Sequencing and Analysis of the Genome of Propionibacterium freudenreichii T82 Strain: Importance for Industry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culture Conditions
2.2. Genome Sequencing
2.3. Genome Annotation
2.4. Comparative Genome Analysis
2.5. Sugars Fermentation, Trehalose, and Glycogen Concentration
2.6. Strain Deposition and Complete Genome Sequence Data Accession Number
3. Results and Discussion
3.1. General Genome Features
3.2. Metabolism
3.3. Resistance and Stress Response
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Meile, L.; Dasen, G.; Miescher, S.; Stierli, M.; Teuber, M. Classification of propionic acid bacteria and approaches to applied genetics. Le Lait 1999, 79, 71–78. [Google Scholar] [CrossRef]
- Koussémon, M.; Combet-Blanc, Y.; Ollivier, B. Glucose fermentation by Propionibacterium microaerophilum: Effect of pH on metabolism and bioenergetics. Curr. Microbiol. 2004, 44, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Leverrier, P.; Vissers, J.P.C.; Rouault, A.; Boyaval, P.; Jan, G. Mass spectrometry proteomic analysis of stress adaptation reveals both common and distinct response pathways in Propionibacterium freudenreichii. Arch. Microbiol. 2004, 181, 215–230. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.S.; Gaspar, P.; Hugenholtz, J.; Ramos, A.; Santos, H. Enhancement of trehalose production in dairy propionibacteria through manipulation of environmental conditions. Int. J Food Microbiol. 2004, 91, 195–204. [Google Scholar] [CrossRef]
- Suomalainen, T.H.; Sigvart-Mattila, P.; Mättö, J.; Tynkkynen, S. In vitro and in vivo gastrointestinal survival, antibiotic susceptibility and genetic identification of Propionibacterium freudenreichii ssp. shermanii JS. Int. Dairy. J. 2008, 18, 271–278. [Google Scholar] [CrossRef]
- Deptula, P.; Chamlagain, B.; Edelman, M.; Sangsuwan, P.; Nyman, T.A.; Savijoki, K.; Piironen, V.; Varmanen, P. Food-Like Growth Conditions Support Production of Active Vitamin B12 by Propionibacterium freudenreichii 2067 without DMBI, the Lower Ligand Base, or Cobalt Supplementation. Front. Microbiol. 2017, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Chamlagain, B.; Sugito, T.A.; Deptula, P.; Edelmann, M.; Kariluoto, S.; Varmanen, P.; Piironen, P. In situ production of active vitamin B12 in cereal matrices using Propionibacterium freudenreichii. Food Sci. Nutr. 2018, 6, 67–76. [Google Scholar] [CrossRef]
- Meile, L.; Gwenaelle, L.B.; Thierry, A. Safety assessment of dairy microorganisms: Propionibacterium and Bifidobacterium. Int. J Food Microbiol. 2008, 126, 316–320. [Google Scholar] [CrossRef]
- Borawska, B.; Warmińska-Radyko, I.; Darewicz, M. Charakterystyka i znaczenie bakterii rodzaju Propionibacterium w produkcji żywności i pasz. Med. Wet. 2010, 66, 534–537. [Google Scholar]
- Ranadheera, R.D.S.C.; Baines, S.K.; Adams, M.C. Importance of food in probiotic efficacy. Food Res. Int. 2010, 43, 1–7. [Google Scholar] [CrossRef]
- Falentin, H.; Deutsch, S.M.; Jan, G.; Loux, V.; Thierry, A.; Parayre, S.; Maillard, M.B.; Dherbécourt, J.; Cousin, F.J.; Jardin, J.; et al. The Complete Genome of Propionibacterium freudenreichii CIRM-BIA1T, a Hardy Actinobacterium with Food and Probiotic Applications. PLoS ONE 2010, 5, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koskinen, P.; Deptula, P.; Smolander, O.P.; Tamene, F.; Kammonen, J.; Savijok, K.; Paulin, L.; Piironen, V.; Auvinen, P.; Varmanen, P. Complete genome sequence of Propionibacterium freudenreichii DSM 20271T. Stand. Genomic Sci. 2015, 10, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, K. Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology; Ausubel, F.M., Bent, R., Kingston, R.E., Eds.; J Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics. 2008, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Overbeek, R.; Olson, R.; Pusch, G.D.; Olsen, G.J.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Parrello, B.; Shukla, M.; et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014, 42, D206–D214. [Google Scholar] [CrossRef]
- Brettin, T.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Olsen, G.J.; Olson, R.; Overbeek, R.; Parrello, B.; Pusch, G.D.; et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 2015, 5, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huerta-Cepas, J.; Szklarczyk, D.; Forslund, K.; Cook, H.; Heller, D.; Walter, M.C.; Rattei, T.; Mende, D.R.; Sunagawa, S.; Kuhn, M. eggNOG 4.5: A hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016, 44, D286–D293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagesen, K.; Hallin, P.; Rødland, E.A.; Stærfeldt, H.H.; Rognes, T.; Ussery, D.W. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007, 35, 3100–3108. [Google Scholar] [CrossRef]
- Lowe, T.M.; Chan, P.P. tRNAscan-SE On-line: Integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 2016, 44, 54–55. [Google Scholar] [CrossRef]
- Stothard, P.; Wishart, D.S. Circular genome visualization and exploration using CGView. Bioinformatics. 2005, 21, 537–539. [Google Scholar] [CrossRef] [Green Version]
- Krogh, A.; Larsson, B.; Von Heijne, G.; Sonnhammer, E.L. Predicting transmembrane protein topology with a hidden markov model: Application to complete genomes. J. Mol. Biol. 2001, 305, 567–580. [Google Scholar] [CrossRef] [Green Version]
- Petersen, T.N.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods. 2011, 8, 785–786. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, T.; Mori, H.; Iwata, M.; Meguro, S. Growth stimulator for bifidobacteria produced by Propionibacterium freudenreichii and several intestinal bacteria. J. Dairy Sci. 1993, 73, 393–404. [Google Scholar] [CrossRef]
- Tatusov, R.L.; Galperin, M.Y.; Natale, D.A.; Koonin, E.V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2008, 28, 33–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deptula, P.; Kylli, P.; Chamlagain, B.; Holm, L.; Kostiainen, R.; Piironen, V.; Savijoki, K.; Varmanen, P. BluB/CobT2 fusion enzyme activity reveals mechanisms responsible for production of active form of vitamin B12 by Propionibacterium freudenreichii. Microb. Cell Fact. 2015, 14, 1–12. [Google Scholar]
- Benz, M.; Schink, B.; Brune, A. Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria. Appl. Environ. Microbiol. 1998, 65, 4507–4512. [Google Scholar] [CrossRef] [Green Version]
- Beck, S.; Schink, B. Acetate oxidation through a modified citric acid cycle in Propionibacterium freudenreichii. Arch. Microbiol. 1995, 163, 182–189. [Google Scholar] [CrossRef]
- Seufferheld, M.J.; Alvarez, H.M.; Farias, M.E. Role of polyphosphates in microbial adaptation to extreme environments. Appl. Environ. Microbiol. 2008, 74, 5867–5874. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, F.S.; Castro, R.F.; Borges, N.; Santos, H. Biochemical and genetic characterization of the pathways for trehalose metabolism in Propionibacterium freudenreichii, and their role in stress response. Microbiology. 2007, 153, 270–280. [Google Scholar] [CrossRef] [Green Version]
- Guan, N.; Liu, L.; Chen, R.R.; Zhuge, X.; Xu, Q.; Li, J.; Du, G.; Chen, J. Genome shuffling improves acid tolerance of Propionibacterium acidipropionici and propionic acid production. Adv. Chem. Res. 2012, 15, 143–152. [Google Scholar]
- Guan, N.; Liu, L.; H-d, S.; Chen, R.R.; Zhang, J.; Li, J.; Du, G.; Shi, Z.; Chen, J. Systems-level understanding how Propionibacterium acidipropionici respond to propionic acid stress at the microenvironment levels: Mechanism and application. J. Biotechnol. 2013, 167, 56–63. [Google Scholar] [CrossRef]
- Guan, N.; Shin, H.D.; Chen, R.R.; Li, J.; Liu, L.; Du, G.; Chen, J. Understanding of how Propionibacterium acidipropionici respond to propionic acid stress at the level of proteomics. Sci. Rep. 2014, 6951, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, N.; Li, J.; Shin, H.; Du, G.; Chen, J.; Liu, L. Metabolic engineering of acid resistance elements to improve acid resistance and propionic acid production of Propionibacterium jensenii. Biotechnol. Bioeng. 2015a, 113, 1294–1304. [Google Scholar] [CrossRef] [PubMed]
- Suwannakham, S.; Huang, Y.; Yang, S.T. Construction and characterization of ack knock-out mutants of Propionibacterium acidipropionici for enhanced propionic acid fermentation. Biotechnol. Bioeng. 2006, 94, 383–395. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Wei, P.; Cai, J.; Zhu, X.; Wang, Z.; Huang, L.; Xu, Z. Improving the productivity of propionic acid with FBB-immobilized cells of an adapted acidtolerant Propionibacterium acidipropionici. Bioresour. Technol. 2012, 112, 248–253. [Google Scholar] [CrossRef]
- Lu, P.; Ma, D.; Chen, Y.; Guo, Y.; Chen, G.Q.; Deng, H.; Shi, Y. L-glutamine provides acid resistance for Escherichia coli through enzymatic release of ammonia. Cell Res. 2013, 23, 635–644. [Google Scholar] [CrossRef] [Green Version]
- Van Luijk, N.; Stierli, M.P.; Schwenninger, S.M.; Hervé, C.; Dasen, G.; Jore, J.P.; Pouwels, P.H.; Van der Werf, M.J.; Teuber, M.; Meile, L. Genetics and molecular biology of propionibacteria. Le Lait 2002, 82, 45–57. [Google Scholar] [CrossRef]
- Guan, N.; Li, J.; Shin, H.; Wu, J.; Du, G.; Shi, Z.; Liu, L.; Chen, J. Comparative metabolomics analysis of the key metabolic nodes in propionic acid synthesis in Propionibacterium acidipropionici. Metabolomics 2015b, 11, 1106–1116. [Google Scholar] [CrossRef]
- Cooper, L.P.; Roberts, G.A.; White, J.H.; Luyten, Y.A.; Bower, E.K.M.; Morgan, R.D.; Roberts, R.J.; Lindsay, J.A.; Dryden, D.T.F. DNA target recognition domains in the Type I restriction and modification systems of Staphylococcus aureus. Nuceleic Acid Res. 2017, 45, 3395–3406. [Google Scholar] [CrossRef] [Green Version]
- Amitai, G.; Sorek, R. CRISPR-Cas adaptation: Insights into the mechanism of action. Nat. Rev. Microbiol. 2016, 14, 67–76. [Google Scholar] [CrossRef]
- Vester, B.; Long, K.S. Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob. Agents Chemother. 2002, 56, 1–10. [Google Scholar]
- Zhang, W.; Wang, J.; Zhang, D.; Liu, H.; Wang, S.; Wang, Y.; Ji, H. Complete Genome Sequencing and Comparative Genome Characterization of Lactobacillus johnsonii ZLJ010, a Potential Probiotic With Health-Promoting Properties. Front. Genet. 2019, 10, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pophaly, S.D.; Singh, R.; Pophaly, S.D.; Kaushik, J.K.; Tomar, S.K. Current status and emerging role of glutathione in food grade lactic acid bacteria. Microb. Cell Fact. 2012, 11, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
MIGS ID | Property | Term |
---|---|---|
Classification | Domain Bacteria Phylum Actinobacteria Class Actinobacteria Order Propionbacteriales Family Propionibacteriaceae Genus Propionibacterium Species Propionibacterium freudenreichii subspecies freudenreichii | |
GenBank accession no. | NZ_SDDY00000000.1 | |
Bioproject (NCBI) | PRJNA224116 | |
Biosample (NCBI) | SAMN10768998 | |
Gram strain | Positive | |
Cell shape | Rod | |
Motility | No | |
Sporulation | No | |
Optimum temperature | 37°C | |
Optimum pH | approx. 7.0 | |
Trehalose | +/(50.91 mg/g d.m.) (Megazyme test) | |
Glycogen | +/(166.07 µg/g d.m.) (BioVision Glycogen) | |
MIGS-6 | Habitat | Unknown |
MIGS-6.3 | Salinity | Unknown |
MIGS-22 | Oxygen-requirement | Anaerobic/facultative anaerobic |
MIGHS-15 | Biotic relationship | Free-living |
MIGS-14 | Phatogenicity | Non-pathogen |
MIGS-4 | Geographic location | Unknown |
MIGS-5 | Sample collection | Unknown |
MIGS-4.1 | Latitude | Unknown |
MIGS-4.2 | Longitude | Unknown |
MIGS-4.4 | Altitude | Unknown |
Attribute | Value | % of Total |
---|---|---|
Genome size (bp) | 2,585,340 | 100.00 |
DNA G + C (bp) | 1.739.933 | 67.30 |
Total genes | 2308 | 100.00 |
Protein coding genes | 2260 | 97.90 |
RNA genes | 48 | 2.08 |
tRNA | 45 | 1.95 |
rRNA | 3 | 0.12 |
Genes assigned to COGs | 1936 | 85.66 |
Genes assigned to KEGG | 1222 | 49.64 |
Gen with transmembrane helices | 665 | 28.81 |
Genes with signal peptides | 142 | 6.15 |
Carbon Source | P. freudenreichii T82 | P. freudenreichii DSM 20271 [12] | P. freudenreichii CIRM-BIA1 [11] |
---|---|---|---|
Glucose | + | + | + |
Fructose | + | + | + |
Mannose | + | - | + |
Glycerol | + | + | + |
Adonitol | - | + | + |
Inositol | + | + | + |
Erythritol | + | + | + |
Galactose | + | + | + |
Lactose | - | - | + |
Lactic acid | No data | - | + |
Gluconic acid | No data | - | - |
Esculine hydrolisis | No data | - | + |
L-arabinose | + | + | + |
Ribose | - | - | - |
Melbiose | - | - | - |
Raffinose | - | - | - |
Saccharose | - | - | - |
L-arabitol | + | - | - |
Xylitol | + | - | - |
D-xylose | + | - | - |
Esculin | + | - | - |
Ferric citrate | + | - | - |
Potassium gluconate | + | - | - |
Code | Description | Value 1 | % | Value 2 | % | Value 3 | % |
---|---|---|---|---|---|---|---|
Information Storage and Processing | T82 | DSM 20271 [12] | CIRM-BIA1 [11] | ||||
J | Translation, ribosomal structure and biogenesis | 151 | 7.79 | 153 | 7.50 | 155 | 7.65 |
A | RNA processing and modification | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
K | Transcription | 159 | 8.21 | 159 | 7.80 | 165 | 8.14 |
L | Replication, recombination and repair | 163 | 8.41 | 227 | 11.13 | 242 | 11.94 |
B | Chromatin structure and dynamics | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
Cell processes and signaling | |||||||
D | Cell cycle control, Cell division, chromosome partitioning | 30 | 1.55 | 30 | 1.47 | 32 | 1.58 |
Y | Nuclear structure | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
V | Defense mechanisms | 39 | 2.01 | 40 | 1.96 | 42 | 2.07 |
T | Signal transduction mechanisms | 66 | 3.41 | 69 | 3.24 | 69 | 3.41 |
M | Cell wall/membrane biogenesis | 100 | 5.17 | 99 | 4.86 | 95 | 4.69 |
N | Cell motility | 9 | 0.04 | 9 | 0.44 | 9 | 0.44 |
Z | Cytoskeleton | 0 | 0.00 | 0 | 0.00 | 1 | 0.05 |
W | Extracellular structures | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
U | Intracellular trafficking and secretion | 39 | 2.01 | 37 | 1.81 | 35 | 1.73 |
O | Posttranslational modification, protein turnover, chaperones | 74 | 3.82 | 78 | 3.82 | 81 | 4.00 |
Metabolism | |||||||
C | Energy production and conversion | 136 | 7.02 | 141 | 6.91 | 140 | 6.91 |
G | Carbohydrate transport and metabolism | 173 | 8.94 | 174 | 8.53 | 174 | 8.59 |
E | Amino acid transport and metabolism | 210 | 10.85 | 221 | 10.85 | 214 | 10.56 |
F | Nucleotide transport and metabolism | 65 | 3.36 | 65 | 3.19 | 64 | 3.16 |
H | Coenzyme transport and metabolism | 113 | 5.84 | 116 | 5.70 | 112 | 5.52 |
I | Lipid transport and metabolism | 64 | 3.31 | 65 | 3.19 | 64 | 3.16 |
P | Inorganic ion transport and metabolism | 153 | 7.90 | 154 | 7.55 | 140 | 6.91 |
Q | Secondary metabolites biosynthesis, transport and catabolism | 38 | 1.96 | 48 | 2.35 | 43 | 2.12 |
Uncharacterized | |||||||
R | General function prediction | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
S | Function unknown | 331 | 17.09 | 336 | 16.48 | 331 | 16.34 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piwowarek, K.; Lipińska, E.; Hać-Szymańczuk, E.; Kieliszek, M.; Kot, A.M. Sequencing and Analysis of the Genome of Propionibacterium freudenreichii T82 Strain: Importance for Industry. Biomolecules 2020, 10, 348. https://doi.org/10.3390/biom10020348
Piwowarek K, Lipińska E, Hać-Szymańczuk E, Kieliszek M, Kot AM. Sequencing and Analysis of the Genome of Propionibacterium freudenreichii T82 Strain: Importance for Industry. Biomolecules. 2020; 10(2):348. https://doi.org/10.3390/biom10020348
Chicago/Turabian StylePiwowarek, Kamil, Edyta Lipińska, Elżbieta Hać-Szymańczuk, Marek Kieliszek, and Anna Maria Kot. 2020. "Sequencing and Analysis of the Genome of Propionibacterium freudenreichii T82 Strain: Importance for Industry" Biomolecules 10, no. 2: 348. https://doi.org/10.3390/biom10020348
APA StylePiwowarek, K., Lipińska, E., Hać-Szymańczuk, E., Kieliszek, M., & Kot, A. M. (2020). Sequencing and Analysis of the Genome of Propionibacterium freudenreichii T82 Strain: Importance for Industry. Biomolecules, 10(2), 348. https://doi.org/10.3390/biom10020348