models of mucosal injury. J. Physiol. Pharmacol. 2002, 53, 39–50. [Google Scholar]
- Gardes-Albert, M.; Ferradini, C.; Sekaki, A. Oxygen-centered free radicals and their interaction with EGb 761 or CP202. In Advances in Ginkgo biloba extract research; Ferradini, C., Droy-Lefaix, M.T., Christen, Y., Eds.; Elsevier: Paris, France, 1993; pp. 1–11. [Google Scholar]
- Rajasekaran, A.; Sivakumar, V.; Darlinquine, S. Role of Blepharis maderaspatensis and Ammannia baccifera plant extracts on in vitro oxygen radical scavenging, secretion of gastric fluid and gastroprotection on ulcer induced rats. Pharm. Biol. 2012, 50, 1085–1095. [Google Scholar] [CrossRef] [Green Version]
- Hoshino, T.; Takano, T.; Tsutsumi, S.; Tomisato, W.; Tsuchiya, T.; Mizushima, T. Effects of prostaglandin E2 on gastric irritant-induced apoptosis. Dig. Dis. Sci. 2002, 47, 2370–2379. [Google Scholar] [CrossRef]
- Das, A.K.; Bigoniya, P.; Verma, N.K.; Rana, A.C. Gastroprotective effect of Achyranthes aspera Linn. leaf on rats. Asian Pac. J. Trop. Med. 2012, 5, 197–201. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.-S.; He, S.-Z.; Xu, H.-Z.; Zhan, X.-J.; Yang, X.-N.; Xiao, H.-M.; Shi, H.-X.; Ren, J.-L. Oxidative stress disturbs energy metabolism of mitochondria in ethanol-induced gastric mucosa injury. World J. Gastroenterol. 2008, 14, 5857–5867. [Google Scholar] [CrossRef]
- Vespermann, K.A.C.; Paulino, B.N.; Barcelos, M.C.S.; Pessôa, M.G.; Pastore, G.M.; Molina, G. Biotransformation of α- and β-pinene into flavor compounds. Appl. Microbiol. Biotechnol. 2017, 101, 1805–1817. [Google Scholar] [CrossRef]
- Chamoun, F.; Burne, M.; O’Donnell, M.; Rabb, H. Pathophysiologic role of selectins and their ligands in ischemia reperfusion injury. Front. Biosci. 2000, 5, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Piper, H.M.; Meuter, K.; Schäfer, C. Cellular mechanisms of ischemia-reperfusion injury. Ann. Thorac. Surg. 2003, 75, S644–S648. [Google Scholar] [CrossRef]
- Gonzalez, L.M.; Moeser, A.J.; Blikslager, A.T. Animal models of ischemia-reperfusion-induced intestinal injury: Progress and promise for translational research. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 308, G63–G75. [Google Scholar] [CrossRef] [Green Version]
- Adinortey, M.B.; Ansah, C.; Galyuon, I.; Nyarko, A. In Vivo Models Used for Evaluation of Potential Antigastroduodenal Ulcer Agents. Ulcers 2013, 2013, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Tarnawski, A.S. Cellular and molecular mechanisms of gastrointestinal ulcer healing. Dig. Dis. Sci. 2005, 50, 24–33. [Google Scholar] [CrossRef]
- Devasagayam, T.P.A.; Tilak, J.C.; Boloor, K.K.; Sane, K.S.; Ghaskadbi, S.S.; Lele, R.D. Free radicals and antioxidants in human health: Current status and future prospects. J. Assoc. Physicians India 2004, 52, 794–804. [Google Scholar]
- Cnubben, N.H.P.; Rietjens, I.M.C.M.; Wortelboer, H.; Van-Zanden, J.; Van Bladeren, P.J. The interplay of glutathione related processes in antioxidant defense. Environ. Toxicol. Pharmacol. 2001, 10, 141–152. [Google Scholar] [CrossRef]
- Sindhu, R.K.; Koo, J.-R.; Roberts, C.K.; Vaziri, N.D. Dysregulation of hepatic superoxide dismutase, catalase and glutathione peroxidase in diabetes: Response to insulin and antioxidant therapies. Clin. Exp. Hypertens. 2004, 26, 43–53. [Google Scholar] [CrossRef]
- Naito, Y.; Takagi, T.; Handa, O.; Yoshikawa, T. Lipid Hydroperoxide-Derived Modification of Proteins in Gastrointestinal Tract; Springer: Dordrecht, The Netherlands, 2014; pp. 137–148. [Google Scholar]
- Meister, A.; Anderson, M.E. Glutathione. Annu. Rev. Biochem. 1983, 52, 711–760. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Basak, S.; Hoffmann, A. Crosstalk via the NF-kappaB signaling system. Cytokine Growth Factor Rev. 2008, 19, 187–197. [Google Scholar] [CrossRef] [Green Version]
- Mei, X.; Xu, D.; Xu, S.; Zheng, Y.; Xu, S. Novel role of Zn(II)-curcumin in enhancing cell proliferation and adjusting proinflammatory cytokine-mediated oxidative damage of ethanol-induced acute gastric ulcers. Chem. Biol. Interact. 2012, 197, 31–39. [Google Scholar] [CrossRef]
- Sabat, R. IL-10 family of cytokines. Cytokine Growth Factor Rev. 2010, 21, 315–324. [Google Scholar] [CrossRef]
- Kruglov, A.A.; Kuchmiy, A.; Grivennikov, S.I.; Tumanov, A.V.; Kuprash, D.V.; Nedospasov, S.A. Physiological functions of tumor necrosis factor and the consequences of its pathologic overexpression or blockade: Mouse models. Cytokine Growth Factor Rev. 2008, 19, 231–244. [Google Scholar] [CrossRef]
- Augusto, A.C.; Miguel, F.; Mendonça, S.; Pedrazzoli, J.; Gurgueira, S.A. Oxidative stress expression status associated to Helicobacter pylori virulence in gastric diseases. Clin. Biochem. 2007, 40, 615–622. [Google Scholar] [CrossRef]
- Li, S.-L.; Zhao, J.-R.; Ren, X.-Y.; Xie, J.-P.; Ma, Q.-Z.; Rong, Q.-H. Increased expression of matrix metalloproteinase-9 associated with gastric ulcer recurrence. World J. Gastroenterol. 2013, 19, 4590–4595. [Google Scholar] [CrossRef]
- Vaday, G.G.; Hershkoviz, R.; Rahat, M.A.; Lahat, N.; Cahalon, L.; Lider, O. Fibronectin-bound TNF-alpha stimulates monocyte matrix metalloproteinase-9 expression and regulates chemotaxis. J. Leukoc. Biol. 2000, 68, 737–747. [Google Scholar]
- Ganguly, K.; Swarnakar, S. Chronic gastric ulceration causes matrix metalloproteinases-9 and -3 augmentation: Alleviation by melatonin. Biochimie 2012, 94, 2687–2698. [Google Scholar] [CrossRef]
- Szallasi, A. Small molecule vanilloid TRPV1 receptor antagonists approaching drug status: Can they live up to the expectations? Naunyn. Schmiedebergs. Arch. Pharmacol. 2006, 373, 273–286. [Google Scholar] [CrossRef]
- Tulassay, Z.; Herszényi, L. Gastric mucosal defense and cytoprotection. Best Pract. Res. Clin. Gastroenterol. 2010, 24, 99–108. [Google Scholar] [CrossRef]
- Peskar, B.M.; Ehrlich, K.; Peskar, B.A. Role of ATP-Sensitive Potassium Channels in Prostaglandin-Mediated Gastroprotection in the Rat. J. Pharmacol. Exp. Ther. 2002, 301, 969–974. [Google Scholar] [CrossRef]
Compound | Experimental Model: Treatment (Acute or Chronic) and Doses | Effect | Mechanism |
---|---|---|---|
Ascaridole [50] | NSAID - Acute *10 mg/kg (p.o.) ~ ↓ 52% *20 mg/kg (p.o.) ~ ↓ 44% | Gastroprotective and healing effects | ↓Acid secretion (↑pH) ↓ Pepsin |
Acetic Acid (20 %) - Chronic (7 days): 20 mg/kg (p.o.) - ↓ 57% | |||
Vehicle: Sodium carboxymethyl cellulose | |||
Citral [45] | NSAID – Acute 25 mg/kg (p.o.) - ↓ 74.0% 100 mg/kg (p.o.) - ↓ 35.0%300 mg/kg (p.o.) - ↓ 48.0 % | Gastroprotective effect | |
Vehicle: Tween 80 - 1% | |||
Eucalyptol or 1,8-Cineole [51] | NSAID – Acute 50 mg/kg (p.o.) - ↓ 58.2% 100 mg/kg (p.o.) - ↓ 61.2% 200 mg/kg (p.o.) - ↓ 74.1% | Gastroprotective and healing effect | ↑ Mucus (89.3%), ↑SH, ↓LPO and ↓MPO |
Absolute Ethanol - Acute 50 mg/kg (p.o.) - ↓ 88.1% 100 mg/kg (p.o.)- ↓ 98.5% 200 mg/kg (p.o.)- ↓ 99.2% | ↑ Cell proliferation | ||
Acetic Acid (30%) - Chronic (14 days) 100 mg/kg (p.o.)- ↓ 43.1% | |||
Vehicle: Tween 80 - 1% | |||
Epoxy-carvone [52] | NSAID - Acute 10 mg/kg (p.o.) – ↓ 60.4 % 30 mg/kg (p.o.) – ↓ 47.9 % 50 mg/kg (p.o.) – ↓ 62.7 % Absolute Ethanol - Acute 10 mg/kg (p.o.) - ↓ 77.7% 30 mg/kg (p.o.) - ↓ 69.2% 50 mg/kg (p.o.) - ↓ 61.4% Vehicle: Tween 80 - 5% | Gastroprotective effect | |
Linalool [53,54,55] | Ethanol 90% - acute: 33 mg/kg (p.o.) - ↓ 56.0% Vehicle: methylcellulose 0.1% | Gastroprotective effect | |
Absolute Ethanol - acute: 10 mg/kg (p.o) - ↓ 85.5% 20 mg/kg (p.o) - ↓ 76.2% 40 mg/kg (p.o) - ↓ 89.3% | |||
Acetic Acid (80%) - chronic (14 days): 40 mg/kg (p.o) - ↓ 48.0% | Gastroprotective and healing effects | ↓MPO and ↓ LPO | |
Vehicle: Saline | |||
Linalyl acetate [55] | Ethanol 90% - acute: 36 mg/kg (p.o.) - ↓49.0% Vehicle: methylcellulose 0.1% | Gastroprotective effect | |
Menthol [56,57] | NSAID - Acute: 50 mg/kg (p.o) - ↓ 73.0 % | Gastroprotective effect | ↓ Acid secretion ↑ Mucus and PGE2 ↑ Compounds SH |
Absolute Ethanol - Acute: 50 mg/kg (p.o) - ↓ 88.6–92.0% 100 mg/kg (p.o) - ↓ 98.4% | ↑ ATP-sensitive potassium channel | ||
Vehicle: Tween 80 - 8% | ↓ MPO,↑ GSH, ↑GSH-Px, ↑GR ↓ TNF-α, ↓ IL-6,↑IL-10 Anti-apoptotic effect (HSP-70, Bax) | ||
Myrtenol [58] | Absolute Ethanol - Acute: 25 mg/kg (p.o)- ↓ 40.2% 50 mg/kg (p.o)- ↓ 83.0% 100 mg/kg (p.o) - ↓ 83.2% | Gastroprotective effect | Activation of GABA-A receptors ↓ LPO |
Vehicle: Tween 80 - 2% | |||
Nerol [59] | Absolute Ethanol - acute: *10 mg/kg (p.o) - ↓~94% *30 mg/kg (p.o) - ↓~82% *100 mg/kg (p.o) - ↓~92% *300 mg/kg (p.o) - ↓~94% Vehicle: Tween 80 - 0.5% | Gastroprotective effect | |
α-pinene [60] | Absolute Ethanol - Acute: 10 mg/kg (p.o) - ↓ 48.6% 30 mg/kg (p.o) - ↓ 43.9% 100 mg/kg (p.o) - ↓ 42.1% Vehicle: Tween 80 - 0.1% | Gastroprotective effect | ↓ Acid secretion ↑ Mucus |
α-terpineol [61] | NSAID - Acute: 30 mg/kg (p.o)- ↓ 63.9% 50 mg/kg (p.o)- ↓ 81.3% Ethanol 70% - Acute: 10 mg/kg (p.o)- ↓ 66.7% 30 mg/kg (p.o)- ↓ 81.0% 50 mg/kg (p.o)- ↓ 94.1% Vehicle: Tween 80 - 10% | Gastroprotective effect | |
Thymoquinone [62] | NSAID - Acute: * 20 mg/kg (p.o) - ~↓ 46% | ↑ SOD, ↑GPx, ↑NO, ↓ apoptosis | |
Vehicle: Corn oil 10% | ↓iNOS,↓TOS, ↓OSI, ↓ NF-κβ, ↓ TNF-α, ↑TAS, ↑TT, ↑ADMA, ↑ DDAH-1, ↑DDAH-2 |
Compound | Experimental Model: Treatment (Acute or Chronic), Route, and Doses | Effect(s) | Mechanism(s) |
---|---|---|---|
Carvacrol [42,63] | NSAID - Acute: 25 mg/kg (p.o) - ↓43.0% 50 mg/kg (p.o) - ↓42.0% | Gastroprotective and bactericidal effects | ↑ Mucus, ↑ SH compounds,↑ NO, ↑catalase and ↑PGE2 level KATP channel |
Absolute Ethanol - Acute: 16.6 mM (p.o) - ↓48.0% 33.3 mM (p.o) - ↓41.0% | |||
Ethanol/HCl - Acute: 8.3 mM (p.o.) - ↓ 28.0% 16.6 mM (p.o) - ↓70.0% 33.3 mM (p.o) - ↓63.0% | |||
I/R - Acute: 16.6 mM (p.o) - ↓51.0% 33.3 mM (p.o) - ↓38.0% | |||
Acetic Acid (80%) – Chronic (14 days): 25 mg/kg (p.o) - ↓60.0% 50 mg/kg (p.o) - ↓91.0% 100 mg/kg (p.o) - ↓81.0% | |||
Minimal Bactericidal Concentration against H. pylori: 0.04 g/L | |||
Vehicle: Saline, Tween 80 -1%, saline, propylene glycol or distilled water | |||
Citronellol [64] | Absolute Ethanol - Acute: 30 mg/kg (p.o) - ↓ 72.0% 100 mg/kg (p.o) - ↓89.0% Bactericidal activity in vivo against H. pylori - Chronic (7 days; 2 x day): 12.5 mg/kg (i.p.) - ↓ 87.0% 12.5 mg/kg (p.o.) - ↓53.0% 25 mg/kg (p.o.) - ↓ 80.0% 50 mg/kg (p.o) - ↓87.0% Vehicle: Tween 80 - 2% | Gastroprotective and bactericidal effects | |
Geraniol [65,66] | Absolute Ethanol - Acute: 3 mg/kg (p.o) - ↓ 55.7% 7.50 mg/kg (p.o) - ↓ 70.0%10 mg/kg (p.o) - ↓ 84.8% 200 mg/kg (p.o) - ↓ 99.0% Acetic Acid 10% - Chronic (5 days) 3 mg/kg (p.o) - ↓ 80.5% Bactericidal activity in vitro against H. pylori: 2 mg/L - ↓ 92.0% Vehicle: DMSO 10% or Tween 80 - 8% | Gastroprotective, bactericidal and healing effects | ↑ Mucus (↑ mucin levels 88.5%) ↑ GSH ↓ MPO ↑ Compounds SH, NO, and PGE2 level ↑ CGRP and TRPV-1 activation |
Limonene [43,44] | NSAID - Acute: 177 mg/kg (p.o) - ↓ 50.1% 245 mg/kg (p.o) - ↓ 99.0% Absolute Ethanol - Acute: 50 mg/kg (p.o) 100 mg/kg (p.o) 177 mg/kg (p.o) - ↓100.0% 245 mg/kg (p.o) - ↓ 99.2% Bactericidal activity in vitro against H. pylori: MIC 75 µg/mL Vehicle: Tween 80 - 8% | Gastroprotective and bactericidal effects | ↑ Mucus Maintenance of high PGE2 levels ↑ GPx ↓ MPO ↓ IL-1β, IL-6 and TNF-α ↓ mRNA expression of Nf-κB, IL-1β and MPO ↑ mRNA expression of GPx |
β-Myrcene [67] | NSAID – Acute 7.5 mg/kg (p.o) – 74.0% | ↑ Mucus ↓ MDA ↑ GPx ↑ GR | |
Absolute Ethanol - Acute 7.5 mg/kg (p.o)- 60.0% | Gastroprotective effect | ||
I/R - Acute 7.5 mg/kg (p.o) – 86.0% | Bacteriostatic effect against H. pylori | ||
Bactericidal activity in vitro against H. pylori: MIC = 500 µg/mL | |||
Vehicle: Tween 80 - 8% | |||
β-pinene [43] | Absolute Ethanol - Acute: 33 mg/kg (p.o) - absent Bactericidal activity in vitro against H. pylori: MIC = 500 µg/mL Vehicle: Tween 80 - 8% | No gastroprotective and bactericidal effects | |
Safranal [68] | Bactericidal activity in vitro against H. pylori: MIC50 against H. pylori: 32 µg/mL Vehicle: not described | Bactericidal effect | |
Thymol [69,70] | Absolute Ethanol - acute: *10 mg/kg (p.o) - ~↓ 81.0% Vehicle: DMSO - 5% | ||
Absolute Ethanol - Acute: *10 mg/kg (p.o) - ~ 37.0% *30 mg/kg (p.o) - ~ 63.0% *100 mg/kg (p.o) - ~95.0% | Gastroprotective effect | ↑SOD, ↑ GSH, ↓MPO, ↓LPO, ↓MMP-9 | |
NSAID - Acute 30 mg/kg (p.o) – 43.0% 100 mg/kg (p.o) – 49.0% | Gastroprotective effect Healing effect Bactericidal effect Absent | ↑ Mucus PGE2 level KATP channel No involvement of NO No antisecretory action | |
Acetic Acid 30% - Chronic (7 days) 30 mg/kg (p.o) – 91.8% 100 mg/kg (p.o) – 92.5% | |||
Bactericidal activity in vitro against H. pylori: 10,000 µg/mL (absent) | |||
Vehicle: Tween 80 - 0.2% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Périco, L.L.; Emílio-Silva, M.T.; Ohara, R.; Rodrigues, V.P.; Bueno, G.; Barbosa-Filho, J.M.; Rocha, L.R.M.d.; Batista, L.M.; Hiruma-Lima, C.A. Systematic Analysis of Monoterpenes: Advances and Challenges in the Treatment of Peptic Ulcer Diseases. Biomolecules 2020, 10, 265. https://doi.org/10.3390/biom10020265
Périco LL, Emílio-Silva MT, Ohara R, Rodrigues VP, Bueno G, Barbosa-Filho JM, Rocha LRMd, Batista LM, Hiruma-Lima CA. Systematic Analysis of Monoterpenes: Advances and Challenges in the Treatment of Peptic Ulcer Diseases. Biomolecules. 2020; 10(2):265. https://doi.org/10.3390/biom10020265
Chicago/Turabian StylePérico, Larissa Lucena, Maycon Tavares Emílio-Silva, Rie Ohara, Vinícius Peixoto Rodrigues, Gabriela Bueno, José Maria Barbosa-Filho, Lúcia Regina Machado da Rocha, Leônia Maria Batista, and Clélia Akiko Hiruma-Lima. 2020. "Systematic Analysis of Monoterpenes: Advances and Challenges in the Treatment of Peptic Ulcer Diseases" Biomolecules 10, no. 2: 265. https://doi.org/10.3390/biom10020265
APA StylePérico, L. L., Emílio-Silva, M. T., Ohara, R., Rodrigues, V. P., Bueno, G., Barbosa-Filho, J. M., Rocha, L. R. M. d., Batista, L. M., & Hiruma-Lima, C. A. (2020). Systematic Analysis of Monoterpenes: Advances and Challenges in the Treatment of Peptic Ulcer Diseases. Biomolecules, 10(2), 265. https://doi.org/10.3390/biom10020265